"`%F%*H*Rtrigo_reg%Reals#Coq@()Notations$Init#Coq@%Logic$Init#Coq@*Logic_Type$Init#Coq@)Datatypes$Init#Coq@&Specif$Init#Coq@%Peano$Init#Coq@"Wf$Init#Coq@'Tactics$Init#Coq@%Tauto$Init#Coq@'Prelude$Init#Coq@)Notations$Init#Coq@0&v!D]hwnv %Logic$Init#Coq@0\͉!Ig)Datatypes$Init#Coq@0.i bYN Z*Logic_Type$Init#Coq@0 1jc6&Specif$Init#Coq@0;RWMi\N'Decimal$Init#Coq@0C涳N*ua#Nat$Init#Coq@0eʤģPSR蠠%Peano$Init#Coq@0 jha|ؠ"Wf$Init#Coq@0q+W,J+'Tactics$Init#Coq@0/9m+ a%Tauto$Init#Coq@0̂"&/rk0JqTttֱ'BinNums'Numbers#Coq@0dmk(5Ju<*EqdepFacts%Logic#Coq@0FI$ͼՋ`)Eqdep_dec%Logic#Coq@0u wWIϰ߼&Basics'Program#Coq@0!bs߯? :VU$Init'Classes#Coq@0](p{yOh.'Tactics'Program#Coq@03u%+Equivalence'Classes#Coq@07;ꮹ-SetoidTactics'Classes#Coq@0S_`nOU$&Setoid'Setoids#Coq@0D9AsWE!>$Bool#Coq@0j 2cZ`FW*Equalities*Structures#Coq@0όe얟)H.Ƞ2Relation_Operators)Relations#Coq@0%s鯰s4Operators_Properties)Relations#Coq@0U3y#h&)Relations#Coq@0r砠*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ&NZSqrt&NatInt'Numbers#Coq@0` .%m%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|&NZBits&NatInt'Numbers#Coq@0MlIpKt'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$&NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ)NMulOrder(Abstract'Natural'Numbers#Coq@04> Aat/ j $NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ'NMaxMin(Abstract'Natural'Numbers#Coq@0]v|Qg̟ʠ'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NLog(Abstract'Natural'Numbers#Coq@0KI'BinList+setoid_ring#Coq@0Au,Ring_polynom+setoid_ring#Coq@0gaKw9`UW+ListTactics%Lists#Coq@0,Jcy{+InitialRing+setoid_ring#Coq@0k/T=cN(Ring_tac+setoid_ring#Coq@0x2]%762f)Ring_base+setoid_ring#Coq@0fbU(2cNe$Ring+setoid_ring#Coq@0Msᬠ)ArithRing+setoid_ring#Coq@0ṔCgt?}%Arith#Coq@0I|кX*o4#Max%Arith#Coq@04=;3$>aU堠#Min%Arith#Coq@0Ce-Fѕ(PreOmega%omega#Coq@0\|چBb~w4%Omega%omega#Coq@0t.J'6\ϨrK(Zpow_def&ZArith#Coq@0f蓜DX;V*ZArithRing+setoid_ring#Coq@0{#'[{nm!/,Zcomplements&ZArith#Coq@0ʾq %RIneq%Reals#Coq@0JUڻIu)$w&DiscrR%Reals#Coq@0z41pV.%Rbase%Reals#Coq@0Jܡ\ c6{%R_Ifp%Reals#Coq@0c4+ZŠ,Fourier_util'fourier#Coq@0ϳ> 4`*r0'Fourier'fourier#Coq@0wV9TN*Rbasic_fun%Reals#Coq@0hܒiclE>%R_sqr%Reals#Coq@0X%MԹ%M+SplitAbsolu%Reals#Coq@0M)&qYlݹ5*SplitRmult%Reals#Coq@0sD\rt/$Even%Arith#Coq@0YO%q}d߫%$Div2%Arith#Coq@0n*Áht!,)ArithProp%Reals#Coq@0B+L?>*e˃a j*Rfunctions%Reals#Coq@0d¹d‹@'Compare%Arith#Coq@0OM v먣5L:'Rseries%Reals#Coq@08]$u+?'SeqProp%Reals#Coq@0Lt2|9D }SSԻ)Rcomplete%Reals#Coq@0{ڸ4q 'PartSum%Reals#Coq@0j&2"(>S)AltSeries%Reals#Coq@0d US^(Binomial%Reals#Coq@0]JrHr#E&Rsigma%Reals#Coq@0䟄WCJҦ<%Rprod%Reals#Coq@0gȀn_}!W+Cauchy_prod%Reals#Coq@0K*ߞ4q(Alembert%Reals#Coq@0I͗Huz&)SeqSeries%Reals#Coq@0Npc$5|T ٠*Rtrigo_fun%Reals#Coq@0T+ɧK/۠*Rtrigo_def%Reals#Coq@0$xR`VcxIaƶ"x*Rtrigo_alt%Reals#Coq@0zsC^,%+OmegaTactic%omega#Coq@0@{4-EܭEUBW'Cos_rel%Reals#Coq@0%}ֺ|3J-tWK(Cos_plus%Reals#Coq@0IWEGն&Rlimit%Reals#Coq@0*r0ē([HAE&Rderiv%Reals#Coq@0?KQ;^WU;H*Ranalysis1%Reals#Coq@0 n;qm.L%)Rsqrt_def%Reals#Coq@0eA~%&Y?%RList%Reals#Coq@05g2NaA:7PropExtensionalityFacts%Logic#Coq@0 +_.ɓoFؘ'Hurkens%Logic#Coq@05[gNk2up.ClassicalFacts%Logic#Coq@0$RzqIF\(4.Classical_Prop%Logic#Coq@0Yh޿JdI1ƽ3Classical_Pred_Type%Logic#Coq@0m[6BZ5)Rtopology%Reals#Coq@0;Wo G#MVT%Reals#Coq@0cq통 gZ+PSeries_reg%Reals#Coq@0䝠|%n͠'Rtrigo1%Reals#Coq@0x'ml^8 aUrb5Q^>:nР*Rtrigo_reg%Reals#Coq@A.continuity_sin @@@*Ranalysis1%Reals#Coq@@*continuity**Rtrigo_def#"@@#sinҀ@@@@@AA@@>@,Field_theory+setoid_ring#Coq@@&FEeval>@@A@A"s @,Ring_polynom+setoid_ring#Coq@@&PEeval"s @@A@BA@A@)CVN_R_sin @@NA"fn@)Datatypes$Init#Coq@@#nat@@,Rdefinitions%Reals#Coq@@!RӀ @%Logic$Init#Coq@@"eq @@)Datatypes$Initc@#nat@@,Rdefinitionsm@!RӀA!N!x@%Rmult׀@$Rdiv̀(Rpow_def@#pow#׀(@#IZR/r'BinNums'Numbers@!Z7@C @(positive*@CB'Raxioms@#INRr)Factorial%Arith@$fact>【#Natf@#add ` @#mul yBA2Xo+PSeries_reg%Reals#Coq@@%CVN_R>B@@@@@蠠6derivable_pt_lim_sin_0 @@B @0derivable_pt_limoiAtoBf@@@@@6derivable_pt_lim_cos_0 @@6C@#cos㹀@@@@@4derivable_pt_lim_sin @@ID뀩3*Rtrigo_def%Reals#Coq@@#sinҀA@#cos㹀A@@@@@>4derivable_pt_lim_cos @@pEٚZA,Rdefinitions%Reals#Coq@@$Ropp΀9A@@@@@f0derivable_pt_sin @@F:@,derivable_pt8\E@@@@@{0derivable_pt_cos @@GO{"@@@@@-derivable_sin @@H@)derivable$"@@@@@-derivable_cos @@I@@@@@-derive_pt_sin @@JGs,Rdefinitions%Reals#Coq@@!RӀ@)derive_pt$FnA@n6AA@@@@@ࠠ-derive_pt_cos @@K{4(A@~6wA܀A@@@@@ @@@ ӳ2@ ӳ2[)Datatypes$Init#Coq@@A@ Գq@ Գq\ @A@AB@cA  @A.0TQ+Ring_theory+setoid_ring#Coq@@ABA.U>[J @B@@"O@(PeanoNat%Arith#Coq@#Nat@&of_int"O#Nat$Init#Coq@@ 6@A@A\@&BinInt&ZArith#Coq@!Z@'quotrem\)BinIntDef&ZArith#Coq@!Z@ /@A@\@@+pred_double\@/S@@A@As2@3@&shiftls2*@vY@A@BCs8@8@&shiftrs8/@vY@A@ѓ@>@&squareѓ5@y@A@@D@&to_intϑ;@@A@z@5@&doublez,@/!@A@ABCD/@O@)log2_iter/F@wd@A@NH/@B@&moduloNH/9@1,@A@A\d@G@&of_int\d>@1?A @A@bz@M@&of_natbzD@1?G!@A@#@S@&shiftl#J@1dV@A@#@Y@&shiftr#P@1d\@A@ABCD/x@&BinPos&PArith#Coq@#Pos@)pred_mask/x)BinPosDef&PArith#Coq@#Pos@ )X@A@6@x@&square6o@19@A@AV+L@}@&to_intV+Lt@2@A@V1b@@&to_natV1bz@2 @A@V5=@@&to_posV5=@2@A@ABCl@@)sqrt_iterl@!$:@A@@@6@(sub_mask@-@)@A@ADEF c@@'testbit c@!ć@A@7 B@D@'of_uint7 B;@*`]?@A@AG@I@)mask_rectG@@+ED@A@F˱@O@)add_carryF˱F@+p@A@AB^Ҷ@@'to_uint^Ҷ@#m@A@gL7@@'sqrtremgL7@40@A@Aq@@'testbitq@5)@A@ݎO@@+succ_doubleݎO@6r@A@A p@l@0double_pred_mask pc@0-+m@A@BCD T@&BinNat&NArith#Coq@!N@!t T)BinNatDef&NArith#Coq@!N@ 2@A@ @@#add @3 @A@A l@@#div l@3@A@ Y@%@#eqb Y@3@A@AB #@*@#gcd #!@3n@A@ T@0@#leb T'@3@A@ACEG "@5@#lor ",@3m@A@ q@?@#ltb q6@3@A@A @D@#max ;@3@A@ @J@#min A@3`@A@AB @O@#mul F@3B@A@ ~@U@#odd ~L@3@A@AC =@Z@#one =Q@3@A@ @b@#pow ˑY@3@A@A c@g@#sub c^@3@A@ @m@#two d@3J@A@AB hx@r@$div2 hxi@>@A@ @x@$even o@>4@A@ACD @}@$ggcd Бt@>U@A@ @@$iter }@>:@A@A 3"@@$land 3"@>m@A@ F)@@$log2 F)@>t@A@AB S@@$lxor S@>@A@ @@$pred @?U@A@AC @@$size ܑ@?'@A@ !@@$sqrt !@?@A@A ! @@$succ ! @?\@A@ !7@@$zero !7@@P@A@ *@@%ldiff *@@A@AB g_@1@+pred_double g_(@25\@A@CD m@6@÷ m-@2j@A@S@=@&of_intS㫑4@4}5@A@AS@B@&of_natS9@4};@A@BEFGH\R@G@(mask_ind\R>@4@A@\^@Q@(mask_rec\^H@4@A@A!,@V@&pred_N!,M@4s)@A@B@[@&shiftlR@5X@A@@b@&shiftrY@5X@A@A&@g@&square&ّ^@5,x@A@BC"@l@&to_int"c@5L@A@"@t@&to_nat"k@5L @A@AnTq@y@+testbit_natnTqp@6n@A@B@@(succ_posB@@A@I@@'abs_natI@?n@A@AB.@@'of_uint.@MS@A@3~@@'sqrtrem3~@7]%{@A@ACD,@ @'bitwise,@/v@A@>4'@@'testbit>4'@8g$@A@A{U@@,sqrtrem_step{U@8R@A@u^@9@(div_euclu^0@ @A@Afz@@'to_uintfz@9w@A@Bl@'@'comparel@3R@A@CDEFs8@,@+of_uint_accs8#@5+@A@}@R@,pos_div_eucl}I@&`@A@3x@(@'compare3x@]=@A@A@^@&doubleU@'޺_@A@BCq@@+of_succ_natq@$@A@w@i@&modulowɑ`@)1@A@ADK@n@&of_intKe@)j,I@A@K@v@&of_natKm@)j2_@A@AI@{@&shiftlIr@*O@A@O@@&shiftrOx@*O@A@AB,@@&square,}@*ow@A@Z@@&to_intZ@*81@A@ACE`@@&to_nat`@*9G@A@e@@+testbit_nateđ@+@A@A+{@@'sqrtrem+{ё@,J@A@5z@@'testbit5z@-T|@A@A @@'to_uint ͑@.@A@ @@+succ_double @.^4@A@A#@'@'compare#ݑ@ )Q@A@BCD%t2@,@(size_nat%t2#@ @A@%9@3@+of_uint_acc%9*@ ΋@A@A%V@8@+double_mask%V/@ S@A@%%@>@'div2_up%%5@ "@A@ABEF'ş@C@'Ndouble'ş:@ @A@(b0@K@*shiftl_nat(b0B@9-@A@A(nՖ@P@*shiftr_nat(nՖG@'@A@(@V@0succ_double_mask(M@@A@*W$@\@,compare_cont*W$S@!@A@.0@b@.sub_mask_carry.0Y@΂@A@ABCD.@@!t.@ ;@A@.먩@@#add.먩@ `@A@A.U@@#div.U@ @A@.B@@#eqb.B@ @A@A. @@#gcd. @ @A@.=@@#leb.=@ @A@ABCEGHI. @@#lor. @ @A@.Z@ @#ltb.Z@ @A@A.p@@#max.p@ '@A@B.@@#min. @ @A@.@@#mul.@ @A@AC.g@@#odd.g@ @A@.&@&@#one.&@ @A@A.뾴@+@#pow.뾴"@ k@A@.L@1@#sub.L(@ @A@.@7@#two..@ @A@ABCD.,a@<@$div2.,a3@ @A@.Xz@D@$even.Xz;@ ?1@A@A.@I@$iter.ؑ@@ @A@B. @N@$land. E@ @A@. @T@$log2. K@ @A@ACE.@Y@$lxor.P@ R@A@.y@`@$pred.yW@ `<@A@A.Ʉ@e@$sqrt.Ʉ\@ ;@A@.@l@$succ.c@ @A@.t @r@$zero.t i@ Z@A@AB/@w@.to_little_uint/n@ @A@CDF/@|@%ldiff/s@ H@A@00@@'compare00@?H{@A@A1P%@w@!t1P%n@  @A@B1P@|@#abs1Ps@ @A@1P&@@#add1P&z@ @A@A1P@@#div1Pґ@ y@A@BC1P@@#eqb1P@ f@A@1P@@#gcd1P@ 0@A@A1P@@#geb1P@ T@A@B1P@@#gtb1Pʑ@ q@A@1Pĺ@@#leb1Pĺ@ a@A@A1Pň@@#lor1Pň@ /@A@BCD1P@@#ltb1Pב@ ~@A@1P@@#max1P@ @A@A1P{@@#min1P{@ "@A@B1P]@@#mul1P]@ @A@1P@@#odd1P@ @A@A1Pɣ@@#one1Pɣ@ J@A@BC1P@@#opp1Pԑ@ {@A@1P1@@#pow1P1@ @A@A1P;@@#rem1P;@ @A@B1P@@#sgn1Pˑ@ r@A@1P@@#sub1Pɑ@ p@A@A1Pe@@#two1Pe@  @A@BCDE1[8@@$div21[8ޑ@ @A@1[d@@$even1[d@ I@A@A1[6@@$ggcd1[6@ i@A@B1[U@ @$iter1[U@ @A@1\@@$land1\@ /@A@A1\@@$log21\ @ 6@A@BC1\$@@$lxor1\$@ @A@1\Y@$@$of_N1\YÑ@ >j@A@A1\@)@$pred1\ @ j@A@B1\@.@$quot1\֑%@ }@A@1\@5@$sqrt1\,@ @A@A1\w@:@$succ1\w1@ @A@BC1\k@?@$to_N1\k6@ @A@1]@G@$zero1]>@ eD@A@A2:@L@%abs_N2:C@ @A@21@R@%ldiff21I@ ߵ@A@2=*@X@%quot22=*O@ @A@ABC2kF@@(size_nat2kF@{@A@3@x@(tail_add3o@^q@A@ADEFGH3@}@(tail_mul3t@^@A@5Z@@*shiftl_nat5Z@y/@A@5f}@@*shiftr_nat5f}@4@A@AB5a@@'iter_op5a@ @A@C6w~@@'of_uint6w~@^5@A@8j@@'of_uint8j@'"h@A@9E@@(div_eucl9Eđ@(*k@A@AB:x@6@,Nsucc_double:x-@ ʭ@A@CD@[@&divmod>R@C@A@>@b@&double>Y@NĴ@A@?2@S@,pos_div_eucl?2J@-u@A@AB?;@m@&modulo?;d@"i@A@CEFGIJ@(Alembert%Reals#Coq@0I͗Huz&)AltSeries%Reals#Coq@0d US^%Arith#Coq@0I|кX*o4)ArithProp%Reals#Coq@0B+L?>*e˃a j)ArithRing+setoid_ring#Coq@0ṔCgt?}*Arith_base%Arith#Coq@0Ĕ}CS&Basics'Program#Coq@0!bs߯? :VU'Between%Arith#Coq@06v*0ur`C0&BinInt&ZArith#Coq@0BpHޞun^)BinIntDef&ZArith#Coq@0ådR4Tuy'BinList+setoid_ring#Coq@0Au&BinNat&NArith#Coq@0K11ڤs+Π)BinNatDef&NArith#Coq@03@1O,[{ 'BinNums'Numbers#Coq@0dmk(5Ju<&BinPos&PArith#Coq@0vyػ0= u)BinPosDef&PArith#Coq@0}H d.%,b(Binomial%Reals#Coq@0]JrHr#E$Bool#Coq@0j 2cZ`FW*CMorphisms'Classes#Coq@0qیZBeϠ0CRelationClasses'Classes#Coq@0TL;0RUfw1+Cauchy_prod%Reals#Coq@0K*ߞ4q.ClassicalFacts%Logic#Coq@0$RzqIF\(43Classical_Pred_Type%Logic#Coq@0m[6BZ5.Classical_Prop%Logic#Coq@0Yh޿JdI1ƽ'Compare%Arith#Coq@0OM v먣5L:+Compare_dec%Arith#Coq@0jXF 8(Cos_plus%Reals#Coq@0IWEGն'Cos_rel%Reals#Coq@0%}ֺ|3J-tWK@0.i bYN Z)Decidable%Logic#Coq@0ND걸풬/Oߠ'Decimal$Init#Coq@0C涳N*ua&DiscrR%Reals#Coq@0z41pV.$Div2%Arith#Coq@0n*Áht!,%EqNat%Arith#Coq@0AIgՋXRV *EqdepFacts%Logic#Coq@0FI$ͼՋ`)Eqdep_dec%Logic#Coq@0u wWIϰ߼*Equalities*Structures#Coq@0όe얟)H.Ƞ+Equivalence'Classes#Coq@07;ꮹ$Even%Arith#Coq@0YO%q}d߫%)Factorial%Arith#Coq@0@oehJd%Field+setoid_ring#Coq@0J _ȫ)Field_tac+setoid_ring#Coq@0d vDZl^۹H 0B~uYٮ٠'Fourier'fourier#Coq@0wV9TN,Fourier_util'fourier#Coq@0ϳ> 4`*r0-GenericMinMax*Structures#Coq@0måj$"Gt%Arith#Coq@0䙛#c:D 'Hurkens%Logic#Coq@05[gNk2up$Init'Classes#Coq@0](p{yOh.+InitialRing+setoid_ring#Coq@0k/T=cN"Le%Arith#Coq@0d}Omq+$List%Lists#Coq@0>I+ListTactics%Lists#Coq@0,Jcy{ 20\͉!Ig*Logic_Type$Init#Coq@0 1jc6"Lt%Arith#Coq@0KZ-eJkP܏#MVT%Reals#Coq@0cq통 gZ#Max%Arith#Coq@04=;3$>aU堠#Min%Arith#Coq@0Ce-Fѕ%Minus%Arith#Coq@0LFtR")Morphisms'Classes#Coq@0Imӽ%\$PD.Morphisms_Prop'Classes#Coq@0% :B'.>u%$Mult%Arith#Coq@0햖Qyb0$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI%NBits(Abstract'Natural'Numbers#Coq@0qteo_hɅ $NDiv(Abstract'Natural'Numbers#Coq@0bz$?[p(5$NGcd(Abstract'Natural'Numbers#Coq@08E-S ;j_Ҡ$NLcm(Abstract'Natural'Numbers#Coq@0 ~xZ9L{:$NLog(Abstract'Natural'Numbers#Coq@0K Aat/ j &NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf+NProperties(Abstract'Natural'Numbers#Coq@0unt"kwpYC%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ%NZAdd&NatInt'Numbers#Coq@00h`ZK4*NZAddOrder&NatInt'Numbers#Coq@0e~1>r砠(NZAxioms&NatInt'Numbers#Coq@0] ρ5r&NZBase&NatInt'Numbers#Coq@0^&8yUL&NZBits&NatInt'Numbers#Coq@0MlIpKt%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZMul&NatInt'Numbers#Coq@0ctR~6[Ƞ*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R'NZOrder&NatInt'Numbers#Coq@0 q;Ve7R W,(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x&NZSqrt&NatInt'Numbers#Coq@0` .%m#Nat$Init#Coq@0eʤģPSR蠠$Nnat&NArith#Coq@0$W;s #%M)Notations$Init#Coq@0&v!D]hwnv *NumPrelude'Numbers#Coq@05WUVŦ]xVXԠ%Omega%omega#Coq@0t.J'6\ϨrK+OmegaLemmas%omega#Coq@0TJ#Jes+OmegaTactic%omega#Coq@0@{4-EܭEUBW4Operators_Properties)Relations#Coq@0U3y#h&&Orders*Structures#Coq@0$Znl0\͗+OrdersFacts*Structures#Coq@05Mܿ獐ζΖLB)OrdersTac*Structures#Coq@05'4Ԗ+9%+PSeries_reg%Reals#Coq@0䝠|%n͠'PartSum%Reals#Coq@0j&2"(>S%Peano$Init#Coq@0 jha|ؠ(PeanoNat%Arith#Coq@0O~2$k[#lZ)Peano_dec%Arith#Coq@0Kݢ*k$Plus%Arith#Coq@04tmG$Pnat&PArith#Coq@0,?pr.gZ(PreOmega%omega#Coq@0\|چBb~w4'Prelude$Init#Coq@0JqTttֱ7PropExtensionalityFacts%Logic#Coq@0 +_.ɓoFؘ%Quote%quote#Coq@0J@ŹVz-,3%%RIneq%Reals#Coq@0JUڻIu)$w%RList%Reals#Coq@05g2NaA:%R_Ifp%Reals#Coq@0c4+ZŠ%R_sqr%Reals#Coq@0X%MԹ%M*Ranalysis1 } |@0 n;qm.L%'Raxioms%Reals#Coq@0S]jnj][L%Rbase%Reals#Coq@0Jܡ\ c6{*Rbasic_fun%Reals#Coq@0hܒiclE>)Rcomplete%Reals#Coq@0{ڸ4q  0(2{Ze$ќ8&Rderiv%Reals#Coq@0?KQ;^WU;H)RealField+setoid_ring#Coq@0 >ʾq /RelationClasses'Classes#Coq@0Gz rA6ՠ4Relation_Definitions)Relations#Coq@0]4Ѐd{n^2Relation_Operators)Relations#Coq@0%s鯰s)Relations#Coq@0-SetoidTactics'Classes#Coq@0S_`nOU$&Specif$Init#Coq@0;RWMi\N+SplitAbsolu%Reals#Coq@0M)&qYlݹ5*SplitRmult%Reals#Coq@0sD\rt/'Sumbool$Bool#Coq@0sB ,$11.]m'Tactics$Init#Coq@0/9m+ a'Tactics'Program#Coq@03\2 Q@@A@#_13k@gT}R@A@@@@@@@@#_142M접#_15'`o@@@@?2 Q@@A@#_16@Jʈ@A@@@@!@#_172M접 #_18'`o@B.function_scope@@A<@2 Q@@A@#_19@ @A@@@@I@#_202M접 #_21'`o@@@@2 Q@@A@#_22@ ̚@A@@@@h@#_232M접 #_24'`o@@@@2 Q@@@@#_25@ "g@A@@@@@#_262M접 #_27'`o@A'R_scope@@2 Q@@A@#_28@ "Q@A@@@@@#_292M접 #_30'`o@A%@@2 Q@@A@#_31A@A@@@@@#_322M접  #_33'`o@AH@@2 Q@@A@#_34?@A@@@@@#_352M접  #_36'`o@Ak@@à2 Q@@A@#_37@7@A@@@@@#_382M접 #_39'`o@@@@Ѡ2 Q@@A@#_40@7@A@@@@5@#_412M접 #_42'`o@@@@2 Q@@A@#_43@@A@@@@T@#_442M접 #_45'`o@A@{@Ҡ2 Q@@A@#_46@눽@A@@@@x@#_472M접 #_48'`o@A@@@@QWk'z@\0 |@ӎf$qr̄@6 sbr8y_ ]i^]0!x,Rdefinitions%Reals#Coq@@!RӀȐ"H0'Rtrigo1@.continuity_cos4׀@&Rminus&H!@$Rdiv̀@"PI G-@#IZR/r'BinNums'Numbers6@!Z7@B@(positive*@BCA*Ranalysis1O@-continuity_pt?ZL*Rtrigo_defX@#cos㹀G#epsi!Hm@#Rgt=<&GAA%Logic$Inity@&ex_ind 5{#alp@#andЖw@#@ &Rderiv@#D_x> HN@'no_cond'FX@#Rlt=*Rbasic_fun@$Rabs; wkBh jGEP@"ex @ϷKЩIfӶ@MC;43.à:&94ɠ@#sinҀ*'&"x0﷐"H1k,Asq@ukcH\WOb]))IKX@'and_ind14ۀЩa@\ҩzu bC|mՐ053@s#y)``F"H22"H3OM@Ǡ$= *DDHCTAmk@堩۰a#ˠƐ[)gѠ̐aJǷ"x1"H4 @&eq_ind J5up!r鐩~vNF[QKЩ5 ;2( /$5"H5"H6$# l>6L3.à ޵|i@$Truey@o@#notШw@"eq @# A"H7M>@%Falsee@$_tmp,"H8)$Nq@)False_induُА !@$Ropp΀O-+=--/G3E5P%RIneq;@.Ropp_eq_compatu @.Rplus_eq_reg_l7X+$&@/Ropp_involutive"2f(*-CkCXȐ(hyp_list)Datatypes@$list]@A @$prodt@,Ring_polynom+setoid_ringl@%PExprk@B"Ȑ'fv_list)Bh2Q@2RField_ring_lemma1!7𚠐(Ring_tac&@0ring_subst_niter!M⩜1F(6D-Z/e 13 5kAg ;A`@$boolZ'@A@Ӱ Ȑ#lmp[@.mk_monpol_list(VX&BinInt&ZArith@#add1P&)BinIntDef@ ̀@#mul1P] @ @#sub1P@ p@#opp1P@ {%Zbool!@(Zeq_bool0߀*@'quotrem\$@/ŀF@#Monf@@#Polj@@#Peqj*(@*norm_subst7:d0RQA;5/'0TSC=71){c3# PI'&c*0 5@(eq_ind_r!2#>%z=@1Ropp_minus_distr'%~@)Rabs_Ropp&#46183PoD@)cos_shiftpMݩ 6C]@`aڠfd@ޠ *Rfunctionsj@&R_dist͠ Cv@ yz&Rlimit~@$Base /h @%R_met Րs@꠩@$dist 3^K C@(limit_in=C(@)limit1_in8 C@+continue_in CeCg@*continuity*א"fn@l@#nat@@˷bް !N ҩ@%Rmult׀(Rpow_def@#pow#׀C3'Raxioms@#INRr)Factorial%Arith@$fact>【#Nat@1 ` @- NBTAb?@'posreal̠@&Specif@$sigT#6@A@l0"An@#sig#* @;!l>'RseriesA@%Un_cvɀ!n@(sum_f_R0Yc!k-  !y^@+PSeries_reg`@%Boule>ߌj@#Rle=ĐsO۷+y@$Rinv8{w:rO@#pos=D. X@(cond_pos 1yk'n, 3Y3Y55p@*Rlt_irreflnQ Cɐİ,BBΐɰ BG (Alembert@+Alembert_C2̀rSDwJ $@*Rabs_no_R0 @ 'Rmult_integral_contrapositive_currified f@1Rinv_neq_0_compat1jf|@.INR_fact_neq_0,i@+pow_nonzero%m:@,Alembert_sine'7Oݠ@%sin_n퀐ک µ@1Rmult_lt_0_compat=\@$Rsqr=MW{ҩ@0Rinv_0_lt_compatD%R_sqr'@+Rsqr_pos_lt8C|ũ$R{q|}@%Peano@"ge Uw堩24{sHnf\UQ LAMܐ @*ǠĐRȐ!Аz"N0÷HƷǶAȶ@K蠩&吩s鐩Š!>͠!Ơ0YcZO]&|㠩 砩頩ک&HאϐŠ RX琩ߐՠΠũĐALݩ37o젩$ݩk~L( + 8`SbF#Aȩ#8Go`q_ 2"PR٩zXQI2O0^dx]rĐnrglEWGuwytl`l->U:!Zl\2j)bIi{k$ 6oŐǐ3vx1А-ҐԐ֐ XNjCA␩anϷ ͠ϠѠXTӠՠX+r wޠڷ$ǰjWGR1©԰ĩu{@1Rmult_eq_compat_l$ѩ[]dFש٩Ʃ _O O8pBD a~L%i *,T&is46 / r>)GIsL"4$ RzVݩ.\/A1_c  9gM+@RB)p FGYI0wyO'ScTfV=ة  #\p# ascJ,ew, {4m[qs^(>wxzeE~<GHn 975+%\@7@ BDة#)ArithRing2@0natr_ring_lemma1 ,MZ臭>ECC &BinNat&NArith@&of_natK)BinNatDef@)j2_ZG7)9; %="? ۵@(FGAKB,@  %@ 3 1@ *@3B X7@#eqb Y1@3=@(div_euclu^7@ =|jlm0o)&""nY0q+($$p8DC@.>CD4DJO%CE>XCӵ%J &c(e-wlnoq@@Ivt<)L$0qp`ZTNF&0srb\VPHCRBpr@RRkT:YZJxz PQcS=:ߐ@ [k`rbdbti{k Roշpr Y" L,ܩӠ @to0<q0>Cx+W@*Rinv_l_sym9`g~=@+Rmult_assoc&Ϡa  aXN@*Rabs_right |Ttr@&Rle_ge @ H@{J@&pow_le!È򩜠D@"or @AR*װT,5,U#Y3_"@,Rabs_Rabsolu`(@)Rabs_Rinv&h D3E@*Rmult_comm8?۩C@)Rabs_mult) @/Rinv_involutiveCa*()/!A@/Rinv_mult_distr7 -6p@)Rmult_1_l9ԩx@&Rinv_1 ;9ۀ@)pow_1_abs'3ـ/IQ4<@'IZR_neq%A/<EH!e@@AA@AA@@@@@@D!zƔA<@?@cN@/BC_xyz]xXM0P}68<K>M@SCGC#r!u1v/6.{_|}C rȐ V X ZА ^LB oؐ f h; j` 蠩㐩 x 橚X@.Rmult_lt_reg_l>eЩ!  ,!{ε   ٠ `  ߠ`   ޠ֩Ґʐ   ސ֐̠ \Y'N թ )@<I ک 5   ީ ŠI`K qT  @  vY  E @ ՠ!A #m "$_th  Tl,v cm  Y T 頩2 S 7  8s|  h c `   [A|2 D~$F++JJC83 # CC@)Rmult_0_r+ȀT@3Rmult_minus_distr_l Io `E]   O ? C o0  %dO C ࠩ  - ۩x ٩~Q  [  = I  5C"  G |rkgqb ΐ SM G C;©9 ; ; }W Q ME̩C> F F_BBB@@@@D!sk e aYWR נ3Р( ` `z t  )rjhc D9 q qtd @b P  vZ  JUk   η!p0A ַ ש P 3k`  " @ w   @ C|!j  < D @: 5  ::/=; T   ߩ2 + 9 aC b5 Z:    E!  J ѩ rE  $  %UW  ' - >^%Rprod 1@-INR_fact_lt_06cZd  k M  C Aɐz  D۠t  o B> |ؐg_U C} @1Rmult_le_compat_lڀ   I L Š + ~ n - !  p W  t  ) @,pow_maj_Rabs, aF     5 v   l    ]$ d 1 O@*Rminus_0_r-  *װ  1  3 K (:2@(RPow_absa= bd 4f m@&Rlt_le A ;m aܠ? CN C ? C@ /a@%CVN_r>ဠ  zC@j@%CVN_R>  l ӷ j0    ˩*Rtrigo_reg @)CVN_R_sinʈ  0"C!X! ީ@)CVN_R_CVS=gf+    )4'PartSum @"SP?v  ^   "cv  Ԡ  ʠ>I J    A{ @'Rlt_0_14C ©[ y Щ"X0a ^ k a & ȵ 9 vU . ,ZS , B\ @(mult_fct)? @'fct_cte€Ʃ @'pow_fct,ݛڀ; r© < x    @2continuity_pt_multn΀   2 @7derivable_continuous_pt%f 9 @2derivable_pt_const>ҥ @ B @0derivable_pt_powj I q o &W &C %   , x@ n1! }@   3 2     O     䠩 ߐ @%Rplus+1v \  "    l{ a  '    P   - @'Rabs_R00 l@)Rplus_0_rH€   r@&Ropp_0 GU`C   >CX F  F ˩\ J  J w_@1SFL_continuity_pt/ɞ<      R x wh@#SFL>.H   [ V з L ѩ J g  Զ@ N D < f  4L # 6 1 Ơ   +   rR ˷%deltaζ!h @     @ O J 7U R M ⠩ ݠ 栩 v   !g lS   8    @ 8 j  l g PQ  bS   U 6 4 @2@. }+U   c * (@ T  թ   lP ! }nR # ĐT F R P <@N@J GW1  Y E W L S   K ط  L   7 2 ; rˠ     # \ 7  ]   H C L  ;  ( 2 k   l Ǡ 㠩 R砩  *  Wg8 A z   { ֠ ѐ a3 B u , ` "    d 䠩 ߐ t j  ʵ -     # q  @*not_eq_sym6Ԁ  x * C g  -     O Z  p        _ C%    }   EV     k RȐ"H9.,  ͷ  Ω   ٰX  a A:  ط  ٩   䰐Y  l    BBB@@@@@N      ! ,Z     !a @  @^   #HUn$'SeqProp @+UL_sequenceiހ Om $eps0 G   K A L  M@Щ m  ɠ  U G  B :   D   i [   ^#H10  Ȑ#H11 - ] X P  J B 8 1 - & ( b  򠷐!i  r& m e D۩ o ש K@$pred `<  S eU X8 [ m]éР    D  K } i w m o% b s) _ a l      0 㵩 G   : :H Ʃ  ( ( Y  J  )  R g@1Rplus_eq_compat_l5 [!^2@&eq_sym X >@)sum_eq_R06 /l"n0  {@"le UxT@wH S 6ǩ ٰɩ      W 搩 Ҡ  ֠ ؠ  ː ܠ   ʩ ՠ  n p S 1s      t     @ 萩 D     ِ . ' @)Rmult_0_l+€ qeC tvh > @)Rmult_1_r+1C )é Πѩ KC 3# +@*decomp_sum-r(PeanoNat 6 +@+lt_le_trans ŵ  } @.lt_succ_diag_r#c % M=' ? @+ Iַ J  N۷ Os à۩ g@+Rplus_opp_r {GGCC G:CM C !   NC &yC zj p2lP٩? Cx =y 9  1o1 M G C  ©[< <  Z T P  ϩ\I II@ y j dI@&sin_in!"ꀠ +[Q@)exist_sin$l€ @  h5    [t.' ŷ Ʃ&  | ۰s3 ѷ ҩ2  9׷@  "ܷ$Hsin *R Aз  $_ %3v , " -  .@ N   6 ( ! H;:9 > 4 ?  @@ é`    H : 3  XKJ  M!  P F Q  R@ թr  Π  Z L E j]j  _#H12 Ȑ#H132@&sum_eqcǀ n ` Y   u g  `  z  x i g ." k$ > K p {++PbR w 1  X 'Cos_relY@'pow_sqr?A>Ctd"vf 7 2l -  V /&NtϠʐ_ Cy"  -_W/Cנ  &C @ʩ  Ω  멚M@.Rinv_r_simpl_m= CʩpCͰ_ѩvwհz~\ܰ2&n0a]   "3*{^qDB ,y   9/U"1C%   9Щ @)Rplus_0_l 6ʀ?Ԛ@%sin_0C߶@@< ZՠCB1     C@0derivable_pt_lim  X S뚠@6derivable_pt_lim_sin_0 ۀ ܩ K ٩@1Rplus_lt_0_compat-P @"R1ȀCl'r 5 3@1@-|*^ ? =)@;@74(#del 򩚠d@.continuity_sinT}R_ѩ&ȩک-#QRˠWU@AxW<J2 Cx Dvb@t@p9=%del_ciР G@'sumbool7̂K@BAAAA@@@@@Dݩ ǩܠ  d>& C6T@'Rle_dec3  MЩ. @tGhu @ѩTC =@$Rmin; 8G 3өYhs   Ķ@ֶ@ҩ!{ɷ۷ש=Ω)$fXߩ S_éǰu&wy̩jz{C  $̩& `C,{0t5ݐ$̩ *L< |DF6/# $6&  XZ  3%} r . ĩ  zȩ |ʩ  M@VI6Y10~}mga[S30oic]UC_O}H ;9:A @%cos_0tnZM@*cos_2a_sinG Ctd] PWQ7 o pˠƐ[V+TB{|נҐb}7`Mf90_gUnf |Ġ@ˠR'|iҠ. p`w (˰.p렩 ߐ(9ʩ̩ܰ?ĩשJ'L·Lݩ"nQW(5 Y[Q!aa#Qg (9*;;/o1q =s5uu Bx<j%ȩCx,J  ;z +: "#F4 2UW8 :C?/}]H N]@+Rplus_opp_l73e&U@+Rplus_assoc l-CYI233<|67  ': fVɠ >Z͠PE Ra7)@,Rle_lt_trans*GӀЩߠdM@+Rabs_triang9@y젩[YQ~٠֐h^ql  CV@/Rplus_lt_compat":Ȁ)'4+= dˠ/7UmԠ8 $٠ Eޠ$eXD @(Rabs_pos+F @)SIN_bound0ހ:Z\ -\ .Q'H[@#Rge=-kjک_5mR ÐǠY  P>@)Rcase_abs7aa&mԐf@1Ropp_le_contravar>=a$Щ(* l,' rTT r }@  ZC z{}Cr{ 5{ *U0@)Rlt_transCЩv)W-]2546f =k>AoBDtG]@1Rmult_lt_compat_l`N*L@,Rlt_le_trans9911@&Rmin_l|:CؐSACKCEi )l 0C ɠo İq Ϡuxwu CՠZY~] ܠ6RMee䠩m^cB@1Rplus_lt_compat_l ]߀s#stbC)ywb@*double_var?~C''}Ԡ A uCCҐͰJؐӰPy!쐩E9QةKIک50Šɠ}ߩĠ:LƠ`E@ՠР٠ [ՠϩsjVQ栩ᠩ꠩!4ov2fa133}1xsة${$ &.,*#ЩɠĶ:8@d Ʒ|  FD@p t+z!%r@ɠv?|E{[8c^d@ޠ԰FĠTL[ʠŐZ(@ՠАe }۠֐ke`@DgjJt @41| @":ɩw e )@.( ةr]`ސٰVө3X"P ] CCfC.,<ީ 4{Q=XDA> im"fR'P𵵩U@&Rmin_rRC ` CdکA 2!D8 5(mIq .Cyq" % * - '53CC . o @9Ropp_mult_distr_l_reverse/Mvw+J C1   Ƞ   CD 'E + ^4=66?U8Czlj^s @6derivable_pt_lim_cos_0 ̚  s.iw+uCӠZP7mc d @ @ ߠ k l @ @ 砩␩wr{ u5vD6$alp1V(  @ @ {[  @ @  Ԑ -!f"@$alp2?><\ .Qc U,+_f֩[m K dOON÷PC>r5CBB$Cw2Ϸ ж @ @ KF۠֠ߠ o ٩ ۩ة  < =  ` ~ E >.A}) IɩO#   /-Ȑ(list_hypȐ+field_lemma@3RField_field_lemma1(Mk<>>ީ@BBðD ,Field_theory@%FExprs@E٩ GީDJ穜F C,.5 7-*/ ,@8$nfe1C@&linear@@ L@%Fnormw$"$UL$nfe2@ $*,,T@/0133d@#num:u:Yk@%denum0A0CE(E @y@%PCondS<S, 8>P@&to_nat`@*9GNϩ R8T)VשY@R@#appʀw@)condition.q"sũ쩚@&FEeval>@Y e z|/,t xJ{'} Rz@j v1@=(Ȑ#res  Ȑ&res_eqY@ J(ED4.("Ȑ$res0AsY|]||~ԐȐ'res_eq0}@Ȑ$res1 ©ĩ z|Ȑ'res_eq1@ "@@-RField_lemma55vupq$lock .(lock_defn8` F?3m* 8e KD8gkmjor'MC<x ^WKP+@4@$Fapp{F ;@&Fcons2w$ ;b  wk@(sin_plusl= Ƞ|4{Π   ' xNЩ (  J 1\é 8ͩy7 %~שAK&$z(3!9W>   l![e&N1 dJEz  mЩ&@Bsu J /z{t7N#~AX'ڠ G D4@5̠> -CѠ^ ,`C֠Sb^^^S'6 SFVCX ZA   հ?:C Ӡ, e/fQLU t'tT pJ)!Ѡ̐a\e) d Z 堩upy!t _jIR퐩}J]/. ݩT94b&   gQ 蠩.Vtũ  Cʩ2<ͩd%y;!ɩ@)COS_bound9ީVvxIЩ|~OQ & ʩ VWzP *Z4t吩ܷxo| ũ z]Ck~b dCWfb9bd.\iC`©| fXکS 3 s; 6<'"+bG n2-6m UVA< O^ȩIDM$h kR`nɠĐYT?(hjҠ͐b]rp2RVXgbk  22=]Ơg uAaC k$* ^ { Tj  ? `@*Rplus_commq۩@'cos_sin ̰ؐ橷Vén:9ʩ̩ܰwCz 8NթHGة fcaZXWR,!oG?qi<suHxzR?@<1/0,+ g0.- i=4N&c@'sin_cos3돀h23 n @ ?{  !H"l1"l2@ -@(plus_fct1@"id!s-p@ >F u B@$comp!~QpdI@5derivable_pt_lim_plus;zͩ@3derivable_pt_lim_idsT@6derivable_pt_lim_const9A a4 `x@4derivable_pt_lim_sin "gʠ9 nvA<7p u}HC> ٠H" ~Qk ѩ#rpC@ +̩#^  (+f 쵷>"@àop@@렩搩{vg{kҠO A&1@@ Ր./ِ2l * ȶ@ڶ@֩% }H1+۶@@83Ƞà̠\Ʃb W9,O)qmܷlXS蠩㠩2 %~(}id43ǰh "'(C@ 9Tѐ   Aᐩj" ڐ&}@5derivable_pt_lim_compk#XECrE F@0derivable_pt_abs팀h u!CQO@,derivable_pt8\Eq \Z\!]?@4derivable_pt_lim_cos "Q݀:Cjhpn@0derivable_pt_sin6GC&@)derivable$"~@0derivable_pt_cos6wWC.;@.derive_pt_eq_0JC "C =H64ڰ`1:opO=