"`τ' Fݰ(Multiset$Sets#Coq@()Notations$Init#Coq@%Logic$Init#Coq@*Logic_Type$Init#Coq@)Datatypes$Init#Coq@&Specif$Init#Coq@%Peano$Init#Coq@"Wf$Init#Coq@'Tactics$Init#Coq@%Tauto$Init#Coq@'Prelude$Init#Coq@ )Notations$Init#Coq@0&v!D]hwnv %Logic$Init#Coq@0\͉!Ig)Datatypes$Init#Coq@0.i bYN Z*Logic_Type$Init#Coq@0 1jc6&Specif$Init#Coq@0;RWMi\N'Decimal$Init#Coq@0C涳N*ua#Nat$Init#Coq@0eʤģPSR蠠%Peano$Init#Coq@0 jha|ؠ"Wf$Init#Coq@0q+W,J+'Tactics$Init#Coq@0/9m+ a%Tauto$Init#Coq@0̂"&/rk0JqTttֱ&Permut$Sets#Coq@0!?edb>&Basics'Program#Coq@0!bs߯? :VU$Init'Classes#Coq@0](p{yOh.'Tactics'Program#Coq@03u%+Equivalence'Classes#Coq@07;ꮹ-SetoidTactics'Classes#Coq@0S_`nOU$&Setoid'Setoids#Coq@0D9AsWE!>$Bool#Coq@0j 2cZ`FW*Equalities*Structures#Coq@0όe얟)H.Ƞ2Relation_Operators)Relations#Coq@0%s鯰s4Operators_Properties)Relations#Coq@0U3y#h&)Relations#Coq@0r砠*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ&NZSqrt&NatInt'Numbers#Coq@0` .%m%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|&NZBits&NatInt'Numbers#Coq@0MlIpKt'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$&NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ)NMulOrder(Abstract'Natural'Numbers#Coq@04> Aat/ j $NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ'NMaxMin(Abstract'Natural'Numbers#Coq@0]v|Qg̟ʠ'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NLog(Abstract'Natural'Numbers#Coq@0KAFSIAAA@@@D)'D$bT@|z201Z) +k()= R'>$''+k$'QAB|@@5X@3@A@A@@@P,multiset_ind @MKIA=@R 6mAB|@@@@@j,multiset_rec @gec@d@v58@r @ <+k() 7%'h@@@@@(EmptyBag @ϩj!aA@ 8+k+9'G'@@@@@,SingletonBag @跐#eqA@ն@V'Aeq_dec!xͶ!yҩ&Specif@'sumbool7̂K@J%Logic@#notШ ;"a'BAAAA@@@@@D*%f!eBU V@-+CA?=\  +k() +9'!= R'>6'>G''+k6'%AABAAAp%РA@@@@@@ ,multiplicity @RP,A@@@@ @2@7CE7@_]9G +k()= R'> $''+k6'2AB|S@@@@@3#meq @zx"m1-"m20Z\@"eq @p9@C5jwjy@D +k() + T'7" 7"77&'xlT!@@@@@j(meq_refl @@@ba@CTy@@@@@|)meq_trans @@AtE!z[@R@EF@@@@@'meq_sym @@B۶_@.ɩ0k@@@@@&munion @usqͷ Ω#Nat@#add `tn@ +k() +9'7" 7"7%'xlT@@@@@Ѡ1munion_empty_left @@)C&ɩg@7'@[5𿣀 @@@@@ꠠ2munion_empty_right @@BD1/? @@@@@+munion_comm @@REA?OMé*e+"/ @@@@@ *munion_ass @@dFSQa_նߩ=?B@7B͐@@@@@"(meq_left @@zGigwu@TIV@@@@@6)meq_right @@H}{.@ϰh] j_a@@@@@K-munion_rotate @@IC(<| ?@@@Aj;A&Permut@A@@c)meq_congr @@J[,@!t9@:@GB@@@@@0munion_perm_left @@KƶyJ^TrVA@@@@@/multiset_twist1 @@Lٶ]q1h-ưjȰt̩ʰ̰éΰrÐ@@@@@/multiset_twist2 @@Mx3LH.02@@@@@Ġ/treesort_twist1 @@N  Ha!uF@cFHgceLgikUmT@@@@@頠/treesort_twist2 @@AO0.><mƶ%#@!n@@@@@-meq_singleton @@XPGE][)eqA_equiv/RelationClasses'ClassesL@+Equivalence~@hf3d=J@@.i@@@@@hAviA)Morphisms@AmAۀߠK@qAۓό^ @uA݋X_A+@ABC@@>@@@3Xy@{@A@5X@AB ӳ2@ ӳ2[)Datatypes$Init#Coq@@A@ Գq@ Գq\ @A@AC@@A%@B C@@"O@(PeanoNat%Arith#Coq@#Nat@&of_int"O#Nat$Init#Coq@@ 6@A@As2@@&shiftls2 @vY@A@Bs8@@&shiftrs8@vY@A@ѓ@!@&squareѓ@y@A@@'@&to_intϑ@@A@AB/@,@)log2_iter/#@wd@A@l@2@)sqrt_iterl)@!$:@A@ACD c@7@'testbit c.@!ć@A@^Ҷ@?@'to_uint^Ҷ6@#m@A@A,@D@'bitwise,;@/v@A@l@J@'comparelA@3R@A@ABs8@O@+of_uint_accs8F@5+@A@.@W@!t.N@ ;@A@A.먩@\@#add.먩S@ `@A@B.U@a@#div.UX@ @A@.B@h@#eqb.B_@ @A@A. @m@#gcd. d@ @A@.=@s@#leb.=j@ @A@ABCDE. @x@#lor. o@ @A@.Z@@#ltb.Zz@ @A@A.p@@#max.p@ '@A@B.@@#min.@ @A@.@@#mul.@ @A@AC.g@@#odd.g@ @A@.&@@#one.&@ @A@A.뾴@@#pow.뾴@ k@A@.L@@#sub.L@ @A@.@@#two.@ @A@ABCD.,a@@$div2.,a@ @A@.Xz@@$even.Xz@ ?1@A@A.@@$iter.ؑ@ @A@B. @@$land. @ @A@. @@$log2. @ @A@ACE.@@$lxor.@ R@A@.y@@$pred.y@ `<@A@A.Ʉ@@$sqrt.Ʉ@ ;@A@.@@$succ.@ @A@.t @@$zero.t @ Z@A@AB/@@.to_little_uint/@ @A@CD/@@%ldiff/@ H@A@3@@(tail_add3@^q@A@A3@@(tail_mul3@^@A@B6w~@ @'of_uint6w~@^5@A@@@&divmod> @C@A@>@@&double>@NĴ@A@A?;@ @&modulo?;@"i@A@BDEFG@ &Basics'Program#Coq@0!bs߯? :VU$Bool#Coq@0j 2cZ`FW*CMorphisms'Classes#Coq@0qیZBeϠ0CRelationClasses'Classes#Coq@0TL;0RUfw1^]\@0.i bYN Z)Decidable%Logic#Coq@0ND걸풬/Oߠ'Decimal$Init#Coq@0C涳N*ua*Equalities*Structures#Coq@0όe얟)H.Ƞ+Equivalence'Classes#Coq@07;ꮹ-GenericMinMax*Structures#Coq@0måj$$Init'Classes#Coq@0](p{yOh."Le%Arith#Coq@0d}Omq+%Logic$Init#Coq@0\͉!Ig*Logic_Type$Init#Coq@0 1jc6"Lt%Arith#Coq@0KZ-eJkP܏)Morphisms'Classes#Coq@0Imӽ%\$PD.Morphisms_Prop'Classes#Coq@0% :B'.>u%$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI%NBits(Abstract'Natural'Numbers#Coq@0qteo_hɅ $NDiv(Abstract'Natural'Numbers#Coq@0bz$?[p(5$NGcd(Abstract'Natural'Numbers#Coq@08E-S ;j_Ҡ$NLcm(Abstract'Natural'Numbers#Coq@0 ~xZ9L{:$NLog(Abstract'Natural'Numbers#Coq@0K Aat/ j &NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf+NProperties(Abstract'Natural'Numbers#Coq@0unt"kwpYC%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ%NZAdd&NatInt'Numbers#Coq@00h`ZK4*NZAddOrder&NatInt'Numbers#Coq@0e~1>r砠(NZAxioms&NatInt'Numbers#Coq@0] ρ5r&NZBase&NatInt'Numbers#Coq@0^&8yUL&NZBits&NatInt'Numbers#Coq@0MlIpKt%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZMul&NatInt'Numbers#Coq@0ctR~6[Ƞ*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R'NZOrder&NatInt'Numbers#Coq@0 q;Ve7R W,(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x&NZSqrt&NatInt'Numbers#Coq@0` .%m#Nat$Init#Coq@0eʤģPSR蠠)Notations$Init#Coq@0&v!D]hwnv *NumPrelude'Numbers#Coq@05WUVŦ]xVXԠ4Operators_Properties)Relations#Coq@0U3y#h&&Orders*Structures#Coq@0$Znl0\͗+OrdersFacts*Structures#Coq@05Mܿ獐ζΖLB)OrdersTac*Structures#Coq@05'4Ԗ+9%%Peano$Init#Coq@0 jha|ؠ(PeanoNat%Arith#Coq@0O~2$k[#lZ&Permut$Sets#Coq@0!?edb>$Plus%Arith#Coq@04tmG'Prelude$Init#Coq@0JqTttֱ'Classes#Coq@0Gz rA6ՠ4Relation_Definitions)Relations#Coq@0]4Ѐd{n^2Relation_Operators)Relations#Coq@0%s鯰s)Relations#Coq@0-SetoidTactics'Classes#Coq@0S_`nOU$&Specif$Init#Coq@0;RWMi\N'Tactics$Init#Coq@0/9m+ a'Tactics'Program#Coq@03N$@@B@@@@@@@@#_22@"YAA@@@@@@@@@A@ѐB@A@@@@#_23'`o@@"Y@A*type_scope@@@#_24'`o@@"Y@AB.function_scope@@A@2 Q@@G@#_25@58C@ B@A@@@@@@#_262M접%@58DD@A#_27'`o@.@58DD57@@@AA@#_28? 3V/_rect_from_typeI@E@K@2 Q@@I@#_29W@%@SB@A@@@@@@#_302M접m@%DD@A#_31'`o@v@%D}@@@AA(@#_32? 3V._ind_from_type@@@ߠ2 Q@@@#_33@%%Ӡ@B@A@@@@@@#_342M접@%%DD@A#_35'`o@@%%DԠŠǠ@@@AAp@#_36? 3V._rec_from_type@@@%2 Q@@@@#_37@5@@@@@#_382M접@ 5@#_39'`o@@(5A@@@2 Q@@@@#_40 @ .iC@ B@A@@@@@@#_412M접 %@6.i@#_42'`o@ -@>.iDC46@@@AA@@2 Q@@@@#_43 H@5|@ DB@A@@@@@#_442M접 ]@5CB@A#_45'`o@ f@5C|@@@@ @@2 Q@@@@#_46 }@Ty@ yB@A@@@@@#_472M접 @Ty@#_48'`o@ @TyC@@@@ F I@2 Q@@A@#_49 @2W#AA@@@@@ B@A@@@@@#_502M접 @2W##_51'`o@ @2W#B@@@ ~@2 Q@@A@#_52 @!,04AA@@@@@ 搐B@AE@A@A1F@A@@@@@@#_532M접 @I,04#_54'`o@ @S,04F1@@@@@@@ ɠ ̠ Ϡps@S2 Q@@A@#_55 @@^ AA@@@@@ =B@A PD@A S@A@@@@@#_562M접 a@ #_57'`o@ k@ D@@@@@  @2 Q@@@@#_58 @'H@ B@A@@@@@#_592M접 @'@#_60'`o@ @'C@@@@ P S@2 Q@@A@#_61 @ AA@@@@@ B@A@@@@@#_622M접 @ ␐#_63'`o@ @ B@@@ @2 Q@@A@#_64 @(~iAA@@@@@ B@A@@@@@#_652M접 @(~i#_66'`o@ @(~iB)@@@ @נ2 Q@@A@#_67 (@!AA@@@@@ %B@A@@@@@@#_682M접 ?@!#_69'`o@ I@ !C_@@@@  @2 Q@@A@#_70 b@ 1QPAA@@@@@ _B@A@@@@@@@#_712M접 z@ "1QP#_72'`o@ @ ,1QPD@@@@@ 0 3 6@ (2 Q@@A@#_73 @ 32iAA@@@@@ B@A E@A @A@@@@@@#_742M접 @ U2i#_75'`o@ @ _2iE@@@@@@ z }  !@ a2 Q@@A@#_76 @ l,+QnAA@@@@@ 됐B@A E@A @A@@@@@@#_772M접 @ ,+Qn#_78'`o@ @ ,+QnE0@@@@@@ Ǡ ʠ ͠ n@ 2 Q@@A@#_79 ;@ !AA@@@@@ 8B@A@@@@@@@#_802M접 S@ !쐐#_81'`o@ ]@ !Ds@@@@@   @ 2 Q@@A@#_82 z@ ,'AA@@@@@ wB@A F@A @A G@A @A@@@@@@#_832M접 @ ,'#_84'`o@ @ ,'GǠ@@@@@@@@ ` c f i  @ 2 Q@@A@#_85 @ aAA@@@@@ אB@A@@@@@@@#_862M접 @ %a#_87'`o@ @ /aD@@@@@   @ .2 Q@@A@#_88 @ 968OAA@@@@@ B@A@@@@@@@@#_892M접 2@ R68O#_90'`o@ <@ \68OER@@@@@@ 預 점  @ W2 Q@@A@#_91 ]@ b68OAA@@@@@ ZB@A@@@@@@@@#_922M접 v@ {68O#_93'`o@ @ 68OE@@@@@@ - 0 3 6@ 2 Q@@A@#_94 @ 9#iAA@@@@@ B@A@ G@A @A@  @A@@@@@#_952M접 @ 9#iŐ#_96'`o@ @ 9#iG@@@@@@@@      /@ 2 Q@@A@#_97 @ 9#iAA@@@@@ B@A@ G@A @@A@  @A@@@@@#_982M접$@ 9#iƐ#_99'`o@.@ 9#iGD@@@@@@@@ ݠ ࠐ 㠐 栐 預 @ 2 Q@@A@$_100W@ 8AA@@@@@TB@A oC@A@@@@@@@@@$_1012M접w@ +8$_102'`o@@ 58G@@@@@@A 9A@@@@$_104X@)datatypes@ %TyD@@@@@@ @6Coq.Sets.Multiset#<>#12"?@ \5D@@@@@6Coq.Sets.Multiset#<>#22"?@$_105X@)datatypes @@'META687'META688    @ (~i@@@ ͩ 4Щ ΰө ː7@6Coq.Sets.Multiset#<>#32"? @@@'META689 㰛'META690'META691 𰛐 &@ !@@!/Ґ 0֐ w     z>@6Coq.Sets.Multiset#<>#42"? @@'META692 & -'META693'META694'META695 = F(|@ $1QP@@ՠwu(b,W 0] Ѱ  k nfds qi tjy@6Coq.Sets.Multiset#<>#52"? A@'META696 'META697'META699 'META698 @ \2i@@#öөvԩz~@ \#   b &@6Coq.Sets.Multiset#<>#62"?/A@'META701 Ұ'META704'META702 ߰ 'META703@ ,+Qn@@o ƐTʐ@loV Y \r6@6Coq.Sets.Multiset#<>#72"?{@@'META706'META707! "\@? @@WUeB6EC9@<Kp@6Coq.Sets.Multiset#<>#82"?@$_106X@)datatypesA@'META729'META731'META730@ @@ꠓ=wAl@rp"su@6Coq.Sets.Multiset#<>#92"?@@@ڛs FѤaT󄕦@dW>ڶ9U@&@*kY7dm0UE@=&&lc4pr VD!A3XyA(Multiset$Sets#Coq@@@!x@(multiset"Y@A AAA@@@D!mB@#meqTyC!n@)Datatypes$Init3@#nat@!a%Logic@"eq @A>@,multiplicity5DHA6CC502GdbWUKEC!yZ>!z_@2E0D)F%b,Od@> M2G.k5XmFU:Hs=8uu_])'wq$'#@W$fKE+@_,nSvd1sXIS)]X"n0@]G >@y7Fm3g5Fq7k9n@;Ry!s#Y}%&[J}K"n1@c!H'"H0Yp?AѷB@(eq_ind_r!2#!#|ݷéKة.C޶@ݰ@ݐ @Ȱʰ@ذҠܰU!@&eq_sym X-HC97$@"%2$'QOFD/#CKI4( 02 3#Nat-@#add `\@(EmptyBag5𿣀Z$G\\Chf6QE"*Mj@&munion'T]jCvt]`m bdpPk%Peano]@(plus_n_O0G؀DC\w)kHPsJucvC3;Cg4vS[~1,C6+US}hJ_a_]ZWVkm" `(PeanoNat%Arithv@(add_commbCѶzoAʰ@@@@|p琷!f> wCѶȩĩ Cکװҩݐݩ0a+=)45ǠɠH E@DOԠ ֠  "˰ ࠩ⠩./b'9%_@^   9zxҩ#]_@)add_assoc7!+fCWUB'6."5)a+ ccc- ' @ 4 l6 0I) ssC}&j"%O:^C!#%BjrI')F!C7{36yL'(Ow*QIGEC@sA@v=CXI[iZXUX1@MSGVkn|$"hA!@VeQh}^Ӑ<@? ѐc@&eq_ind J©ĩp֩ש̩"C@թکC@Ͱа C@#/-$"˶Ƕ@İ٠۠% '!Զ@éҰ|~{35/@zȩ߰!vwx-@~ҩo+/,.ijkM#4k>lC][H@h.="5_)#<fCrp]@}CR7 \q;`8uC(l$'@k!#p@%rj5y14&Permut@)op_rotate=,9-9:@+munion_comm!@@*munion_ass1QPF@)meq_trans,04L@'meq_sym Rķ_[^!t\6V2@*cong_congr, 0\"x0"y0"z0"H1@(meq_left2iշ @)meq_right,+Qn Bڷa@)perm_leftX,^]-+t^ݷ0.w,V\53|1[4X^5hECCf '%a@%twist%eα4 ZX^\Z #ca_b*Z*jhfiUpnn% (5RPDB/ܰްBé27G K}MU@0munion_perm_lefta?Gqoca N !uQaYZR 0X   ^6   j bw@/multiset_twist168O$Ai4x03/* (&"'!)#3+%.Rz@/multiset_twist268O#eqA@@A)eqA_equiv/RelationClasses'Classes@+Equivalence~@'Aeq_decew&Specif@'sumbool7̂K@@#notШ"a'qs"a0hȐ!s|ש#p'BAAAA@@@@@D1vܩ);bީ3!eBA&PwH"Ha+'Tactics@+decide_left:׀%lemmaȩ)Morphisms@2subrelation_properJ74@K@L @*respectful%WO?T@U}W @#iffС)@,PER_morphism qc@/Equivalence_PER/;jln&Basics'Programg@$impl7o@@$unitUe@A?@6subrelation_respectful>6z 2F@0subrelation_reflv 8!  8!N@4iff_impl_subrelation5 v99T@6reflexive_proper_proxy5é@5Equivalence_Reflexive޷Z1CQ`M@,SingletonBag.iT\lƩV X`pCb dmfoÚ\X#/gP\