"` 1 SD'SeqProp%Reals#Coq@()Notations$Init#Coq@%Logic$Init#Coq@*Logic_Type$Init#Coq@)Datatypes$Init#Coq@&Specif$Init#Coq@%Peano$Init#Coq@"Wf$Init#Coq@'Tactics$Init#Coq@%Tauto$Init#Coq@'Prelude$Init#Coq@)Notations$Init#Coq@0&v!D]hwnv %Logic$Init#Coq@0\͉!Ig)Datatypes$Init#Coq@0.i bYN Z*Logic_Type$Init#Coq@0 1jc6&Specif$Init#Coq@0;RWMi\N'Decimal$Init#Coq@0C涳N*ua#Nat$Init#Coq@0eʤģPSR蠠%Peano$Init#Coq@0 jha|ؠ"Wf$Init#Coq@0q+W,J+'Tactics$Init#Coq@0/9m+ a%Tauto$Init#Coq@0̂"&/rk0JqTttֱ'BinNums'Numbers#Coq@0dmk(5Ju<*EqdepFacts%Logic#Coq@0FI$ͼՋ`)Eqdep_dec%Logic#Coq@0u wWIϰ߼&Basics'Program#Coq@0!bs߯? :VU$Init'Classes#Coq@0](p{yOh.'Tactics'Program#Coq@03u%+Equivalence'Classes#Coq@07;ꮹ-SetoidTactics'Classes#Coq@0S_`nOU$&Setoid'Setoids#Coq@0D9AsWE!>$Bool#Coq@0j 2cZ`FW*Equalities*Structures#Coq@0όe얟)H.Ƞ2Relation_Operators)Relations#Coq@0%s鯰s4Operators_Properties)Relations#Coq@0U3y#h&)Relations#Coq@0r砠*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ&NZSqrt&NatInt'Numbers#Coq@0` .%m%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|&NZBits&NatInt'Numbers#Coq@0MlIpKt'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$&NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ)NMulOrder(Abstract'Natural'Numbers#Coq@04> Aat/ j $NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ'NMaxMin(Abstract'Natural'Numbers#Coq@0]v|Qg̟ʠ'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NLog(Abstract'Natural'Numbers#Coq@0KI'BinList+setoid_ring#Coq@0Au,Ring_polynom+setoid_ring#Coq@0gaKw9`UW+ListTactics%Lists#Coq@0,Jcy{+InitialRing+setoid_ring#Coq@0k/T=cN(Ring_tac+setoid_ring#Coq@0x2]%762f)Ring_base+setoid_ring#Coq@0fbU(2cNe$Ring+setoid_ring#Coq@0Msᬠ)ArithRing+setoid_ring#Coq@0ṔCgt?}%Arith#Coq@0I|кX*o4#Max%Arith#Coq@04=;3$>aU堠#Min%Arith#Coq@0Ce-Fѕ(PreOmega%omega#Coq@0\|چBb~w4%Omega%omega#Coq@0t.J'6\ϨrK(Zpow_def&ZArith#Coq@0f蓜DX;V*ZArithRing+setoid_ring#Coq@0{#'[{nm!/,Zcomplements&ZArith#Coq@0ʾq %RIneq%Reals#Coq@0JUڻIu)$w&DiscrR%Reals#Coq@0z41pV.%Rbase%Reals#Coq@0Jܡ\ c6{%R_Ifp%Reals#Coq@0c4+ZŠ,Fourier_util'fourier#Coq@0ϳ> 4`*r0'Fourier'fourier#Coq@0wV9TN*Rbasic_fun%Reals#Coq@0hܒiclE>%R_sqr%Reals#Coq@0X%MԹ%M+SplitAbsolu%Reals#Coq@0M)&qYlݹ5*SplitRmult%Reals#Coq@0sD\rt/$Even%Arith#Coq@0YO%q}d߫%$Div2%Arith#Coq@0n*Áht!,)ArithProp%Reals#Coq@0B+L?>*e˃a j*Rfunctions%Reals#Coq@0d¹d‹@'Compare%Arith#Coq@0OM v먣5L:'Rseries%Reals#Coq@08]$u+?r?^E[d`_Р'SeqProp%Reals#Coq@A-Un_decreasing @"Un@)Datatypes$Init@@#nat@,Rdefinitions% @!RӀ!n @#Rle=B$BA @-@)Datatypes$Init#Coq@@#nat@,Rdefinitions%Reals#Coq@@!RӀA l+k+7T' 9 7%'5XRd@@@@@AA@@>@,Field_theory+setoid_ring#Coq@@&FEeval>@@A@A"s @,Ring_polynom+setoid_ring#Coq@@&PEeval"s @@A@BA@A@'opp_seq @~|f|q@$Ropp΀[@@ZOu`U @+k() 7$'l@@@@@E&has_ub @'Raxioms@%bound1'Rseries@#EUn.@@y 8+k7 7$'X#d@@@@@v&has_lb @֩1)@kjB\@@ D+k7 7 7$'XBdOp@@@@@*growing_cv @@@@׀̀@'Rseries%Reals#Coq@@*Un_growing?!A@*@Y&Specif$Init#Coq@@#sig#* @􀷐!l*@%Un_cvɀD@@@@@栠2decreasing_growing @@XAH@@^@Z"?‐AKi@jB\=@@@@@ -decreasing_cv @@{Bk@>3@#A@@Xl[]FRQN`@@@@@3)ub_to_lub @@C@h]@Aiu%Reals#Coq@@&is_lub -jl@#EUn.C@@@@@g)lb_to_glb @@Dɶ@@XA4+,@@@@@#lub @"pr@[YР&Specif@#sig#* @BBB@@@@@!sm@e -jli_ @@3y4!a@@(@:  +k() 7!= R '>''+k6'.#hIABABL@@@@@#glb @SQ_x@Xl0]OMNKOJH9T@3SGF[@ J@n@A6P> +k() 7!= R'>7$''+k6'hw lIACL@@@@@8&maj_ss @@E@mb!kt@B!iy#Nat$Init#Coq@@#add `@@@@@m&min_ss @@F϶@5@bBg430Ð@@@@@+sequence_ub @J@ #aȐO@#add `쩚1@~Q.V@@瀚܀&q󀚠耐 +k() 7" +7%'7!$''l"l7L@@@@@ޠ+sequence_lb @@>LH?f@ ڀGl@;@N@!`ހ0-":lcl)L@@@@@-Wn_decreasing @@Gy@LAfA7@3ؠBA@@@@@;*Vn_growing @@H@pe-A@y3BA@@@@@_.Vn_Un_Wn_order @@I@#pr1A#pr2ZB%Logic$Init#Coq@@#andЖw@,Rdefinitions%Reals#Coq@@=IDBADשDީ~DCA@@@@@'min_maj @@*J@퀚‶YAXBCA@@@@@ᠠ'maj_min @@SKC@ 0AڀB߀рCB@@@@@ *cauchy_maj @@|Ll@?4@h@+Cauchy_crit ܀A`\@@@@@(*cauchy_opp @@M@]R@A#@{@@@@@G*cauchy_min @@N@|q@=A=@@@@@b&maj_cv @@OĶ@֩YASC@"/CBA@@@@@&min_cv @@P@ɀA†ˀրaC#@v"/5CBA@@@@@Ơ'cond_eq @@8Q!x!y@#eps@N@#Rlt=1@#IZR/r'BinNums'NumbersD@!Z7@A(*Rbasic_fun%Reals#Coq@@$Rabs; wz@&Rminus&H/H%Logic$Init#Coq@@"eq @PW@@@@@#'not_Rlt @@R"r1K"r2P@#@#notШ^BA@#Rge=-@@@@@L*approx_maj @@S@vA@ڠ@@/rAd@"ex @9@ #E3@@@@@*approx_min @@ T@΀À A֚΀@Հ穛B怷wဠǀ4@ ڀ>?p@@@@@֠+UL_sequence @@HU8@ "l1"l2 @CB@1逰@@@@@'CV_plus @@sV"An@7,"Bn@?4483<@FC\@KHaO{@%Rplus+1GiFk Zِ@@@@@?(cv_cvabs @@W@tium@w{*Rbasic_fun@$Rabs; w U@@@@@j)CV_Cauchy @@X̶@@BAn@@@@@*maj_by_pos @@Y@À@րʀBA6̀@#andЖw@݀﶐쀩3ˀ@@@@@Р'CV_mult @@BZ϶@ζ@  @DB@0*q@%Rmult׀Ґ:Ґ< .@@@@@%tech9 @@[u@H=@qA!mUnY@%Peano$Init#Coq@@"le UxT@wp@@@@@K&tech13 @@\J@uy@݀Ҁ~AAB@(positive*@C@Ǜ@$Rdiv̀˩ϩ#"k0$ˀݩπᩚGʠɠ&@@7@BՠԠ1@@L*@CV!N@ 倐XHB(*@@@@@,growing_ineq @@h]X@+ ,$@XB@4JU@M;@@@@@ &CV_opp @@^@UJVN@XBA^=ީ@΀~@@@@@J/decreasing_ineq @@_@tx@hB@ۀݐ@@@@@t(CV_minus @@`s@r@@DB@ԩ€L΀s۩sݩN@@@@@(cv_infty @  !M %Logic @"ex @ ! #  $@%Peano &@"le UxT@ $@#Rlt=M@ ;@   +k+7T' + 77%' +7T'+ 7!T' 7%'Р 9d#6T ࠑ TL@@@@@ .cv_infty_cv_R0 @@ ta d@ 7 ,@ S >Z@"eq @ l P<@ @q?7 _M n  y@$Rinv8N@@@@@ 6/decreasing_prop @@ b @ k ` q  u@X@! ƀɐ{@@@@@ `1cv_speed_pow_fact @@ c   怠(Rpow_def%Reals#Coq@@#pow#׀BA8@#INRr)Factorial%Arith#Coq@@$fact>【A3@A@@@@@ @@@ ӳ2@ ӳ2[)Datatypes$Init#Coq@@A@ Գq@ Գq\ @A@AB@cA   @A.0TQ+Ring_theory+setoid_ring#Coq@@ABA.U>[J @B@@"O@(PeanoNat%Arith#Coq@#Nat@&of_int"O#Nat$Init#Coq@@ 6@A@A\@&BinInt&ZArith#Coq@!Z@'quotrem\)BinIntDef&ZArith#Coq@!Z@ /@A@\@@+pred_double\@/S@@A@As2@3@&shiftls2*@vY@A@BCs8@8@&shiftrs8/@vY@A@ѓ@>@&squareѓ5@y@A@@D@&to_intϑ;@@A@z@5@&doublez,@/!@A@ABCD/@O@)log2_iter/F@wd@A@NH/@B@&moduloNH/9@1,@A@A\d@G@&of_int\d>@1?A @A@bz@M@&of_natbzD@1?G!@A@#@S@&shiftl#J@1dV@A@#@Y@&shiftr#P@1d\@A@ABCD/x@&BinPos&PArith#Coq@#Pos@)pred_mask/x)BinPosDef&PArith#Coq@#Pos@ )X@A@6@x@&square6o@19@A@AV+L@}@&to_intV+Lt@2@A@V1b@@&to_natV1bz@2 @A@V5=@@&to_posV5=@2@A@ABCl@@)sqrt_iterl@!$:@A@@@6@(sub_mask@-@)@A@ADEF c@@'testbit c@!ć@A@7 B@D@'of_uint7 B;@*`]?@A@AG@I@)mask_rectG@@+ED@A@F˱@O@)add_carryF˱F@+p@A@AB^Ҷ@@'to_uint^Ҷ@#m@A@gL7@@'sqrtremgL7@40@A@Aq@@'testbitq@5)@A@ݎO@@+succ_doubleݎO@6r@A@A p@l@0double_pred_mask pc@0-+m@A@BCD T@&BinNat&NArith#Coq@!N@!t T)BinNatDef&NArith#Coq@!N@ 2@A@ @@#add @3 @A@A l@@#div l@3@A@ Y@%@#eqb Y@3@A@AB #@*@#gcd #!@3n@A@ T@0@#leb T'@3@A@ACEG "@5@#lor ",@3m@A@ q@?@#ltb q6@3@A@A @D@#max ;@3@A@ @J@#min A@3`@A@AB @O@#mul F@3B@A@ ~@U@#odd ~L@3@A@AC =@Z@#one =Q@3@A@ @b@#pow ˑY@3@A@A c@g@#sub c^@3@A@ @m@#two d@3J@A@AB hx@r@$div2 hxi@>@A@ @x@$even o@>4@A@ACD @}@$ggcd Бt@>U@A@ @@$iter }@>:@A@A 3"@@$land 3"@>m@A@ F)@@$log2 F)@>t@A@AB S@@$lxor S@>@A@ @@$pred @?U@A@AC @@$size ܑ@?'@A@ !@@$sqrt !@?@A@A ! @@$succ ! @?\@A@ !7@@$zero !7@@P@A@ *@@%ldiff *@@A@AB g_@1@+pred_double g_(@25\@A@CD m@6@÷ m-@2j@A@S@=@&of_intS㫑4@4}5@A@AS@B@&of_natS9@4};@A@BEFGH\R@G@(mask_ind\R>@4@A@\^@Q@(mask_rec\^H@4@A@A!,@V@&pred_N!,M@4s)@A@B@[@&shiftlR@5X@A@@b@&shiftrY@5X@A@A&@g@&square&ّ^@5,x@A@BC"@l@&to_int"c@5L@A@"@t@&to_nat"k@5L @A@AnTq@y@+testbit_natnTqp@6n@A@B@@(succ_posB@@A@I@@'abs_natI@?n@A@AB.@@'of_uint.@MS@A@3~@@'sqrtrem3~@7]%{@A@ACD,@ @'bitwise,@/v@A@>4'@@'testbit>4'@8g$@A@A{U@@,sqrtrem_step{U@8R@A@u^@9@(div_euclu^0@ @A@Afz@@'to_uintfz@9w@A@Bl@'@'comparel@3R@A@CDEFs8@,@+of_uint_accs8#@5+@A@}@R@,pos_div_eucl}I@&`@A@3x@(@'compare3x@]=@A@A@^@&doubleU@'޺_@A@BCq@@+of_succ_natq@$@A@w@i@&modulowɑ`@)1@A@ADK@n@&of_intKe@)j,I@A@K@v@&of_natKm@)j2_@A@AI@{@&shiftlIr@*O@A@O@@&shiftrOx@*O@A@AB,@@&square,}@*ow@A@Z@@&to_intZ@*81@A@ACE`@@&to_nat`@*9G@A@e@@+testbit_nateđ@+@A@A+{@@'sqrtrem+{ё@,J@A@5z@@'testbit5z@-T|@A@A @@'to_uint ͑@.@A@ @@+succ_double @.^4@A@A#@'@'compare#ݑ@ )Q@A@BCD%t2@,@(size_nat%t2#@ @A@%9@3@+of_uint_acc%9*@ ΋@A@A%V@8@+double_mask%V/@ S@A@%%@>@'div2_up%%5@ "@A@ABEF'ş@C@'Ndouble'ş:@ @A@(b0@K@*shiftl_nat(b0B@9-@A@A(nՖ@P@*shiftr_nat(nՖG@'@A@(@V@0succ_double_mask(M@@A@*W$@\@,compare_cont*W$S@!@A@.0@b@.sub_mask_carry.0Y@΂@A@ABCD.@@!t.@ ;@A@.먩@@#add.먩@ `@A@A.U@@#div.U@ @A@.B@@#eqb.B@ @A@A. @@#gcd. @ @A@.=@@#leb.=@ @A@ABCEGHI. @@#lor. @ @A@.Z@ @#ltb.Z@ @A@A.p@@#max.p@ '@A@B.@@#min. @ @A@.@@#mul.@ @A@AC.g@@#odd.g@ @A@.&@&@#one.&@ @A@A.뾴@+@#pow.뾴"@ k@A@.L@1@#sub.L(@ @A@.@7@#two..@ @A@ABCD.,a@<@$div2.,a3@ @A@.Xz@D@$even.Xz;@ ?1@A@A.@I@$iter.ؑ@@ @A@B. @N@$land. E@ @A@. @T@$log2. K@ @A@ACE.@Y@$lxor.P@ R@A@.y@`@$pred.yW@ `<@A@A.Ʉ@e@$sqrt.Ʉ\@ ;@A@.@l@$succ.c@ @A@.t @r@$zero.t i@ Z@A@AB/@w@.to_little_uint/n@ @A@CDF/@|@%ldiff/s@ H@A@00@@'compare00@?H{@A@A1P%@w@!t1P%n@  @A@B1P@|@#abs1Ps@ @A@1P&@@#add1P&z@ @A@A1P@@#div1Pґ@ y@A@BC1P@@#eqb1P@ f@A@1P@@#gcd1P@ 0@A@A1P@@#geb1P@ T@A@B1P@@#gtb1Pʑ@ q@A@1Pĺ@@#leb1Pĺ@ a@A@A1Pň@@#lor1Pň@ /@A@BCD1P@@#ltb1Pב@ ~@A@1P@@#max1P@ @A@A1P{@@#min1P{@ "@A@B1P]@@#mul1P]@ @A@1P@@#odd1P@ @A@A1Pɣ@@#one1Pɣ@ J@A@BC1P@@#opp1Pԑ@ {@A@1P1@@#pow1P1@ @A@A1P;@@#rem1P;@ @A@B1P@@#sgn1Pˑ@ r@A@1P@@#sub1Pɑ@ p@A@A1Pe@@#two1Pe@  @A@BCDE1[8@@$div21[8ޑ@ @A@1[d@@$even1[d@ I@A@A1[6@@$ggcd1[6@ i@A@B1[U@ @$iter1[U@ @A@1\@@$land1\@ /@A@A1\@@$log21\ @ 6@A@BC1\$@@$lxor1\$@ @A@1\Y@$@$of_N1\YÑ@ >j@A@A1\@)@$pred1\ @ j@A@B1\@.@$quot1\֑%@ }@A@1\@5@$sqrt1\,@ @A@A1\w@:@$succ1\w1@ @A@BC1\k@?@$to_N1\k6@ @A@1]@G@$zero1]>@ eD@A@A2:@L@%abs_N2:C@ @A@21@R@%ldiff21I@ ߵ@A@2=*@X@%quot22=*O@ @A@ABC2kF@@(size_nat2kF@{@A@3@x@(tail_add3o@^q@A@ADEFGH3@}@(tail_mul3t@^@A@5Z@@*shiftl_nat5Z@y/@A@5f}@@*shiftr_nat5f}@4@A@AB5a@@'iter_op5a@ @A@C6w~@@'of_uint6w~@^5@A@8j@@'of_uint8j@'"h@A@9E@@(div_eucl9Eđ@(*k@A@AB:x@6@,Nsucc_double:x-@ ʭ@A@CD@[@&divmod>R@C@A@>@b@&double>Y@NĴ@A@?2@S@,pos_div_eucl?2J@-u@A@AB?;@m@&modulo?;d@"i@A@CEFGIJ@%Arith#Coq@0I|кX*o4)ArithProp%Reals#Coq@0B+L?>*e˃a j)ArithRing+setoid_ring#Coq@0ṔCgt?}*Arith_base%Arith#Coq@0Ĕ}CS&Basics'Program#Coq@0!bs߯? :VU'Between%Arith#Coq@06v*0ur`C0&BinInt&ZArith#Coq@0BpHޞun^)BinIntDef&ZArith#Coq@0ådR4Tuy'BinList+setoid_ring#Coq@0Au&BinNat&NArith#Coq@0K11ڤs+Π)BinNatDef&NArith#Coq@03@1O,[{ 'BinNums'Numbers#Coq@0dmk(5Ju<&BinPos&PArith#Coq@0vyػ0= u)BinPosDef&PArith#Coq@0}H d.%,b$Bool#Coq@0j 2cZ`FW*CMorphisms'Classes#Coq@0qیZBeϠ0CRelationClasses'Classes#Coq@0TL;0RUfw1'Compare%Arith#Coq@0OM v먣5L:+Compare_dec%Arith#Coq@0jXF 8FED@0.i bYN Z)Decidable%Logic#Coq@0ND걸풬/Oߠ'Decimal$Init#Coq@0C涳N*ua&DiscrR%Reals#Coq@0z41pV.$Div2%Arith#Coq@0n*Áht!,%EqNat%Arith#Coq@0AIgՋXRV *EqdepFacts%Logic#Coq@0FI$ͼՋ`)Eqdep_dec%Logic#Coq@0u wWIϰ߼*Equalities*Structures#Coq@0όe얟)H.Ƞ+Equivalence'Classes#Coq@07;ꮹ$Even%Arith#Coq@0YO%q}d߫%)Factorial%Arith#Coq@0@oehJd%Field+setoid_ring#Coq@0J _ȫ)Field_tac+setoid_ring#Coq@0d vDZl^۹Hf0B~uYٮ٠'Fourier'fourier#Coq@0wV9TN,Fourier_util'fourier#Coq@0ϳ> 4`*r0-GenericMinMax*Structures#Coq@0måj$"Gt%Arith#Coq@0䙛#c:D $Init'Classes#Coq@0](p{yOh.+InitialRing+setoid_ring#Coq@0k/T=cN"Le%Arith#Coq@0d}Omq+$List%Lists#Coq@0>I+ListTactics%Lists#Coq@0,Jcy{ 0\͉!Ig*Logic_Type$Init#Coq@0 1jc6"Lt%Arith#Coq@0KZ-eJkP܏#Max%Arith#Coq@04=;3$>aU堠#Min%Arith#Coq@0Ce-Fѕ%Minus%Arith#Coq@0LFtR")Morphisms'Classes#Coq@0Imӽ%\$PD.Morphisms_Prop'Classes#Coq@0% :B'.>u%$Mult%Arith#Coq@0햖Qyb0$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI%NBits(Abstract'Natural'Numbers#Coq@0qteo_hɅ $NDiv(Abstract'Natural'Numbers#Coq@0bz$?[p(5$NGcd(Abstract'Natural'Numbers#Coq@08E-S ;j_Ҡ$NLcm(Abstract'Natural'Numbers#Coq@0 ~xZ9L{:$NLog(Abstract'Natural'Numbers#Coq@0K Aat/ j &NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf+NProperties(Abstract'Natural'Numbers#Coq@0unt"kwpYC%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ%NZAdd&NatInt'Numbers#Coq@00h`ZK4*NZAddOrder&NatInt'Numbers#Coq@0e~1>r砠(NZAxioms&NatInt'Numbers#Coq@0] ρ5r&NZBase&NatInt'Numbers#Coq@0^&8yUL&NZBits&NatInt'Numbers#Coq@0MlIpKt%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZMul&NatInt'Numbers#Coq@0ctR~6[Ƞ*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R'NZOrder&NatInt'Numbers#Coq@0 q;Ve7R W,(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x&NZSqrt&NatInt'Numbers#Coq@0` .%m#Nat$Init#Coq@0eʤģPSR蠠$Nnat&NArith#Coq@0$W;s #%M)Notations$Init#Coq@0&v!D]hwnv *NumPrelude'Numbers#Coq@05WUVŦ]xVXԠ%Omega%omega#Coq@0t.J'6\ϨrK+OmegaLemmas%omega#Coq@0TJ#Jes4Operators_Properties)Relations#Coq@0U3y#h&&Orders*Structures#Coq@0$Znl0\͗+OrdersFacts*Structures#Coq@05Mܿ獐ζΖLB)OrdersTac*Structures#Coq@05'4Ԗ+9% 0 jha|ؠ(PeanoNat%Arith#Coq@0O~2$k[#lZ)Peano_dec%Arith#Coq@0Kݢ*k$Plus%Arith#Coq@04tmG$Pnat&PArith#Coq@0,?pr.gZ(PreOmega%omega#Coq@0\|چBb~w4'Prelude$Init#Coq@0JqTttֱ%Quote%quote#Coq@0J@ŹVz-,3%%RIneq%Reals#Coq@0JUڻIu)$w%R_Ifp%Reals#Coq@0c4+ZŠ%R_sqr%Reals#Coq@0X%MԹ%M'Raxioms%Reals#Coq@0S]jnj][L%Rbase%Reals#Coq@0Jܡ\ c6{*Rbasic_fun%Reals#Coq@0hܒiclE>ː0(2{Ze$ќ8)RealField+setoid_ring#Coq@0 >ʾq /RelationClasses'Classes#Coq@0Gz rA6ՠ4Relation_Definitions)Relations#Coq@0]4Ѐd{n^2Relation_Operators)Relations#Coq@0%s鯰s)Relations#Coq@0-SetoidTactics'Classes#Coq@0S_`nOU$0;RWMi\N+SplitAbsolu%Reals#Coq@0M)&qYlݹ5*SplitRmult%Reals#Coq@0sD\rt/'Sumbool$Bool#Coq@0sB ,$11.]m'Tactics$Init#Coq@0/9m+ a'Tactics'Program#Coq@03#2 Q@@@@#_11@A@@@@@@@@#_122M접 @#_13'`o@A.function_scope@A@ɠ2 Q@@@@#_14$#@#_152M접  #_16'`o@B#)nat_scope@A6@Ƞ2 Q@@@@#_17TLK@#_182M접 @#_19'`o@AI@A@2 Q@@@@#_20lk@#_212M접  #_22'`o@Ah@A@2 Q@@A@#_23@}|@A@@@@@#_242M접 #_25'`o@C@@@A@2 Q@@A@#_26@ N4@A@@@@@#_272M접 #_28'`o@B@@A@2 Q@@A@#_29@8@A@@@@@#_302M접 #_31'`o@Cݠ@@@AΠ@2 Q@@A@#_32:@3y4@A@@@@ @#_332M접 #_34'`o@B@@A,@2 Q@@A@#_35a@3S@A@@@@0@#_362M접 #_37'`o@B/@@A@2 Q@@@@#_38&U@#_392M접 L#_40'`o@BR@@Av@I2 Q@@@@#_41wIx@#_422M접 H#_43'`o@Bu@@A<@'maj_sup9D{(@@B'min_inf9D{(@@t (majorant9D{(@@(minorant9D{(@@H2 Q@@A@#_44@SQ.@A@@@@@#_452M접 #_46'`o@C@@AҠ@?2 Q@@A@#_47@J@A@@@@@#_482M접 #_49'`o@C렐Ƞ@@A@B2 Q@@@@#_50+@#_512M접  #_52'`o@C@@A9)@"2 Q@@@@#_53S>@#_542M접 #_55'`o@C;@@AQ@1sequence_majorant9D{(@@ʠ1sequence_minorant9D{(@@Ҡ!2 Q@@A@#_56@,6D@A@@@@x@#_572M접 #_58'`o@Bw@@A@$2 Q@@A@#_59@/ < @A@@@@@#_602M접 #_61'`o@B@@Ae@'2 Q@@A@#_62@2$2'@A@@@@@#_632M접 #_64'`o@DŠ@@@A점@2 Q@@A@#_65'@  @A@@@@@#_662M접 #_67'`o@C@@@A@2 Q@@A@#_68R@  @A@@@@!@#_692M접 #_70'`o@C @@@AE@2 Q@@A@#_71@A@@@@K@#_722M접  #_73'`o@BJ@@A@ 2 Q@@A@#_74@"/@A@@@@r@#_752M접 #_76'`o@Bq@@A=@2 Q@@A@#_77@A@@@@@#_782M접  #_79'`o@B@@Ac@2 Q@@A@#_80@(P@A@@@@@#_812M접 #_82'`o@B@@A@2 Q@@A@#_83@@A@@@@@#_842M접 #_85'`o@B@@A@2 Q@@A@#_86>@1@A@@@@ @#_872M접 #_88'`o@C'R_scope@A@ؠ2 Q@@A@#_89l@~cc@A@@@@;@#_902M접 #_91'`o@C.0@@>A@ܠ2 Q@@A@#_92@s@A@@@@h@#_932M접 #_94'`o@Dg@^@@Aqw@2 Q@@A@#_95@t2@A@@@@@#_962M접 #_97'`o@D@@@Aa@2 Q@@A@#_98@i@A@@@@@#_992M접 $_100'`o@EǠ@@@AРӠܠ@2 Q@@A@$_101.@o@A@@@@@$_1022M접 $_103'`o@F@@@AA  @2 Q@@A@$_104g@?@A@@@@6@$_1052M접 $_106'`o@C5+@@A;D@2 Q@@A@$_107@5թ@A@@@@b@$_1082M접 $_109'`o@Ba@@A@2 Q@@A@$_110@ߏ@A@@@@@$_1112M접 $_112'`o@B@@A@2 Q@@A@$_113@@A@@@@@$_1142M접 $_115'`o@F@@@AAȠ@2 Q@@A@$_116@ S@A@@@@@$_1172M접 $_118'`o@E@ƠȠ@@A!@2 Q@@A@$_119O@ E@A@@@@@$_1202M접 $_121'`o@D@@@A$0@2 Q@@A@$_122@# `@A@@@@N@$_1232M접 $_124'`o@EMC@@.@AVbl@#2 Q@@A@$_125@.O@A@@@@@$_1262M접 $_127'`o@Cx@@A@%2 Q@@A@$_128@05ɬ@A@@@@@$_1292M접 $_130'`o@E@@@Aà@02 Q@@A@$_131@;hAք@vEGT=xbeg2""Un@)Datatypes$Init#Coq@@#nat@,Rdefinitions%Reals @!RӀ#Hug'Rseries@*Un_growing?!A$Heub'SeqProp@&has_ubYB&Specif5@#sig#* @A2!l5(@%Un_cvɀD&@)proj1_sigYD!mG'RaxiomsH@&is_lub -jlD@#EUn.A@,completeness$CKU@+EUn_noemptyGȐ!sDo+GBBB@@@@D z6{4,EiKE@>6FsssY!H@.Un_cv_crit_lubEր YTRJGx{!n@#Rle=Bĩ%RIneq@1Ropp_le_contravar>=aabC@@-Un_decreasing"?@'opp_seqjB\I"H0@&has_lbXlȐ"H1xz$sکmߐ!x!pˠe멚@$Ropp΀䵵#eps .@#Rgt=<@#IZR/r'BinNums'Numbers*@!Z7@A%Logic5@&ex_ind 5{?!NBC@%PeanoD@"ge Uw*B@#Rlt=*Rbasic_funI@$Rabs; wS@&Rminus&HWK9ީ6@"ex @r3st@1'"l"x0"H2@AH@F<7/MaIc"H3Uw-Ȑ"H41n|RMELyHv@&eq_ind J]W(L'!rnȐ"H5Ȑ(hyp_list@$list]@A@$prodt@,Ring_polynom+setoid_ring@%PExprk@Ȑ'fv_list&B⩐NJ03@2RField_ring_lemma1!7𚠐(Ring_tac'@0ring_subst_niter!ԩ2F)7H.r|琩:MCW\QPz6{O,hMAZ7Ctf=y0mj_6ˠeM|C0.p)ܠBC~[BCC"pr˵ŵ-@)ub_to_lub3y4ϩ@&maj_ssQ.mcзѩX){ltr߷]8өB@#lub #,v p4~搷 Р@#andЖw@BBB@@@@D@堩#zᠩi!b@А1wA hEAn Y(Ƕ;@퐷N //#&YQR 1drA\*]<o-OO|Ex6Ya z~{@pS0^鐩Obl@]:h Y6{{i꠩qbAְD۰H'@}Z̐yl&'FNLsk̩OB BYX@@@@@fdѷҩ䩐P+ǐ!a@)9Pթ%jSR7C k>>5z@֠00?HD% @ޠQ۠cVn,(R砩oJ [L&:aRNjz*"H60@KGS1*z'#3Ȑ"H702Ȑ"H8n@+Rle_antisym>`Kl5hT'FK)%H?MN.fqߩ$Maj14lrD@(eq_ind_r!2#st̠_SjDfT@8tDŷ&$_KCq|b@ y䠷{ʐlް#ĐJ#Cc[$j*=@%͠%@pѩ ޠکr թR)$ݶ@˩:Uթ%٠ TI) XN Vɠ;hΰX}$Maj2԰ oqbgl+ucĠ{()é͠T"x203*4),z7VW{yrl@7@d b`LNj)ArithRingy@0natr_ring_lemma1 ,M[5'EC &BinNat&NArithd-@&of_natK)BinNatDef3@)j2_=e4bNG@5@31(:;A?Bb @) @*3 %@$ @%3B Lk+@#eqb Y%@31@(div_euclu^+@ iРҠ^` a0c)&""MfCcdrbdjxGnolq©sp}rөѰȩӰvsqphjlRnk@R25@00TQMHMCB<20VSOJOED>lש/0ݩ q-LW}zC@$C5@+sequence_ub3ؠ5C$ Y;嵷Kf@)lb_to_glb3S9@&min_ss3;42שˠÐJ!@'sig_ind5π ٠ѐX( @#glb ڀ ?é9 "=PB:@#= >v-nڠG Q"T(Q"p0uv[)\ Kbj8k$Lא=__v_x@wVGi=吵&pB:jnLDːtxWO֐JE@/Ropp_involutive"2CWlHCphBF {f^X@'and_ind14ۀЩeIӶ@ Dé2rݩnrZpZ@ԩCfȩ$Щà ɠ @̠0@Uנ- ߩΰyW @ߠC;h4ީr6٩ w#!#/~+-+iw@.Ropp_eq_compatu ":{8䩷թ?y=©BaCM1ijܷOP >U]+^LcLe@dsnmoXpt*N,$TEgY/hC1:#C<4`$F=LЩg5 z@k$cqC- @wTЩ~ @d.(3Ķ@v5"ʐ * v/} ;۩ِېH J; hѩ_CHm)ЩȠY@PթR @XݩKgi=Щܠem @Yq @M cĠK ޠ *! + T 0<  ֠]I   8 ;2 < 1e A_P ! ! s Jm K @>m k +C  D xJ /C~e 4 5n 4 5 &C 2@+sequence_lb3loC G Ő j h#pr1r#pr2 ncA . E S / Uà 3  X~w ?} = b T  { I | 5 - N m   V  B :  zy  a  M E̐ , ɩ 2  w~    j '  P    = E C  ~  j b鐷 ũ_  r V T   © { s ֩n/    ̷@ ˩ڠ ݩJװ6 T Jf ֩j  , ٶݩ      H 4 =:C 6 %4C   ! 퐩$  g CΠCu s _3ЩҠ  6 < ɶ @۠  ? +  f  ڰ ةL0 yy @ 8 @ ː R$ .  zƩZЩ ֐ ] 9  *6L 3@ 吩 l HY %  < PJc ! Hg$/ K@    ;  R,3 fߩ` 7Ω G # # '   h f hBI |`Ωv s= u s _H' c U   eE } {  }   ٠ l ЩZ 7   ,r @c zK         A*     # ~  /  q    &   vשհ  -usr  NjPgd@Q14?/0SPLGLBA; [10URNINDC=   * ,ө +  D & ٩ Ω ̐ M! ϐ P  - Q C @ @1B    Cw R%n    x     h ҩ      c ک     ^ $   RV[7 c  w    v w       à W  ƠG      ͠ P   9 @ `MU     $ C ڠ 68   =td   dЩ /  3@ + )  9 Mst W   g _$ @@ % -"{Щ ]    2 N@#  ; h u   3 " Z   ҶA ]@2  J w    B      0   Š     ^ P   _ ? w RS  y   z Ҡ eЩR / f @WT n? ݠ &   W e    X  ̩      ^ é r   so   C-  A?   @.Vn_Un_Wn_order$2'  A<   g  1 P  k  ag 7 U      C  v  lr $ B   S ÷  s   շ ֩   j~ F 0  %  q ݷ ^e ө  8  f ֩ .  ; !@)Rle_trans"    W W E ՠ < >    c ũ!Щ D  i    I     g  E O ^  `     ~     ˰    ߩ  '   Cڠ     C @%bound1 C  * ( 0 C y  !  " Ӑ 6  ɠ (  ) ڐ aP J  9 1 [  4  5  搩 m\   &   ? `   +  Q H R  G  {j   4~ Y  O r m  .~{ ]  vumh  ~  y     v l       RC         Z    y  @ x  T U {& ? d dC O ,    ^ ^Cw 4  O *C     @+Cauchy_crit ܀  @,cauchy_bound9t C      @  H  u    e @ t  L@ w n i a  _  W       ȷ  ɶ  ʶ y ˶@@  z r @ p A h + k ׷  ض & ٶ  ڶ@#@!     P   R x <    f    9   @6@4       c ŷ E    z? d   q S           S    { t O M - * (    +    $ " !     :    <  >    @ ް      D  0 F         *  0 H         ,     ͠&#,  # Ѡ y &  ~ B      ( ڠ ,) .(  = >C   栩 n" o W   C@ 4 ?@ 2  O  P  Q  R@@    @ K@ >  [  \  ]  ^@@   C@ǩ  k i ̵  C@*cauchy_opp"/   SC  x v ٩ N@-decreasing_cv8 M W@*cauchy_maj"/ 橚 ]@-Wn_decreasing6D  c@'maj_min ꀰ ` j@*cauchy_min"/5     D n x@*Vn_growing <  ~@'min_maj   !y    @ g   i d \%  G i@-total_order_T=ҖX V  @%sumor$|@ @'sumbool7̂K@    i  BAAAA@@@@@D k O    z R   _  Ǡ w  BAAAA@@@@@D *     e o נ#Hlt  <@.Rplus_lt_reg_l5=Ӏ q   } s  u R   ꩚@%Rplus+1 k   m 4 W U 5 2 0  2 t * ( ' "   ǰ @   @       F  0 H         ,  0 J         .   !   ) %  y&  &&   r@)Rplus_0_rH€   7 \  - V    #      aC   G 2   e4  K           ~ { yX  t o n iC5 \ O c  O [ B ;@ ) 4 ' %     0  J "       uO  0  L $       wQ  5 2j h $  9q o ! "    y w )  ! ~ = ֩ .  ! 0 ( m C >   C   My >  { J@*Rabs_right |T s@"or @A $  n&  e(( @)False_induُ y  - @*Rlt_irreflnQ(#Heq#Hgt   o ܩ V ũ ƠJ wH      F R   TҠ 7N +ة  ©ؠ Ʃ     e ϩ    M A ^Y    ө R ư w aMꐑ"r1"r2~q  ~ ܰ ? @#notШV @&or_ind"LMKMOIQu@%Falsee@'&IV\* S._`B U* ,C@9@/F@#Rge=-@,Rtotal_order%w ec  kȐ"Vn@@#auxpcrr@@A@A@@@@DzmV3 z"n'B@@@@@AӠZ=@*Rle_lt_dec8?q @ )@ Og)Ȑ"In@@53 ,*5ߠb%@G@Ȑ#VUI@'nat_indJ© M/ = ʷ#IHn YBG(  Nd'I5 M ep37W ;ʠ@  ˷@Jiaw,Eq@ ڷ@Yxߠ)y<UB["" а Oh   @ з@{ t  ŐrFSLOHkHKMJ 2א·ͩw24I%@ @)( E=@,Rle_lt_trans*GӀF7!CQ>c XڐȐ$HubVBBB@@@@D@ h$i =O/"ubo#Hub t O~v&@ Gjؠ!k"Hn  f 2l `ө waC q"z@Ȑ$HgrV"#E.  K t׷P! ɩ" X~= R] D d @ i@ G$_tmp @(Rle_refl C6b c {=&<}fb$*C 1J>#AO<U9"<렷@i!@!Jc^2Ϡ@ zf4@ \uޠ!@@H6,l#1Pɩs2!#4ȷө}:"E.@ e @ j68y/s^ԠIN{[L N]@F+*-HmV@(@Z\QCΠܐdCn%  7NS|@+eJE= 1{a"Hl0 H/jVN 197r^V @Mlg_ LJqi  @ ^"l'÷#Hl'!: vJ= ʷ@ 1Q Ѷ@- Զ@  @ @ Š|9߷S d@*@aӐ"Hk   ηMKD  ې 9շMn @ Ӡ e @ؠ i ۠l@ @  @⠩ J  ِ >%&  ǩ   !0? C}%@T,@ S1@  @@! "< @OFP E 601$W^ M 2*O:ybm0c C g7j#IHk  'Ơ 6 1̠ yӠ "'= i@ @ n@&Rlt_le AzC/ xo@m@qN `}vH@ @@}) P;} _ V }C2>6@eѷҩwj̷$Heps'Ȑ!eC77w2@ _@>@&M`sېNpbu `#TU} /_ ˠ멚(PeanoNat%Arith@'le_refl-uԐ̠C@.Rabs_minus_sym,  70C)@͠9:젩琩ߠGaӐGE.ѩ GР= >/+ӷ۩٠FG̶>I@Y'Z W%X F]!_@^KJ"lbe#Hlb!^iP@*approx_majsM[O4/'!!@#]B=5(Q0jOJB(/$v[VN } ʷi#@f #I.Jqi!NVT©{sb`ͷΩշ@OkطiOܷ@Ѡ@ @#ِ@@ ݠi@렩Π@SҠd@@@٠=b) @C-@1u@@@;86@@ '@#  C*>x-AsI0ꐩ3=868L=@W. U  /HݩIn@/Ropp_plus_distr:C zCOZ@j8k :Pyw"l1l"l2ohs@fD@B83+v@t%R@PFA9r@'cond_eq1X3$@1Rmult_lt_0_compat=z@$Rinv8d@0Rinv_0_lt_compatD @1Rplus_lt_0_compat-P@"R1Ȁ@'Rlt_0_14CC@$Rdiv̀% Z p+/@AA8X@@Q)hIie©@#max.p@ ' Щ%p[YW742.46.,+&˰D  F HA (N @T0V:0X< /.,'132T?A:;-1c@+Rabs_triang9k7POeeHST$$D@/Rplus_lt_compat":Ȁ_uZuddch'SƩniq0 8^#Maxe@(le_max_l2E CHj@0Ropp_minus_distrds@(le_max_r2K C @*double_var?ՠ:٠cC@@Er@pf,+@@P} @{q)6C@@"Anη"BnѷZķXŷ9FGȷW3Y۷ܶ*ݶ@T{z5@aI H]G@թ pj  X @ȩ*1ImdYXV6314;6f8W0.-(ͰF "HJw'MװP @V0X<0Z>10XuFT堩8^J:}Z?>3kFĩЩ K UTOZ[( SP ͠ \@(le_trans:7C@@"le UxT@ XCF H#C |bCP7}vwC&$@@@8e@cY۠E  W"C:8@@rL #'@YŷƶǶ@zum 8B·OhԷն#ֶ@|C6S]_2@[D<pWЩbygSg@0Rabs_triang_inv2!TeeC@@  Y @ɩAC@c@өɠK>C@ܠ!̐ 󐑷*(G !/O% Ʒ/'-*UjWa=>?@퐩]ܠH IJK@ @ SgVWXY@ @  /bc  jЩ }} _ʩ ort"_>v uz y*,.٠٩ =5B:I>#@{& ,,V S!U!D?7;7#x\@gP@\Qp  53LOOЩ%Cv\ԩ<C +eͷfŷƩ #֩!hηCҷө.©@(cv_cvabs?us"X0y`@)CV_Cauchy5թ  c  _| ֠   fig 3  ps&qӐ   JܐU@(Rabs_pos+F =4>3됩A 5B:'˩+ߩ/ C 'T x I-@4Rplus_le_lt_0_compat&_4<a |  g^h%]>ZJ=cf eSiT jN@1Rplus_le_compat_l?_U ۰5cYBze[ QCӠ3gfgf̷`Lc!\Zv@*maj_by_posߏog izj@%Rmult׀B# o!M<Щpw  Tũ   q2 .˩w÷.)(&C"6*GC éy86? ABAAAA@@@@@D@ ڠԩ ӐI@Tթ֩X_E@'Req_dec3{ c@өɠĐLupnx)"%&t'@ڠՐ͠N'?A5"H9Щ吩ݠ; 4 Ȑ#H10nkiHslKNoNqPhigfa;-[G L9bBDf E>@,7*(0M%! xR0O'# zT 85m l60@q p!Ӡ/,ՠ1'V|Ԡԩ }80⠩X12C;K @o}STRQB{JN@mxki.>0fbRLF@8 0hdTNHB:Xyv ^wyndm\ u9wo;@&eq_sym Xʩ*@)Rabs_mult)#eک80B6 \|շ~ةOmܩQީK°\VͰ _ _ ְdd۰͐@'Rabs_R00   @+Rplus_opp_r {GC'ߐנEv@)Rmult_0_r+ȀL! h9$©=(> ?YʩO6OP; X[FadĠ $Q@1Rmult_le_compat_lڀIw)@*Rmult_comm8@.Rmult_lt_reg_l>eЩj+#ՠᠩ ȷGs蠩lpO}L (*>ZUV@)Rlt_transCJ*> 0n(=\  wް#5ةmov!Ʃstvt@ZGjB0~xrldD0ztnfک8:8?F<:*B@28ЩECGgLNϷBO  C GGM嵩_ OU @1Rplus_lt_compat_l ]߀[[use9._ aCҠcsqe`@&double { {m@)Rmult_1_l9In@*Rinv_r_sym9lU䀠u@'IZR_neq%bȐ#H11gmh @@AA@AA@@@@@@D!zsA3 !@C1@ '55: '  ) }& JI7M 8N 6 OB/ 0 gG2^_J`'h,~ySE( kumTM@;F97 0\40 a0^62"cGD|]{Ta@ЩܠqJEBH?s))s@a+ CJxe,C] ip ޵$ R ]H / @ { e =   m x H   |p Wbߩ~\_@YFiA0}wqkc C0ysme ٩٠=>ީ:][ =`r\ /^ /7ҩG̩4@)Rmult_1_r+1:w NȰ NڵCNu \ UZZCa X\ Z_@2Rmult_plus_distr_l0ylɀ cfg e  gCˠl j1 z u! Oܩ٠۠?mkKHF %>< '&נ  - .. .   CS   D E F@{ |Z ~'  U V W@ L X ] `! a b@ \y D}  > q۩ s֩&#   U Ω v.0 ! ~= i& 2g*  C ɠ 6 } oHzs@al_]"2 0ZVF@:4,  kh P,, VNN j 렩_ lЩmqs < vQ c |t Ie1  ZΠuQ3 өҠy) ֩נ ĩڠ0? ߩޠn*7   H  h> 젩U- ک ޷G  4 K CP  R!W!B  @)Rplus_0_l 6ʀ W Y1 [@+Rplus_opp_l73| @+Rplus_assoc  P lV @*Rplus_commqWpѩ v@&Rle_ge @ H ةkЩ  #ܩ  !X!'Ʃ@,Rabs_Rabsolu˩ 䠩  !1!2![!Y!!L !@!* x  !]  ! "!Z ! L    -!e  W  !  !R! ! . :!r   ʠ !]ݰ 7C!{ !d @   l /! ! D!p  7 !~Y!)! !p!p!~nl T   X  s! k! !@ i _ ʩ P 2 I  !!* ! 7  x O! # != !! ! 4ݩ !F! !! = ;! TN)!@%tech9 S . -! U 0!lC W1͠6[Р/^#C!,4 > | P!2  B  ] D RЩ   a   : f @(RRle_abs !! h !vC u  k     Ae Y![.FU   M!!!!! j!! U"!!"! c! "!B!  "(  "* "+!y",@  ߠ ڐ Ҡ!Z !!0"5!I  "8 "9!":@   萩  !"!"B      b _ ]"<> _">  W U T O")"/ $ @    ̩ q0 s!,   W"17  "J!H ^ !K dH "P!N!V ͷ "U! "Y!  "!  ! d "IC!!!!{a! C@ o!^"i@!\! "y!:"z!"{@!8!.M!C@ c">b!s"""F"y!!"W! Ʒ!"!ʩ"r[!"f@&CV_oppO!" "'"S!"L!"q@,growing_ineq `"n"|!"!!(!@.Ropp_le_cancelcld"""G " "9"7"" ! !ǵ """N! C y"T!!"é!d !"ǩ=!!!"""@'CV_pluso"+>"I"gG"A""C" "ک!{Po""""H"0" ""%!ŷ" 0"ܩ!"!"":"@!"A!""!ש!"!""C"@!M"o^!"!""K"@!!!!Yk!"z"N0# !!# !# "[#@!˩!!!i!"l""d#!!#!!b#!Π!ɐv""y#y /!m#!٠ r"# 7!t#!!K ;"!#( !|#)!# !1"Щ"   J"#6!#7!#" "#> !#A"#,#E  ^ " !#K ,!#L"  ##9#R i$ k!éj k  n 8l93"ѵ!ͩ!&#^""I"!#a"ķ"W#b"T""M#K"T 9CM ' ~"7 Š98 Ƞ< M> ̠ RK vN"+]"-@)Rabs_Rinv&Vze"hT  `"@&Ropp_0 GU`C"B"="5 "#(#gC##@@"#@""3#"`#"#@"^"T #C##@Ŷ@#@(cv_infty?7#}#l"# "###e#######"ة 9з# #"ݩ > # ֩##0" C# ũз#y#˶"x#2v#}#Ϸk"i#gf#I####ַ`" U#D ""^#+#޷@@UȠ _!#N!#!# "!##@ "!#"D"o#˩!#"]ʩx#SM"##зE##"vC"xA# ?4#2"e#0#" #L## }x頩  "\!°$"" ""d A"!˰$Ch##f##"ö@. '* #m#/#,B,#f-"+""F: "!e"4$%#$&#q#""5$$$#$C$,$*#$*#x$+@#[#@r#y##ĩ##ΐ#0$(###"$-@# "Ѡ$="$>#$?@"""퐩"堩u(Rpow_def$<@#pow#׀"#$!#@#INRr)Factorial<@$fact>$2#A#׷#L$W##J#0$g#($h#$i@#&###* $B!#R## $v#7$w#$x@#5#+#&#9!/#`##$##$#G$#$@#E#;#6#.I?#p#$`#$#"@Щ#A#9ɠT!'J#{#H#@Р[ $sR#$-$#"$##Vޠiͩ_Z$H$#`蠩s $O $D$%#$$ " #m #M$'#$$#v"T$.#$é$$Z$ȩ &#=#/#$$ѩ$)$ 1'62k$ #-$ک$2 :#<$ t$#6$$; C  E$# K%!"$"͠$]"2@(RPow_absa!-g-ΰ#/d##3"˰%#5Y$N@(lt_0_INR "Lt@(neq_0_ltɵ#"%'"$# X%*"'v%"%,x")w@*fact_neq_0)$C#ᐩ _ [C$## $#$@,Rmult_le_posN85r d@7#%F#$10$$5 N#$7# %P$;$Y%Q$$>"%%W$B#%X$$Eз$%k#$(S$$M' (#$-"p$ C$$T.$V"u$%y#$7!$ӵ %s$^#%tp8 #@%x$c$c e ֠$e? <$@)Rmult_0_l+€C$ڠ$oI$q!%%%a q o#%o#A$HA#T%$wީ"@&pow_lt!Eۀ%2 !/C$$ne pi |C$ $ $ C@$%@$$B%$o%$%@$m$c"o%($%@$$L%$y%%%@$w$m"@%2C@%}%%©|%sn%$%%%̩" $%7@%%"%թ$%m%$%%*%ݩ %$%$%ط%$ @Р#%%`$ʩɐ$%$%%?%@$$$$(%$%g  %$~&ʷ%P&$$%Ω %$%%$$$>ɠ#\%a$%} & $$]& $ɠ$Đ Lנ %o%% &Rݠ %q &%$p&$ܠ$א]$% &&%$z&'$栩$ᐩg&% &0% &2%'%   3gC$$t%%%ة#y@+pow_ne_zerog&$$ &R& #O$ө$&U%%&VR&$#S&2%#U #=@/nle_succ_diag_l"Oy#^&=C> A ?UB%C/D <C%%% %$%%$ %m%!%O &f@"upʠ$$㩚%@&le_IZR̀%X&]ܰ%6%d%d&d$D&|%g %i&YЩ%r%m%ޠ%6j%H% $%堩%=%|.v&p&N@(archimed ŀC%$$U@%1P,%&%%&%~&&d&$s$&o$d@ Obz$]@ P1?G!&%T&%&&&¶@%%u%p%h%x!&{%$۷%M_nat&ѷ%6&ַ&!&ԩ ##l%$eps0&Է%#%&1&5 "m&,z!&&@&INR_leq= &[8з&&%Z$%%@&CΩ&ʷ%`$%%jF#!Ʃ^ة"蠩%頩%䐩ߩ&T%6Щ%%"h%!&]%&`$! !©&e%%"'% u!Щ%v%A%k%B& % &)&ީ& &- W!۩!'!%u'"&' %ܐ!('&o@+INR_IZR_INZ#]K$7&$(& &&"\''s'B)HrecM_natP%%%f%ߩw&@&le_INR逰!#i"Le2@&le_n_S8$W&쩚=@&le_0_l?&&&C& &ϩ!.&Щ".!2&"&'l(S#Ɛ!#ްZ#% id "0%>'$ ", '$,$D'e%F'$֠V_$K#'lCmC&D&rà&"C&H&v+&'"J&'&N&|"G&'"K%!h!]%%'%%''x!^!\![%''z!S!k!U!m!; !R %%@%n%y%l!9!%!s!'%0!u!;!8!4!/!4!*!)!#%'  %xC%u'$v#!$x&U'&'$|$~!''ĩ'&u '$&A'dz"]'˩)!&%'ҩ'*'$!"q'ߩ=?D6&=''B'թJ-O+ %SC_&&/%ư'&1rK#("&N&L&,&)&'(I&&&&''&&5&%%@%հ%%%%%&;%%~0&=&%%%%%%%&!' %C%ܰ(E&v(Y&j('ow(|אҐ$꠩$&B'!ᐩܐ"&y!!&T&R(>&N!!!&B((!!!&&@&& %!!%"!%0"!!!!!!!!&L(& & C&(L'xf&(O''(Q' t%#'ө'@.Rmult_le_reg_l΀Щ'ک >^ Y #&3(x%uC({%x!'"(Z&;(%}ˠKT'Ɛ%B#'(dCe#(ݠ "&('ڠ⠩@(q@&(꠩7/1&('(| &(v&('( #.(= #0(%g@&G b{'(' өc(`#>( hS'(( ީ(j#H( '(( ('('((  ~V(#Y( j#1'o&(q#d(ҩ')#')(֩''9'#ɷ '' c#H$Ҡ'Ӡ'ΐ(>'ʩ! Щ'ݠ'ؐ  (I'թ' "'# #H10(S''ꐩ ` 7((.'~9$&ǰ'"é)Decidable')@+dec_not_notHɀ'/Щ+Compare_dec@&dec_le*c< #ѩ#թ'@"gt Ux$gȐ%M_eqn''W+&'Y#-$&#󩷐!P@'c ()#&@$succ1\w&@ &$ '#'t&#'i)*)8($Znat' %Nat2Z@(inj_succ:w(g'@'@@1P,")P=42(ݩ)T'%'$''*"&)P)^*#@'inj_addc-('@E)kW$7"$$J'@%(b''%'Y')z(w'L'>)'S({m%Zvar0'ŷ&Omega9!Щ'i'̩o)}(']'O)'d(~&Omega0 ('g'Y)Q'n(('߷'%'')(%Zvar1'緐&Omega8 !Щ''$)"&Omega1 ('('''h(f)%Zvar2(&Omega4 )N)%@$p( (B))ǩ3_'((@H(ʩ'')ө(C'٩''I 2̵)(%@_(''(''')'ݩҷ)}))o$(8(p))l))(:@t('ˠ''Ϡ'%'署+OmegaLemmas%omega*&@/fast_Zplus_comm11(?)).(Q@) ','Ȑ'@8fast_Zplus_assoc_reverse ')(O')>(a@)'<'*&#@4fast_Zopp_plus_distrpe)'(_()N(q@)-(L*4!2@7fast_Zopp_eq_mult_neg_1=Ҁ)ɷ)[(~@):(Y(*C'()(4"(z()i(@Ơ)H(g(()*S@()u(@Ҡ)T()s(+ (-*_(WM^@2fast_Zplus_permuteЩ(7(())(;(-)(@] )(@)q'c_()(@)w(L-(N(@*n@0fast_Zplus_assoc Da~(@1fast_Zred_factor3&()(Ӷ@ )(dE(f*@1fast_Zred_factor5((-&Omega2)(t=@,fast_OMEGA13K*')%(?%|(*@*comparison;f@C,*( C@Ő((@'compare3x(@]=)HC@L@&OMEGA2.$D((*W()ة(W**C@[)ݩ(}((V٩)auxiliary(@(Zgt_leftE )@'new_var&/wS)ΐe+@'intro_Zz,&Z+$@&inj_gt8FF& *w'&)*ː @&inj_le8F% &$)N#@¬_le+g&|+% S(@.INR_fact_neq_0,%ư%'*@(mult_INR>(@*fact_simpl;tL0==ϩ8 ް D+N*%<+PŠC*à}6O(@'pow_add2V%O(C)'+eC*Ԡ)*C*' &7*)[*+Щ*,*ة栩g)%b%W))+)%TC)_+(`#%n(b**)+(f(h%u*+*ߠj֩栩qک(w&+Ojep&K+^`%*+++~y(%$**)))+))C)+s*4+*(+թ+-7('++ȩ(%CE%P*U+S#K*K++PX+]\^7`)e&,f6h`mJ*b,+g+&,qAsumzkg*o,+t|U~G&, &,$zt*|,)+ b,[%  [& *+!*,8+#f&*& &*c*a,M'h%%C* ,O+{*,R+X+,T+)'C+ԩr&,em+,h+&,nQ@* .Āz" &,iǠ%(*,n+Ơ,[(',sѠq֐ *,x+Р,c1x㰩+=+k|*J,+m~ؠza*T,),)@,x*Y,B)ir)^'{,,C+Z(*g,*+@1Rinv_lt_contravark!;=(@)lt_0_succ5%,Ymũ+@<_INR%耰(u@<_n_S`,*,,*,ԩ)),,++,ة)g,',ک+@"lt Uxc,?$Plus@0plus_lt_compat_r Ɉ)',_@+lt_le_trans ŵ)&'թ;)+,g,C, I,6@)not_0_INR#rTͩ*-*+[-,J-- ,Y- ,ַ@-** ,C g@(mul_comm7 ["-,f^prBbDdv%HpzrJ)C,w]_}Q&-&)+H)e-C,'-0u!1+-5,- کu+*Gx'-@ +-C,+-6'-O!N+-R,  4!Z(İ,,Lթ++-c,Nש`,-R-M@/decreasing_prop5nȀ,*y-X-J"-Z>>Ϡ>C,̠FԠE!yC,Ԡ,-,נZ,-,ܠ+,"M0--%,{ؠҠ,R,+^--,,˷-/ᠩ۠,[-y,+h--{,,,D-,q-,-@n,e-l--Aʷ-C,md+y--P,,T-,---¶@~,u-|- ,E- *Ʒ--ʷũHl"-8,-`)- ,P-*ѷ-"-շ (]-,A-̩,- -E-m/Ȑ$M0_zm-s+۩?-~)Ƞ,ɠ,Đv---4,s,-I,,ѩ,-é+-,N,-n,ؐ-r-&'Щ,-u-L,ة,-z ک-S,,ꐩ-z-y--CC^̩h,-,.-.+Ӱ,6-`,.,.-i.@ة,Ϡ,,ַ&M0_nat." ,.%,.&-t.'@,ڠ,--x.+ ,ũ- )&YЩ--),ͩ-, ,, #H14 #H15-,䠩-#)P,.-(,h-o,j-,.C -,.E-y . *..%*.3:@.le_succ_diag_r.,-;,-,-򩚠-@#IZN=D{..CC -.ie'.D@.cv_infty_cv_R08 k6 -.tz-3,5.z-+wM,.}*t,T+z.YFCZ.[.=-.-`@-n.y@-l-.-J.-.@-H->-9-1<-p.$eps1.h-{.i-J)x+.}SeC-Y-ؠ.y-_-ޠ.C-^ȩ)m+-.-x...@-v-l..-kc'+©-Z.Ʒ-.Ƕ..ȶ@--{-v-n -.)-.Է-S.׷-.ض.&.ٶ@----1+--Q..3.-NȐ#H16-*-(---.̩-. -.2,,,,..é-,-ѩ(--ҩ,-,Ե,@,,,,,|,i-!,,d0-#-,,,,,,,-.,f0-%-,,,,,,,- . ,C,İ.Z\-d},-dD--l/ jl9-^-!)/r-ΐ -А -n/-ڠ/-7Щ  -w ~.n@ 'Rmult_integral_contrapositive_currified U0`U-.[#H17-/83,D.$_-/<:,H-/>!/.)/'C ( -/B'0.-/G./2.-k-/S4-/T./A..m.G)/^F)/bT-/c--/eà-Ơ--VW ۠aB.\c 8]M] ۰F-@/x.cC-B/z-nڠ_--/-3-/.B.=.56.t/r@/rlsluIyls~u~|.L.Eנ.//۠/e.[w*J,//C.I/.v///@.t.j.e.]d./2C@@/}.0.///./../@.._/˷./̶//Ͷ@...{.s./H./ַ./׶/%/ض@....~.*.u/.//0/@.....+/.j/.//=/@....*/.*,%/F/̩./,k"n00.*/F+/qx/R0..w/W0 ..Щ.....*,@$pred `</.*֩*0.g0/l/.ΐ.Ơ*//*0.s0 /x.Р/0 *0'/.{0(/")0"+0*00.01/0"2*06-.07/   ɷ/0I@+@. 0N0/. 0P/:///堷.0W,"0.0[, /08.0^+/ȩ.0`+/0a.0c/M0C0B.60i+C.&0k/U++/0K0L00p5'3./0t,/ީ7.30x,/=0U.60{,.ѩ.0},V/0~C+/.>0/Őm0U0TK+/C.G0/ΐv y,Z.0k/B@.M00I0I.O0/m0 0r.f00 .V0/0S.0 /0/꠩*0+[?.00""r""u# "C/"w/+;0/.00/+@0 ;"/o/.|0/0 7C0 /"%/+P0//00/+U0F P"*//J.0/L,+ KC0!/ȩ0Mµ @&le_S_n8ދ0Lf030@@.00@0|0/D0,u0?0.00C.0,{0M00Է000/R0,ط0M1.10}YC.°1,{/s0/@x.Ű1 0~vu.ǰ1 0q/a100\1)0|0C/̠0|00$C@/1@//1/10g1@/ש/͠.OK0?C@0ݠ/./B00000C0 1@0/1%/1&0t1'@//ڠ.\!}0 0C00 /r01%@0/ɠ15/16017@//꠩/吩/ݠ%P000 1@01A01B@////,{/ޠ1J0 1K01L@0 ///  F1% 05,01X,/1[01\01]@000 0 16 0F,K.$-01j,0'1I.),/1q0j1r-X/11v1,㩚.2@/  1J/(0: 17/=11P.>/@-plus_le_reg_l:i1C//11\01 .M1n1n%Minust@-le_plus_minus,301j#0 .Z$1m@)le_plus_lx&̀$1C'0;16,Q0?101- B/k11g-0{101-0q%ҩ/s11,,0j0e0] x 1y o j1a0,01Ʒ)Щ010!/117.00{0s  1B  1F0,r/115./1s,h1.-1131000  )0+ 0\-0F1111ͩ1#hC@01@0٩01011E1@00/-1pC@1T1۩.1C01@002021R2@0©0/: i1}C1Ǡ1Y2 ; Ơ011 K01\Ae\S