"`焕/ ۰1Finite_sets_facts$Sets#Coq@l+Finite_sets$Sets#Coq@1Relations_1_facts$Sets#Coq@+Relations_1$Sets#Coq@-Partial_Order$Sets#Coq@#Cpo$Sets#Coq@(Powerset$Sets#Coq@.Powerset_facts$Sets#Coq@)Ensembles$Sets#Coq@1Constructive_sets$Sets#Coq@*EqdepFacts%Logic#Coq@.Classical_Prop%Logic#Coq@3Classical_Pred_Type%Logic#Coq@)Classical%Logic#Coq@.Classical_sets$Sets#Coq@8Powerset_Classical_facts$Sets#Coq@"Gt%Arith#Coq@)Notations$Init#Coq@%Logic$Init#Coq@*Logic_Type$Init#Coq@)Datatypes$Init#Coq@&Specif$Init#Coq@%Peano$Init#Coq@"Wf$Init#Coq@'Tactics$Init#Coq@%Tauto$Init#Coq@'Prelude$Init#Coq@"Lt%Arith#Coq@p)Notations$Init#Coq@0&v!D]hwnv %Logic$Init#Coq@0\͉!Ig)Datatypes$Init#Coq@0.i bYN Z*Logic_Type$Init#Coq@0 1jc6&Specif$Init#Coq@0;RWMi\N'Decimal$Init#Coq@0C涳N*ua#Nat$Init#Coq@0eʤģPSR蠠%Peano$Init#Coq@0 jha|ؠ"Wf$Init#Coq@0q+W,J+'Tactics$Init#Coq@0/9m+ a%Tauto$Init#Coq@0̂"&/r'Prelude$Init#Coq@0JqTttֱ)Ensembles$Sets#Coq@00qGL;rߌߠ1Constructive_sets$Sets#Coq@05<s+ħU"0d]h :$m}7PropExtensionalityFacts%Logic#Coq@0 +_.ɓoFؘ'Hurkens%Logic#Coq@05[gNk2up$Bool#Coq@0j 2cZ`FW&Basics'Program#Coq@0!bs߯? :VU$Init'Classes#Coq@0](p{yOh.'Tactics'Program#Coq@03u%+Equivalence'Classes#Coq@07;ꮹ-SetoidTactics'Classes#Coq@0S_`nOU$&Setoid'Setoids#Coq@0D9AsWE!>*Equalities*Structures#Coq@0όe얟)H.Ƞ2Relation_Operators)Relations#Coq@0%s鯰s4Operators_Properties)Relations#Coq@0U3y#h&)Relations#Coq@0r砠*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ&NZSqrt&NatInt'Numbers#Coq@0` .%m%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|&NZBits&NatInt'Numbers#Coq@0MlIpKt'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$&NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ)NMulOrder(Abstract'Natural'Numbers#Coq@04> Aat/ j $NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ'NMaxMin(Abstract'Natural'Numbers#Coq@0]v|Qg̟ʠ'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NLog(Abstract'Natural'Numbers#Coq@0K uڞE&k#Cpo$Sets#Coq@0n U<_(Powerset$Sets#Coq@0ph AwLnˠ.Powerset_facts$Sets#Coq@074C{s8&p=ѐ0 pqPpE4zP6iLhH3 '$Р1Finite_sets_facts$Sets#Coq@A/finite_cardinal @@@!U2A@@@!X)Ensembles @(EnsemblefA@+Finite_sets@&Finite@B%Logic$Init'@"ex @)Datatypes @#nat@!n %@(cardinal6\@DC1@@@HA|A<@LA*#A3@AB@@AA@@A@/cardinal_finite @@oA_]TR$.@#?LJ@@@@4Add_preserves_Finite @@Bqofd!xP@\0S^3l@#Add-‰:9\@@@8@5@A;ɠA.Powerset_facts@ABC@@83Singleton_is_finite @@C"}{r@)Singleton7u@z@@@A'A1Constructive_sets@A[@X@#@ABC@@V6Union_preserves_Finite @@D!Y@C@uE@%Union.B@ @@F@@v6Finite_downward_closed @@Eж!AǶ@˩ɐ@@(Included"=Ǡ%@@@@AA}KA8Powerset_Classical_facts@@h@ABC@@=Intersection_preserves_finite @@F%@߶#@,Intersectionϟ@#@@@@A٠A(Powerset@@ABC@@/cardinalO_empty @@&G  @ٰA@"eq @N@)Empty_setįu@T@@@@@-A*$\B@ABC@@ᠠ-inh_card_gt_O @@MH=;20@2@)Inhabited.s@" @ %Peano!@"gt Ux-8@@ @@-card_soustr_1 @@mI][RP",@@T@"In-B"Q*F^@(Subtract 3mN#NatL@$pred `<6@@@@A5@@A3@A1DH[@A1GK_@ABCD@@86cardinal_is_functional @@J"c1e@7"c2k@`6|@G<_v>a@@@ @Ab@@AB_@,@A1FdJ@-@ABCD@@b.cardinal_Empty @@K!m@@@@)@A@|@@A1@D@ABCD@@~0cardinal_unicity @@LضͶ@{@xð@@@@,card_Add_gen @@M|ʶ"n'@8Ѷ@=֩@"le UxT@B@@@@/incl_st_card_lt @@"N~@b|{@y@ @/Strict_Includedzةؠ@@@@A@$Au)A.Classical_sets%@ABF@@@@ABCD@@ݠ,incl_card_le @@IO97., ~ @J@@hI@@@@"@@ABC@@%G_aux @@dPTR!P@JA@P@CG@Ƕ@ILBC@@@@ $Generalized_induction_on_finite_sets @@Qsq@j@]2a3Ð@@@@A3@X@AB@z@2@@ABCD@@0@@@ ӳ2@ ӳ2[)Datatypes$Init#Coq@@A@ Գq@ Գq\ @A@2@@A@ABCJ@p@A@@ABCI@k@A@B@@A@B@CDE@@"O@(PeanoNat%Arith#Coq@#Nat@&of_int"O#Nat$Init#Coq@@ 6@A@As2@@&shiftls2 @vY@A@Bs8@@&shiftrs8@vY@A@ѓ@!@&squareѓ@y@A@@'@&to_intϑ@@A@AB/@,@)log2_iter/#@wd@A@l@2@)sqrt_iterl)@!$:@A@ACD c@7@'testbit c.@!ć@A@^Ҷ@?@'to_uint^Ҷ6@#m@A@A,@D@'bitwise,;@/v@A@l@J@'comparelA@3R@A@ABs8@O@+of_uint_accs8F@5+@A@.@W@!t.N@ ;@A@A.먩@\@#add.먩S@ `@A@B.U@a@#div.UX@ @A@.B@h@#eqb.B_@ @A@A. @m@#gcd. d@ @A@.=@s@#leb.=j@ @A@ABCDE. @x@#lor. o@ @A@.Z@@#ltb.Zz@ @A@A.p@@#max.p@ '@A@B.@@#min.@ @A@.@@#mul.@ @A@AC.g@@#odd.g@ @A@.&@@#one.&@ @A@A.뾴@@#pow.뾴@ k@A@.L@@#sub.L@ @A@.@@#two.@ @A@ABCD.,a@@$div2.,a@ @A@.Xz@@$even.Xz@ ?1@A@A.@@$iter.ؑ@ @A@B. @@$land. @ @A@. @@$log2. @ @A@ACE.@@$lxor.@ R@A@.y@@$pred.y@ `<@A@A.Ʉ@@$sqrt.Ʉ@ ;@A@.@@$succ.@ @A@.t @@$zero.t @ Z@A@AB/@@.to_little_uint/@ @A@CD/@@%ldiff/@ H@A@3@@(tail_add3@^q@A@A3@@(tail_mul3@^@A@B6w~@ @'of_uint6w~@^5@A@@@&divmod> @C@A@>@@&double>@NĴ@A@A?;@ @&modulo?;@"i@A@BDEFG@p&Basics'Program#Coq@0!bs߯? :VU$Bool#Coq@0j 2cZ`FW*CMorphisms'Classes#Coq@0qیZBeϠ0CRelationClasses'Classes#Coq@0TL;0RUfw1)Classical%Logic#Coq@0iJʠǪMR.ClassicalFacts%Logic#Coq@0$RzqIF\(43Classical_Pred_Type%Logic#Coq@0m[6BZ5.Classical_Prop%Logic#Coq@0Yh޿JdI1ƽ.Classical_sets$Sets#Coq@0<*62}ա*b+Compare_dec%Arith#Coq@0jXF 81Constructive_sets$Sets#Coq@05<s+ħU栠#Cpo$Sets#Coq@0n U<_@0.i bYN Z)Decidable%Logic#Coq@0ND걸풬/Oߠ'Decimal$Init#Coq@0C涳N*ua)Ensembles$Sets#Coq@00qGL;rߌߠ*EqdepFacts%Logic#Coq@0FI$ͼՋ`*Equalities*Structures#Coq@0όe얟)H.Ƞ+Equivalence'Classes#Coq@07;ꮹ+Finite_sets$Sets#Coq@0d]h :$m}-GenericMinMax*Structures#Coq@0måj$"Gt%Arith#Coq@0䙛#c:D 'Hurkens%Logic#Coq@05[gNk2up$Init'Classes#Coq@0](p{yOh."Le%Arith#Coq@0d}Omq+%Logic$Init#Coq@0\͉!Ig*Logic_Type$Init#Coq@0 1jc6"Lt%Arith#Coq@0KZ-eJkP܏)Morphisms'Classes#Coq@0Imӽ%\$PD.Morphisms_Prop'Classes#Coq@0% :B'.>u%$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI%NBits(Abstract'Natural'Numbers#Coq@0qteo_hɅ $NDiv(Abstract'Natural'Numbers#Coq@0bz$?[p(5$NGcd(Abstract'Natural'Numbers#Coq@08E-S ;j_Ҡ$NLcm(Abstract'Natural'Numbers#Coq@0 ~xZ9L{:$NLog(Abstract'Natural'Numbers#Coq@0K Aat/ j &NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf+NProperties(Abstract'Natural'Numbers#Coq@0unt"kwpYC%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ%NZAdd&NatInt'Numbers#Coq@00h`ZK4*NZAddOrder&NatInt'Numbers#Coq@0e~1>r砠(NZAxioms&NatInt'Numbers#Coq@0] ρ5r&NZBase&NatInt'Numbers#Coq@0^&8yUL&NZBits&NatInt'Numbers#Coq@0MlIpKt%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZMul&NatInt'Numbers#Coq@0ctR~6[Ƞ*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R'NZOrder&NatInt'Numbers#Coq@0 q;Ve7R W,(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x&NZSqrt&NatInt'Numbers#Coq@0` .%m#Nat$Init#Coq@0eʤģPSR蠠)Notations$Init#Coq@0&v!D]hwnv *NumPrelude'Numbers#Coq@05WUVŦ]xVXԠ4Operators_Properties)Relations#Coq@0U3y#h&&Orders*Structures#Coq@0$Znl0\͗+OrdersFacts*Structures#Coq@05Mܿ獐ζΖLB)OrdersTac*Structures#Coq@05'4Ԗ+9%-Partial_Order$Sets#Coq@0zd> uڞE&k%Peano$Init#Coq@0 jha|ؠ(PeanoNat%Arith#Coq@0O~2$k[#lZ$Plus%Arith#Coq@04tmG(Powerset$Sets#Coq@0ph AwLnˠ8Powerset_Classical_facts$Sets#Coq@0 pqPpE.Powerset_facts$Sets#Coq@074C{s8&p='Prelude$Init#Coq@0JqTttֱ7PropExtensionalityFacts%Logic#Coq@0 +_.ɓoFؘ/RelationClasses'Classes#Coq@0Gz rA6ՠ4Relation_Definitions)Relations#Coq@0]4Ѐd{n^2Relation_Operators)Relations#Coq@0%s鯰s)Relations#Coq@0-SetoidTactics'Classes#Coq@0S_`nOU$&Specif$Init#Coq@0;RWMi\N'Tactics$Init#Coq@0/9m+ a'Tactics'Program#Coq@03y2 Q@@A@#_17@ @A@@@@@@@@@#_182M접@ #_19'`o@@ C*type_scope@@@@@M2 Q@@A@#_20@X>I@A@@@@@@@@@#_212M접@g>Iʐ#_22'`o@@q>ID3@)nat_scope@@@Š@s2 Q@@@@#_23@~-@A@@@@@@@@@#_242M접@-#_25'`o@ @-Dk@@@@@@@2 Q@@@@#_26'@Sl(@A@@@@@@@@@#_272M접6@Sl(#_28'`o@@@Sl(B@@@@@2 Q@@@@#_29S@/@A@@@@@@@@@#_302M접b@/Ð#_31'`o@l@/Eˠ@@@@@@\_VY@2 Q@@A@#_32@=@A@@@@@@@@@#_332M접@=#_34'`o@@=E@@@@@@@2 Q@@A@#_35@*@A@@@@@@@@@#_362M접@*ɐ#_37'`o@@*D?@@@@@ϠƠ@ؠ2 Q@@A@#_38@[?I@A@@@@@@@@@#_392M접 @[?I#_40'`o@ @[?ICu@@@@ @2 Q@@A@#_41 /@+/@A@@@@@@@@@#_422M접 >@+/#_43'`o@ H@+/E@@u@@@ 9   @2 Q@@A@#_44 j@ G0u!x@]@#notШ@"In-BHLmbYcWJ@#Add-‰!~eo&#<!I:bypznK B^xB#<k̷@,cardinal_ind:Ȁz̩t_A{s ɩhͷ*IHcardinal̠^]Lv[V:ةBPxݐlӷ"H'ة@&or_ind"nwf#H'0 @(eq_ind_r!2# !ex񩚠.Powerset_facts!@2Non_disjoint_unionxڀ#;.Classical_Prop-@'classic䨣.=;#@&eq_ind J47@%Union.B@% @@)Singleton7u@.;9(?g2 }B1Constructive_sets[@.Noone_in_empty6'=C@.Empty_set_zero Cpnb`!Y/XuJi@Z$I\6UlWe@ ge&\k?('^"%Fin_An8t$Hind@t5vP gB  ~?'_*xo  j 3 n7\@4Add_preserves_Finite-e@1Union_commutative4(6%@)Union_addݽ*0R,,2ַhȷl@@(Included"= ש ҩҷϩũ@/less_than_empty5"A0ķ@~̩ߠqַp"H1pkyh"H2.VfXߩ4mߠs"A'v@#andЖw@@"eq @moשOq"H3"ݷ"@$"/L*ũf,(.3!1BBB@@@@D@;5HM4ϩ6ANH"H5"H6 :Y]OȰeUP\ I ŐVfCY8Powerset_Classical_facts@,Included_Add fdc-rcr s_@6Finite_downward_closed=:hp@,Intersectionϟ@Bp(Powerset@8Intersection_decreases_r, aI@/cardinal_invert(UP@)Inhabited.s@@-Inhabited_ind @p%Peano@"gt UxqJީAΩaƩ|˷#H'1 ܩ6MԶUJ9c"#H'2WjDeZs2#H'3lP @-Empty_set_ind z)hioU@/cardinalO_empty[?I)"Gt%Arith@'gt_0_eq3lh8%#*WUʷP@!@(Subtract 3m#Nat@$pred `< 3Z+=ȷɩ4'6CwVnDǶ@'1"wo"x0mǰ4KdͰ(@֐,<.ǰ0H9'#H'4e!Ѱ!J#L'b&0fHd-1V;1S#H'5 [@)False_induُJ9;k=?a?!C@ 6OF|r@&eq_sym Xmy"Lt@&S_pred<=ÀT@-inh_card_gt_O+/bAg!i'CJ= -0Q5S)ǩnpf .SE#H'6Pw K@'and_ind14ۀЩY=b]mC@%Falsee@#H'7#H'8toRmg}jC~)ېTqc꩚@-add_soustr_xy#Wj ϐȩmηC- @̩ 4@&өթt*6@8Extensionality_Ensembles L68Aw y @1incl_soustr_add_l)E@1incl_soustr_add_r) CV@(Same_setERK!ObCΰѩf _@鐩 ?ߩ2YJEj_WFpqYpYC2b46 f@"or @ 6O8QƩ7 -59]X@'Add_inv)r﵀L-eC(%U"c1j[O"c2@3@i  Pn@ɩİA} 9׷@ҰRRũհǷi;gbpްZ۩sG<@-not_Empty_Add 7з.6GԶ@(@w|80|Q޷-Ӱ Q˷ηX@ ) .˩*"X0mI%<@ 3Щ%mթC4.AS/WTʐ>Z{ -@'f_equal=((ܩ ;Uǰ412&VFѰ%a@-card_soustr_1\]A`b/V I@&ex_ind 5{Rqk.w©GnAvW1f Ϸt\{-lFRЩ X&!n_0~XM"H43. t|v+;hNSs!eַȷ dĩ#@6cardinal_is_functionalp f˩{۷\÷"n'ʩ[xd@}Tԩ/@"le UxT@D)*@k)W@0cardinal_unicity$ x!E˩'e+B0Acܩ%>P'#x&"=3ԷZK012TPNB@UG{@@J@/Strict_Included 02 #Vڷ(@qD$$ߠq@6Strict_Included_strict80_ /9`@$O÷y)+q@'gt_le_S3r&(PeanoNatzY@)lt_0_succ5%Cʠ3C@"lt Uxc:C qyɷXb6ȶf@@Pܠ|. ? oZD]t@]uac,Y?.Classical_sets@/not_SIncl_empty /BрjUt˶@v]PwaH}~ |@>_n_S〰Wp{Yve@2incl_st_add_soustrCmũMK@"I QHVAXkw@+sincl_add_x%`&HpkA޵KGe,Ch+ng(Щ8KIC#H'9^[@@?>65M*/,^n3dtݩu88%A6')"N--KI=;  3^ة)Ru#S6Rک\R+@/incl_st_card_ltր 3J穷6ܩ@*lt_le_inclWXh5zӷ{(^{I-'l*f_@gcDtF=Gqө_rsr[@8Included_Strict_Included0y!P@GX@F@.Ŷ@FLqM^Ep7s7uO©ЩΰXéǩTnϩ"Y_r-3հ7fǷ20/W x9@~¶@5@g޶@498F@϶@àUɶ@t޶@0FE-@%G_aux\a׷ٷշ^@@۠C@Z@B^]rapkOq@f@@@qpض2 ƶ@@ x޷ 巐!K  @Ұ I é $]@X- /!L [ei +k @B[D  & 5"Y0 BIS = &kЩ{ 2ʐ> Q :Sp ҐF 8j ȩ :۷[ܩYS ΰ ^  `: $H'14}& ,ĩa .Ʃ+kj  n n 搩 ^ vC 6 y  } p C  `R4 Jd緐"Y1 O QЩϰ N   TAq$H'10 $H'11 )  Sb e   , ilh ^ C 9 or·  7 } OА^ W`  C y 0  Z M   `m]ƠD d ; p c$ Щʰ ݐ a G  $H'15 $H'16  ߰B '  쵷  n BC w e  i3 U   | C9  r r q /Щ? xީ  | o   nҩ  #`  (OY_˩  "v .`̩  (]g - ju ݵqs " 9C   K % Q  > > >   1@ -Strict_inclusion_is_transitive_with_inclusiontu 8  G 0 0#@  K     M@  S Ű  ͩ V O@(incl_add%N       c cC   f V e  Nҏ:\?75