"`Äel q-Infinite_sets$Sets#Coq@x"Le%Arith#Coq@+Finite_sets$Sets#Coq@1Relations_1_facts$Sets#Coq@+Relations_1$Sets#Coq@-Partial_Order$Sets#Coq@#Cpo$Sets#Coq@(Powerset$Sets#Coq@.Powerset_facts$Sets#Coq@)Ensembles$Sets#Coq@1Constructive_sets$Sets#Coq@*EqdepFacts%Logic#Coq@.Classical_Prop%Logic#Coq@3Classical_Pred_Type%Logic#Coq@)Classical%Logic#Coq@.Classical_sets$Sets#Coq@8Powerset_Classical_facts$Sets#Coq@"Gt%Arith#Coq@)Notations$Init#Coq@%Logic$Init#Coq@*Logic_Type$Init#Coq@)Datatypes$Init#Coq@&Specif$Init#Coq@%Peano$Init#Coq@"Wf$Init#Coq@'Tactics$Init#Coq@%Tauto$Init#Coq@'Prelude$Init#Coq@"Lt%Arith#Coq@1Finite_sets_facts$Sets#Coq@%Image$Sets#Coq@x)Notations$Init#Coq@0&v!D]hwnv %Logic$Init#Coq@0\͉!Ig)Datatypes$Init#Coq@0.i bYN Z*Logic_Type$Init#Coq@0 1jc6&Specif$Init#Coq@0;RWMi\N'Decimal$Init#Coq@0C涳N*ua#Nat$Init#Coq@0eʤģPSR蠠%Peano$Init#Coq@0 jha|ؠ"Wf$Init#Coq@0q+W,J+'Tactics$Init#Coq@0/9m+ a%Tauto$Init#Coq@0̂"&/r'Prelude$Init#Coq@0JqTttֱ)Ensembles$Sets#Coq@00qGL;rߌߠ1Constructive_sets$Sets#Coq@05<s+ħU栠+Finite_sets$Sets#Coq@0d]h :$m}7PropExtensionalityFacts%Logic#Coq@0 +_.ɓoFؘ'Hurkens%Logic#Coq@05[gNk2up$Bool#Coq@0j 2cZ`FW&Basics'Program#Coq@0!bs߯? :VU$Init'Classes#Coq@0](p{yOh.'Tactics'Program#Coq@03u%+Equivalence'Classes#Coq@07;ꮹ-SetoidTactics'Classes#Coq@0S_`nOU$&Setoid'Setoids#Coq@0D9AsWE!>*Equalities*Structures#Coq@0όe얟)H.Ƞ2Relation_Operators)Relations#Coq@0%s鯰s4Operators_Properties)Relations#Coq@0U3y#h&)Relations#Coq@0r砠*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ&NZSqrt&NatInt'Numbers#Coq@0` .%m%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|&NZBits&NatInt'Numbers#Coq@0MlIpKt'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$&NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ)NMulOrder(Abstract'Natural'Numbers#Coq@04> Aat/ j $NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ'NMaxMin(Abstract'Natural'Numbers#Coq@0]v|Qg̟ʠ'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NLog(Abstract'Natural'Numbers#Coq@0K uڞE&k#Cpo$Sets#Coq@0n U<_(Powerset$Sets#Coq@0ph AwLnˠ.Powerset_facts$Sets#Coq@074C{s8&p=8Powerset_Classical_facts$Sets#Coq@0 pqPpE1Finite_sets_facts$Sets#Coq@0N.tF*)0A`,IؐXl>("_<6G؄2 %%#Р-Infinite_sets$Sets#Coq@A+Approximant,<!X)Ensembles@@(EnsemblefB!AA!U}JA2@@@  &$A3Defn_of_Approximant.,@+Finite_sets.@&Finite@C&@:@(Included"=D6 FE@@@AB@!BB@_@['e\@@@@AAB@@A@CC\ZMKHF@@@FA|A^@JA*#A4@AB@AA@@A@0Approximant_rect @][ecwu!P~B`@@!f@UCx@KBOFO!as@'e\@MCBB@@@@D@YW[[@*(" j +k()= R'> % ''+k'VAD|@@~@5@A@A@@@I/Approximant_ind @F>@J 7sAD|@@@@@d/Approximant_rec @ķַa@N@q3@ȶжm C H+k() 7#'p@@@@@4make_new_approximant @@ @ᔑȠC@@@%Logic$Init@#notШߠ@@)Inhabited.s@ԩ@(Setminus !ې@@@*A@A+Au)A.Classical_sets"@1A@3A@ABC@@Ơ1approximants_grow @@IA ?(&:8@9!n)Datatypes<@#nat@@@(cardinal6\@ ;@ R@"ex @YG!Y`@#andЖw@!HW0B.5^@@@|A'A1Constructive_setss@AW@Q@P@A2A1Finite_sets_facts{@ABCD@@2approximants_grow' @@Bu}{@US@J@@:7;5/ /=@@@y@Ar@q@!@ABC@@7;approximant_can_be_any_size @@C@qoZjSQlq*sq@@@@A@A٠A(Powerset@@ABC@@Z4Image_set_continuous @@DӶ!VD@@ԶV@٩א@ɶ@ө%Image@"Im? @I@"eq @$ @@@@AAA(@S@AB@A1@D@ADA@GA@AHA @JA@LA1DH@ABCDE@@5Image_set_continuous' @@:E0][)U-T@O$ߠ2֠&> \*@@@@A8@@AB@@A/@/@xA-@ABCD@@ᠠ.Pigeonhole_bis @@dF;ZDS@Uն@+,Z|@)injective} +@@@E@A^@?@AB=@@AY@W@ABV@(@AV@A@A;ɠA.Powerset_factsp@ABCDE@@.Pigeonhole_ter @@GjsJH@)BF{@[E]1G@@@m@A@e@{@z@ABCD@@,@@@ ӳ2@ ӳ2[)Datatypes$Init#Coq@@A@A Գq@ Գq\ @A@}J@@A@A~@@@A@@@A@ABCD@L@I@9@ABC@@A@B@@ACD@@9@ABJCI@@AIHBCDE@@"O@(PeanoNat%Arith#Coq@#Nat@&of_int"O#Nat$Init#Coq@@ 6@A@As2@@&shiftls2 @vY@A@Bs8@@&shiftrs8@vY@A@ѓ@!@&squareѓ@y@A@@'@&to_intϑ@@A@AB/@,@)log2_iter/#@wd@A@l@2@)sqrt_iterl)@!$:@A@ACD c@7@'testbit c.@!ć@A@^Ҷ@?@'to_uint^Ҷ6@#m@A@A,@D@'bitwise,;@/v@A@l@J@'comparelA@3R@A@ABs8@O@+of_uint_accs8F@5+@A@.@W@!t.N@ ;@A@A.먩@\@#add.먩S@ `@A@B.U@a@#div.UX@ @A@.B@h@#eqb.B_@ @A@A. @m@#gcd. d@ @A@.=@s@#leb.=j@ @A@ABCDE. @x@#lor. o@ @A@.Z@@#ltb.Zz@ @A@A.p@@#max.p@ '@A@B.@@#min.@ @A@.@@#mul.@ @A@AC.g@@#odd.g@ @A@.&@@#one.&@ @A@A.뾴@@#pow.뾴@ k@A@.L@@#sub.L@ @A@.@@#two.@ @A@ABCD.,a@@$div2.,a@ @A@.Xz@@$even.Xz@ ?1@A@A.@@$iter.ؑ@ @A@B. @@$land. @ @A@. @@$log2. @ @A@ACE.@@$lxor.@ R@A@.y@@$pred.y@ `<@A@A.Ʉ@@$sqrt.Ʉ@ ;@A@.@@$succ.@ @A@.t @@$zero.t @ Z@A@AB/@@.to_little_uint/@ @A@CD/@@%ldiff/@ H@A@3@@(tail_add3@^q@A@A3@@(tail_mul3@^@A@B6w~@ @'of_uint6w~@^5@A@@@&divmod> @C@A@>@@&double>@NĴ@A@A?;@ @&modulo?;@"i@A@BDEFG@x&Basics'Program#Coq@0!bs߯? :VU$Bool#Coq@0j 2cZ`FW*CMorphisms'Classes#Coq@0qیZBeϠ0CRelationClasses'Classes#Coq@0TL;0RUfw1)Classical%Logic#Coq@0iJʠǪMR.ClassicalFacts%Logic#Coq@0$RzqIF\(43Classical_Pred_Type%Logic#Coq@0m[6BZ5.Classical_Prop%Logic#Coq@0Yh޿JdI1ƽ.Classical_sets$Sets#Coq@0<*62}ա*b+Compare_dec%Arith#Coq@0jXF 81Constructive_sets$Sets#Coq@05<s+ħU栠#Cpo$Sets#Coq@0n U<_@0.i bYN Z)Decidable%Logic#Coq@0ND걸풬/Oߠ'Decimal$Init#Coq@0C涳N*ua)Ensembles$Sets#Coq@00qGL;rߌߠ*EqdepFacts%Logic#Coq@0FI$ͼՋ`*Equalities*Structures#Coq@0όe얟)H.Ƞ+Equivalence'Classes#Coq@07;ꮹ+Finite_sets$Sets#Coq@0d]h :$m}1Finite_sets_facts$Sets#Coq@0N.tF*)-GenericMinMax*Structures#Coq@0måj$"Gt%Arith#Coq@0䙛#c:D 'Hurkens%Logic#Coq@05[gNk2up%Image$Sets#Coq@0A`,IؐXl>($Init'Classes#Coq@0](p{yOh."Le%Arith#Coq@0d}Omq+%Logic$Init#Coq@0\͉!Ig*Logic_Type$Init#Coq@0 1jc6"Lt%Arith#Coq@0KZ-eJkP܏)Morphisms'Classes#Coq@0Imӽ%\$PD.Morphisms_Prop'Classes#Coq@0% :B'.>u%$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI%NBits(Abstract'Natural'Numbers#Coq@0qteo_hɅ $NDiv(Abstract'Natural'Numbers#Coq@0bz$?[p(5$NGcd(Abstract'Natural'Numbers#Coq@08E-S ;j_Ҡ$NLcm(Abstract'Natural'Numbers#Coq@0 ~xZ9L{:$NLog(Abstract'Natural'Numbers#Coq@0K Aat/ j &NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf+NProperties(Abstract'Natural'Numbers#Coq@0unt"kwpYC%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ%NZAdd&NatInt'Numbers#Coq@00h`ZK4*NZAddOrder&NatInt'Numbers#Coq@0e~1>r砠(NZAxioms&NatInt'Numbers#Coq@0] ρ5r&NZBase&NatInt'Numbers#Coq@0^&8yUL&NZBits&NatInt'Numbers#Coq@0MlIpKt%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZMul&NatInt'Numbers#Coq@0ctR~6[Ƞ*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R'NZOrder&NatInt'Numbers#Coq@0 q;Ve7R W,(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x&NZSqrt&NatInt'Numbers#Coq@0` .%m#Nat$Init#Coq@0eʤģPSR蠠)Notations$Init#Coq@0&v!D]hwnv *NumPrelude'Numbers#Coq@05WUVŦ]xVXԠ4Operators_Properties)Relations#Coq@0U3y#h&&Orders*Structures#Coq@0$Znl0\͗+OrdersFacts*Structures#Coq@05Mܿ獐ζΖLB)OrdersTac*Structures#Coq@05'4Ԗ+9%-Partial_Order$Sets#Coq@0zd> uڞE&k%Peano$Init#Coq@0 jha|ؠ(PeanoNat%Arith#Coq@0O~2$k[#lZ$Plus%Arith#Coq@04tmG(Powerset$Sets#Coq@0ph AwLnˠ8Powerset_Classical_facts$Sets#Coq@0 pqPpE.Powerset_facts$Sets#Coq@074C{s8&p='Prelude$Init#Coq@0JqTttֱ7PropExtensionalityFacts%Logic#Coq@0 +_.ɓoFؘ/RelationClasses'Classes#Coq@0Gz rA6ՠ4Relation_Definitions)Relations#Coq@0]4Ѐd{n^2Relation_Operators)Relations#Coq@0%s鯰s)Relations#Coq@0-SetoidTactics'Classes#Coq@0S_`nOU$&Specif$Init#Coq@0;RWMi\N'Tactics$Init#Coq@0/9m+ a'Tactics'Program#Coq@03N$@@B@@@@@@@@#_20@'e\@A@@@@@@@@@A@@@@@#_21'`o@@'e\@C*type_scope@@@@Ϡ@#_22'`o@@'e\@AE@@@@@@砐ꠐ@2 Q@@G@#_23 @3P@@@@@#_242M접@3FF@A#_25'`o@$@3FO@@S.function_scope@@@#&@A@#_26? 3V/_rect_from_propH@D@J@2 Q@@J@#_27V@);@@@@@#_282M접d@);FF@A#_29'`o@m@);F@@I@@@kn@A@#_30? 3V._ind_from_prop@@@2 Q@@@#_31@)Gᠠ@@@@@#_322M접@)GFF@A#_33'`o@@)GF@@䠐@@@@A3@#_34? 3V._rec_from_prop@@@#_35X@$core@'e\@B@(META1046(META1047(META1048@A@@@@ A߶驚@Ӡ@ʰϩ@e @;Coq.Sets.Infinite_sets#<>#1$:Y@2 Q@@A@#_39 (@*@A@@@@@@@@@#_402M접 7@9#_41'`o@ A@CEl@@@@@@ < ?B@2 Q@@A@#_42 b@%I@A@@@@@@@@@#_432M접 q@4I#_44'`o@ {@>IG@@@)nat_scope@@@@ z }H@ O@ 2 Q@@A@#_45 @*@A@@@@@@@@@#_462M접 @#*#_47'`o@ @-*G@@@D@@@@  à B@02 Q@@A@#_48 @;,G.@A@@@@@@@@@#_492M접 @J,G.#_50'`o@ @T,G.E-@@@@@   @H2 Q@@@@#_54 $@Sk3@A@@@@@@@@@@#_552M접 4@ck3#_56'`o@ >@mk3Gik@@@@@@@ ?A D  @.2 Q@@@@#_57 g@92 :@A@@@@@@@@@@#_582M접 w@I2 :#_59'`o@ @S2 :F@\@@@@@ A  @C2 Q@@@@#_60 @N4^@A@@@@@@@@@@#_612M접 @^4^#_62'`o@ @h4^F렐@@@@@@ A Š @S2 Q@@@@#_63 @^42s@A@@@@@@@@@@#_642M접 @n42s#_65'`o@ @x42sG*,@ڠ@@@@@ A ˠ @@@:k=M\JH@A(:"/SjH*@ʐp7+HS@-鷄o(!p(+ [ !UȠC-Infinite_sets$Sets#Coq@@@!A)Ensembles@(EnsemblefA!XB"H'%Logic$Init#@#notШ+Finite_sets0@&Finite@C#H'0?@+Approximant'e\@D) @/Approximant_ind);E B@)Inhabited.s@ I@(Setminus !%#H'13*#H'2X@(Included"=F( .Classical_setso@ %Strict_super_set_contains_new_element7xАG+ a#H'3\@"eq @w9:g@&eq_ind JH&fI^Cu}!n)Datatypes@#nat@q~@(cardinal6\@f{@,cardinal_ind:ȀNQ@Z0J@"ex @6!Y@#andЖw@+J©:ByK|w@)Empty_setįu@.Ȑ!H@4make_new_approximant}pAAyuw%y@-Inhabited_ind {}/IRLJMHmBA|AA!x@"In-BR԰TIVnA&KkiL%"װ' 1@#Add-‰b)yA3wB8A$;1Constructive_setsZ@.Noone_in_empty6'-ExB@'and_ind14ۀЩG7OKK+"H0RR<>A\b#H'4ZDJG"x0M#H'5dNLAw@)Union_ind'a樀 O@)Singleton7u@ 4  ~P"x1#H'6  7@-Singleton_ind5먀Q%RmCU9~;ې={"A0"n0%i8g@f8< (raȷ[{x>%*Aeשjhn@&ex_ind 5{Щl.,Qi%olx@ 8 6[s/  Щcm7Gp~RtLJogCEl ~#H'7#H'8°t rհtxl"xfdS ^`©հ%۩  +7T|zU6tvé; 7 'BЩ>-FBB|GG 4UU"x2*#H'9P)7 _ V6YWh2"x3 $H'10b  <rX  jYy-Щo (ss ,)yyi'QCC[ ]1Finite_sets_facts@/cardinal_finite>Iʀgyj1/ȩ,$~_@*Add_intro1 %))qCY=I{ŷ(&k_~Va KL'CE_tb`uKpe6 ̩ (#VԷ#rЩD2·*é(MxV˩75Z~˰ĩ`Ѱ̩o@1approximants_growI!@'nat_indJhp`q^'ki$&Z &P M(PowersetJ@1Empty_set_minimal _Y  +cҷөD#ٷکKC߷ '@2approximants_grow'*N@ީ Щư;&7=T@%Falsee@  "H1CL<Ȑ"H2d@)False_induُuoCk!I+ЩuMVw%#y3 )'!VD@@!f@ssзk@*Finite_ind͹+j@TO%Image@"Im? @OZy'*(%mCX Cat q>A?ST<T̩Vto^2Z^өm&n$&Kgܩi~xAm  2WMM' 6R@+image_empty3зUݩ@bҩ^aUYVWY~ư`tYЩ Ӱbd fũ]z^xz5/7Ұh;a_`GAIݩjM)ϩŷƩqrv 0з!EЩiѰgFi màƠtuys+{ Xc#<"lܠpqҠԠpAr,{v n+٩KЩ⠩oO!:1  a%L79TKT?qЩ+ls%ϐ8.k .6dFͩ8i8<5֐ְx:424Y{Z} Oΰy ة@̩ڰwa6@ij@&Im_inv e(@ mcZ#$H'11@%w$[3ΰ7$H'13` 4 3\$BݰF&QPѩS5%Wߩ0')<* Fi]Ӱ^jũm,q?J C@NqH 0 NC%Eh_G)Il[[T-6GЩ.Vv28he)0y86_?/_C`a B@&Im_def e|` Q|KC$hЩWSy=bQ&h\&ĩM $Esrb%`d#°Orҩ;c[mʰdC9;Q|ݩ)'_*uJpzD{FDCH(ðJHGLPI@&Im_add exSi72@*Add_intro2 &d\ؐ6 n C°nS20%z M@4Image_set_continuousk3"f$&Yԩ*0n,.pa 66ηϩB<aݰ_#ӷԩzvȷɩ:aطְNlKXVĠNWu mT+Щ YwO/[ye_e} ٠%Рdm&#kIE,)qtIЩ'kDK)mw砩{$6=YBBX*r<1J4E\)C`PX-;dM/If01hCٷ:820·)*rҩm00v2̐3@)injective}<ЩkߩzCoߐs yMuyOw{68˩#<=°ЩF>4 :uE G&P~"E0 @*Pigeonhole;R$u34: 0@(eq_ind_r!2#!ǩͷ!eKxЩ ԩH <ϩ>ѩ^J[c7G쩚%@)Extension ϑ*ac8GWط0Jy?N^G _V`  .Powerset_facts@2Non_disjoint_unionxڀj*V i"Lt%Arith@*le_lt_n_Smk@2cardinal_decreases:D |"rfR\_$@/finite_cardinal z9!Ua37GCI7=b@5Image_set_continuous'2 :ip!CwDBȷ<:D˷.Classical_Prop@$NNPP-1א#u@.Pigeonhole_bis4^rC j-pբ.$M