"`􄕦n (Integers$Sets#Coq@"Le%Arith#Coq@+Finite_sets$Sets#Coq@1Relations_1_facts$Sets#Coq@(Powerset$Sets#Coq@.Powerset_facts$Sets#Coq@1Constructive_sets$Sets#Coq@*EqdepFacts%Logic#Coq@.Classical_Prop%Logic#Coq@3Classical_Pred_Type%Logic#Coq@)Classical%Logic#Coq@.Classical_sets$Sets#Coq@8Powerset_Classical_facts$Sets#Coq@"Gt%Arith#Coq@"Lt%Arith#Coq@1Finite_sets_facts$Sets#Coq@%Image$Sets#Coq@-Infinite_sets$Sets#Coq@+Compare_dec%Arith#Coq@)Ensembles$Sets#Coq@)Notations$Init#Coq@%Logic$Init#Coq@*Logic_Type$Init#Coq@)Datatypes$Init#Coq@&Specif$Init#Coq@%Peano$Init#Coq@"Wf$Init#Coq@'Tactics$Init#Coq@%Tauto$Init#Coq@'Prelude$Init#Coq@+Relations_1$Sets#Coq@-Partial_Order$Sets#Coq@#Cpo$Sets#Coq@|)Notations$Init#Coq@0&v!D]hwnv %Logic$Init#Coq@0\͉!Ig)Datatypes$Init#Coq@0.i bYN Z*Logic_Type$Init#Coq@0 1jc6&Specif$Init#Coq@0;RWMi\N'Decimal$Init#Coq@0C涳N*ua#Nat$Init#Coq@0eʤģPSR蠠%Peano$Init#Coq@0 jha|ؠ"Wf$Init#Coq@0q+W,J+'Tactics$Init#Coq@0/9m+ a%Tauto$Init#Coq@0̂"&/r'Prelude$Init#Coq@0JqTttֱ)Ensembles$Sets#Coq@00qGL;rߌߠ1Constructive_sets$Sets#Coq@05<s+ħU栠+Finite_sets$Sets#Coq@0d]h :$m}7PropExtensionalityFacts%Logic#Coq@0 +_.ɓoFؘ'Hurkens%Logic#Coq@05[gNk2up$Bool#Coq@0j 2cZ`FW&Basics'Program#Coq@0!bs߯? :VU$Init'Classes#Coq@0](p{yOh.'Tactics'Program#Coq@03u%+Equivalence'Classes#Coq@07;ꮹ-SetoidTactics'Classes#Coq@0S_`nOU$&Setoid'Setoids#Coq@0D9AsWE!>*Equalities*Structures#Coq@0όe얟)H.Ƞ2Relation_Operators)Relations#Coq@0%s鯰s4Operators_Properties)Relations#Coq@0U3y#h&)Relations#Coq@0r砠*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ&NZSqrt&NatInt'Numbers#Coq@0` .%m%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|&NZBits&NatInt'Numbers#Coq@0MlIpKt'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$&NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ)NMulOrder(Abstract'Natural'Numbers#Coq@04> Aat/ j $NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ'NMaxMin(Abstract'Natural'Numbers#Coq@0]v|Qg̟ʠ'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NLog(Abstract'Natural'Numbers#Coq@0K uڞE&kz0n U<_(Powerset$Sets#Coq@0ph AwLnˠ.Powerset_facts$Sets#Coq@074C{s8&p=8Powerset_Classical_facts$Sets#Coq@0 pqPpE1Finite_sets_facts$Sets#Coq@0N.tF*)%Image$Sets#Coq@0A`,IؐXl>(0:k=M\J%o#:Ka=H~>˄)Р(Integers$Sets#Coq@A ,<@)Datatypes$Init@@#nat@@)Ensembles% @(EnsemblefA-Integers_defn!x @"In-B'BAAA@@,AA@A@G@@@@AAA@@A@@@@@@@AA@@A@,Integers_ind @!P@M5!f&!nT!ioI@o@2@AA@@@@Dh@FEDC@%#!EqD +k()= R'> $''+k()$'CAB|@@@@@B,le_reflexive @@@+Relations_1z@)ReflexiveOp%Peano@"le UxT@@@@@@_*le_antisym @@A@-Antisymmetric9@@@@@o(le_trans @@B-@*Transitive!&*@@@@@(le_Order @@C>@%Order@@b@;@@@@@(triv_nat @@Dש@@@@@&nat_po @-Partial_Order@"POG@A]@)Inhabited.s@AAA@D7 l@  067778k\A@A@LTD@@@@@堠.le_total_order @@@@&divmod> @C@A@>@@&double>@NĴ@A@A?;@ @&modulo?;@"i@A@BDEFG@|&Basics'Program#Coq@0!bs߯? :VU$Bool#Coq@0j 2cZ`FW*CMorphisms'Classes#Coq@0qیZBeϠ0CRelationClasses'Classes#Coq@0TL;0RUfw1)Classical%Logic#Coq@0iJʠǪMR.ClassicalFacts%Logic#Coq@0$RzqIF\(43Classical_Pred_Type%Logic#Coq@0m[6BZ5.Classical_Prop%Logic#Coq@0Yh޿JdI1ƽ.Classical_sets$Sets#Coq@0<*62}ա*b+Compare_dec%Arith#Coq@0jXF 81Constructive_sets$Sets#Coq@05<s+ħU栠#Cpo$Sets#Coq@0n U<_@0.i bYN Z)Decidable%Logic#Coq@0ND걸풬/Oߠ'Decimal$Init#Coq@0C涳N*ua)Ensembles$Sets#Coq@00qGL;rߌߠ*EqdepFacts%Logic#Coq@0FI$ͼՋ`*Equalities*Structures#Coq@0όe얟)H.Ƞ+Equivalence'Classes#Coq@07;ꮹ+Finite_sets$Sets#Coq@0d]h :$m}1Finite_sets_facts$Sets#Coq@0N.tF*)-GenericMinMax*Structures#Coq@0måj$"Gt%Arith#Coq@0䙛#c:D 'Hurkens%Logic#Coq@05[gNk2up%Image$Sets#Coq@0A`,IؐXl>(-Infinite_sets$Sets#Coq@0:k=M\J$Init'Classes#Coq@0](p{yOh."Le%Arith#Coq@0d}Omq+%Logic$Init#Coq@0\͉!Ig*Logic_Type$Init#Coq@0 1jc6"Lt%Arith#Coq@0KZ-eJkP܏)Morphisms'Classes#Coq@0Imӽ%\$PD.Morphisms_Prop'Classes#Coq@0% :B'.>u%$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI%NBits(Abstract'Natural'Numbers#Coq@0qteo_hɅ $NDiv(Abstract'Natural'Numbers#Coq@0bz$?[p(5$NGcd(Abstract'Natural'Numbers#Coq@08E-S ;j_Ҡ$NLcm(Abstract'Natural'Numbers#Coq@0 ~xZ9L{:$NLog(Abstract'Natural'Numbers#Coq@0K Aat/ j &NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf+NProperties(Abstract'Natural'Numbers#Coq@0unt"kwpYC%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ%NZAdd&NatInt'Numbers#Coq@00h`ZK4*NZAddOrder&NatInt'Numbers#Coq@0e~1>r砠(NZAxioms&NatInt'Numbers#Coq@0] ρ5r&NZBase&NatInt'Numbers#Coq@0^&8yUL&NZBits&NatInt'Numbers#Coq@0MlIpKt%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZMul&NatInt'Numbers#Coq@0ctR~6[Ƞ*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R'NZOrder&NatInt'Numbers#Coq@0 q;Ve7R W,(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x&NZSqrt&NatInt'Numbers#Coq@0` .%m#Nat$Init#Coq@0eʤģPSR蠠)Notations$Init#Coq@0&v!D]hwnv *NumPrelude'Numbers#Coq@05WUVŦ]xVXԠ4Operators_Properties)Relations#Coq@0U3y#h&&Orders*Structures#Coq@0$Znl0\͗+OrdersFacts*Structures#Coq@05Mܿ獐ζΖLB)OrdersTac*Structures#Coq@05'4Ԗ+9%-Partial_Order$Sets#Coq@0zd> uڞE&k%Peano$Init#Coq@0 jha|ؠ(PeanoNat%Arith#Coq@0O~2$k[#lZ$Plus%Arith#Coq@04tmG(Powerset$Sets#Coq@0ph AwLnˠ8Powerset_Classical_facts$Sets#Coq@0 pqPpE.Powerset_facts$Sets#Coq@074C{s8&p='Prelude$Init#Coq@0JqTttֱ7PropExtensionalityFacts%Logic#Coq@0 +_.ɓoFؘ/RelationClasses'Classes#Coq@0Gz rA6ՠ4Relation_Definitions)Relations#Coq@0]4Ѐd{n^2Relation_Operators)Relations#Coq@0%s鯰s)Relations#Coq@0-SetoidTactics'Classes#Coq@0S_`nOU$&Specif$Init#Coq@0;RWMi\N'Tactics$Init#Coq@0/9m+ a'Tactics'Program#Coq@03N$@@B@z@y@@@@@@#_22@@A@@@@@@@@A@@@@#_23'`o@@@@@@#_24'`o@@@AA)nat_scope@@2 Q@@G@#_25@(=3@@@@#_262M접@(=DD@A#_27'`o@@(=D.function_scope.@@AA@#_28? 3V._ind_from_prop@@@2 Q@@A@#_29@93z@A@@@@@@@@#_302M접+@93z#_31'`o@5@93z@@@2 Q@@A@#_32B@#@A@@@@@@@@#_332M접P@##_34'`o@Z@#@@@2 Q@@A@#_35g@R@A@@@@@@@@#_362M접u@R#_37'`o@@R@@@2 Q@@A@#_38@7 l@A@@@@@@@@#_392M접@7 l#_40'`o@@7 l@@@ˠ2 Q@@A@#_41@@A@@@@@@@@#_422M접@ݐ#_43'`o@@A@@2 Q@@@@#_44@-:V@A@@@@@@@@#_452M접@-:V@#_46'`o@@ -:V@@@à2 Q@@A@#_47@*0u@A@@@@@@@@#_482M접 @*0u#_49'`o@@*0u@@@Ϡ2 Q@@A@#_50#@@A@@@@@@@@#_512M접1@#_52'`o@;@B@@@%@͠2 Q@@A@#_53P@vd@A@@@@@@@@#_542M접^@vd#_55'`o@h@vd@@@ܠ2 Q@@A@#_56u@:@A@@@@@@@@#_572M접@:#_58'`o@@:@@@@@M '4>􄕦@Rq WszRS?@,m?F@ڳ`Cq=NĄVb ^ $!x)Datatypes$Init#Coq@@#nat@%Peano@"le UxT@AAC+Relations_1$Sets@)ReflexiveOp&.,!y/!H B"H'C%Logic;@(eq_ind_r!2#E HF @"eq @N5D AT(PeanoNat%ArithU#Nat@+le_antisymm9(.ICH@-Antisymmetric9Cnl@m!zpAL9?"H0"@(le_trans:АE0DJeCd@*Transitive!&_n@%Order@@b@Ai(Integerst@,le_reflexive93z@ R @*le_antisym#@@A#Cpo@/Totally_ordered<@A'@&nat_po-:V)Ensembles@(Included"=ʷ˷#H'0Щ@&Couple8Zq@@&or_ind"n@"lt Uxc@"or @|#H'1 AРҠ B Щ@*lt_le_incl٩󩚠@+le_gt_cases(HCC@SY-Partial_Order@*Carrier_of ,h! @S<@&Rel_of(6T*t,v򐑷!Xr@(Ensemblef8+Finite_sets @&Finite@D+ @*Finite_ind͹+K@"ex @T!mW@+Upper_Bound<@_+FAdeg@)Empty_setįu@7UoAAv@(triv_nat݀C@"In-Brv@"POG@Ak@)Inhabited.s@A, @(le_Order7 l2C!4vة%?@-Empty_set_ind z)B|!A{ǩica#H'2@#notШFy@&ex_ind 5{ηzϩxFԷթ~!@#Add-‰ ŷ"x0᷐#H'38@3Totally_ordered_ind6MK(50:Hvڵ@7@+#H'4@A23IG 5@!BǠbALI#H'5!"$nM&MJ *tC/0C3t@)Union_ind'a樀 :N}@)Singleton7u@CKE"G.-N˷"x1L#H'6аQP9 :@/Upper_Bound_ind:x"[QB7*D0bH7d@gSOC6OSvC@o[U@Dq@ Ot@ O(<3.x~{@}cd@-Singleton_ind5먀^;bnM|eChggCjii[v[vs1q!|CCpmk fet~|Z&=SXfwh}.l<@3R}LC@9w@@   sx·JF|I˷ީMΩ@*Couple_ind* ةYDCܩ a#ǠʐC(C@ש7֚`@.le_total_order*0uې©GB6@%Falsee@;  SN  طQ@7[B˩`;d f@%jVڠ@-w%@)False_induُ7@/nle_succ_diag_l"OyK$& (''CJ|J@5Finite_subset_has_lub:C @2Integers_has_no_ubvd #JE)s1