"`"!6_*Rtrigo_def%Reals#Coq@()Notations$Init#Coq@%Logic$Init#Coq@*Logic_Type$Init#Coq@)Datatypes$Init#Coq@&Specif$Init#Coq@%Peano$Init#Coq@"Wf$Init#Coq@'Tactics$Init#Coq@%Tauto$Init#Coq@'Prelude$Init#Coq@)Notations$Init#Coq@0&v!D]hwnv %Logic$Init#Coq@0\͉!Ig)Datatypes$Init#Coq@0.i bYN Z*Logic_Type$Init#Coq@0 1jc6&Specif$Init#Coq@0;RWMi\N'Decimal$Init#Coq@0C涳N*ua#Nat$Init#Coq@0eʤģPSR蠠%Peano$Init#Coq@0 jha|ؠ"Wf$Init#Coq@0q+W,J+'Tactics$Init#Coq@0/9m+ a%Tauto$Init#Coq@0̂"&/rk0JqTttֱ'BinNums'Numbers#Coq@0dmk(5Ju<*EqdepFacts%Logic#Coq@0FI$ͼՋ`)Eqdep_dec%Logic#Coq@0u wWIϰ߼&Basics'Program#Coq@0!bs߯? :VU$Init'Classes#Coq@0](p{yOh.'Tactics'Program#Coq@03u%+Equivalence'Classes#Coq@07;ꮹ-SetoidTactics'Classes#Coq@0S_`nOU$&Setoid'Setoids#Coq@0D9AsWE!>$Bool#Coq@0j 2cZ`FW*Equalities*Structures#Coq@0όe얟)H.Ƞ2Relation_Operators)Relations#Coq@0%s鯰s4Operators_Properties)Relations#Coq@0U3y#h&)Relations#Coq@0r砠*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ&NZSqrt&NatInt'Numbers#Coq@0` .%m%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|&NZBits&NatInt'Numbers#Coq@0MlIpKt'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$&NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ)NMulOrder(Abstract'Natural'Numbers#Coq@04> Aat/ j $NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ'NMaxMin(Abstract'Natural'Numbers#Coq@0]v|Qg̟ʠ'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NLog(Abstract'Natural'Numbers#Coq@0KI'BinList+setoid_ring#Coq@0Au,Ring_polynom+setoid_ring#Coq@0gaKw9`UW+ListTactics%Lists#Coq@0,Jcy{+InitialRing+setoid_ring#Coq@0k/T=cN(Ring_tac+setoid_ring#Coq@0x2]%762f)Ring_base+setoid_ring#Coq@0fbU(2cNe$Ring+setoid_ring#Coq@0Msᬠ)ArithRing+setoid_ring#Coq@0ṔCgt?}%Arith#Coq@0I|кX*o4#Max%Arith#Coq@04=;3$>aU堠#Min%Arith#Coq@0Ce-Fѕ(PreOmega%omega#Coq@0\|چBb~w4%Omega%omega#Coq@0t.J'6\ϨrK(Zpow_def&ZArith#Coq@0f蓜DX;V*ZArithRing+setoid_ring#Coq@0{#'[{nm!/,Zcomplements&ZArith#Coq@0ʾq %RIneq%Reals#Coq@0JUڻIu)$w&DiscrR%Reals#Coq@0z41pV.%Rbase%Reals#Coq@0Jܡ\ c6{%R_Ifp%Reals#Coq@0c4+ZŠ,Fourier_util'fourier#Coq@0ϳ> 4`*r0'Fourier'fourier#Coq@0wV9TN*Rbasic_fun%Reals#Coq@0hܒiclE>%R_sqr%Reals#Coq@0X%MԹ%M+SplitAbsolu%Reals#Coq@0M)&qYlݹ5*SplitRmult%Reals#Coq@0sD\rt/$Even%Arith#Coq@0YO%q}d߫%$Div2%Arith#Coq@0n*Áht!,)ArithProp%Reals#Coq@0B+L?>*e˃a j*Rfunctions%Reals#Coq@0d¹d‹@'Compare%Arith#Coq@0OM v먣5L:'Rseries%Reals#Coq@08]$u+?'SeqProp%Reals#Coq@0Lt2|9D }SSԻ)Rcomplete%Reals#Coq@0{ڸ4q 'PartSum%Reals#Coq@0j&2"(>S)AltSeries%Reals#Coq@0d US^(Binomial%Reals#Coq@0]JrHr#E&Rsigma%Reals#Coq@0䟄WCJҦ<%Rprod%Reals#Coq@0gȀn_}!W+Cauchy_prod%Reals#Coq@0K*ߞ4q(Alembert%Reals#Coq@0I͗Huz&)SeqSeries%Reals#Coq@0Npc$5|T ٠*Rtrigo_fun%Reals#Coq@0T+ɧK/{w:K{ g_Р*Rtrigo_def%Reals#Coq@A&exp_in @!x,Rdefinitions@@!RӀ!l *Rfunctions@,infinite_sum(䀠!i)Datatypes$Init@#nat@&@%Rmult׀-@$Rinv8'Raxioms4@#INRr)Factorial%Arith?@$fact>【A(Rpow_defK@#pow#׀C  @X,Rdefinitions%Reals#Coq@@!RӀYA +k() +7%'7! 7 7 7 7%'ࠒbt5d+TSO|Kp@@@@@AA@@>@,Field_theory+setoid_ring#Coq@@&FEeval>@@A@A"s @,Ring_polynom+setoid_ring#Coq@@&PEeval"s @@A@BA@A@-exp_cof_no_R0 @@@!n)Datatypes$Init#Coq@@#nat@%Logic$Init#Coq@@#notШ@"eq @,Rdefinitions%Reals#Coq@@vӀ   @@8%Reals#Coq@@#INRr%Arith#Coq@@$fact>【A@@#IZR/r'BinNums'Numbers"@@!Z7@A@@@@@)exist_exp @" !H&Specif @#sig#* @0&1$C@8.9'Rseries:@$Pser*B G=HaH@W8Հ(AlembertQ@+Alembert_C3΀@ C*Rtrigo_fun^@,Alembert_exp@i&Specif$Init#Coq@@#sig#* @"q@8ՀBA +k67 +7#'7 7 7$'ࠒNX>x8\hpdd=T@@@@@#exp @@)proj1_sigYhnij@$Z#o@bd p+k7 + 77&'7%'{\ǐtX$|@@@@@N%pow_i @@A›1@%Peano$Init#Coq@@"lt UxcӠҠ@@@AA2,Rdefinitions%Reals#Coq@@!RӀ%Reals#Coq@@#׀A֩A@@@@@*exist_exp0 @A0&1頩4@2/r10:@.7@A B@(positive*@C#epsU3W@#Rgt=<*%LogicE@"ex @AO!NR9S@%PeanoT@"ge Uw/4y@#Rlt=r@&R_disty@(sum_f_R0YcvtidF_MOEyAb|"H0+R Ȑ"H1@'nat_indJзrI@"eq @m)B  T@(eq_ind_r!2#x!r}xȐ(hyp_list@$list]@A@$prodt@,Ring_polynom+setoid_ring@%PExprk@Ȑ'fv_list&%RIneq@2RField_ring_lemma1!7𚠐(Ring_tac @0ring_subst_niter!+C"0G'  @$Truey@AkA@$boolZ'@A@x Ȑ#lmpN@.mk_monpol_list(I皠&BinInt&ZArith-!@#add1P&)BinIntDef'@ ̀@#mul1P] @ @#sub1P@ p@#opp1P@ {%Zbool!@(Zeq_bool0߀*@'quotrem\$@/ŀw@#Monf@@#Polj@@#Peqj*(@*norm_subst7:d0C8QA;5/'3}0E:SC=71)5zbR>@&Rinv_1 ;9ۀCްEVp%Hrecn xBQ@%Rplus+1L{vqiV`ymfP@&eq_ind Jtw"r3D|㩜BЩ#Nat@ ` @ #멜E D B@Z$0&Ca ȩslnɐ(PeanoNat=@&le_0_l?pCu'PartSum@%tech5gw(n)lFnlLIGED<;_F/.'@$[0]HG0_J%CD@&Rminus&HLMՠ*Rbasic_funP@$Rabs; wG[(\ͩ-@'Rabs_R00"CC[(C"9*@hE/ + 77 :k() +L:'() +q + +7 +7! GGL77LL7777 77 7! 6L7 7 +L7 77+L7 77+77 77#'() +7! 9 +7! U7   +7! 4GL77LLL7 7!:7 7!7 7!7 7 :77+77 77 +9L7 7!97 7 7 7! +7!7!77# 'L7 7! 7 7 7 7%'L7 7! 7 7 7 7%'L7 7! 7 7 7 7%'9L7 7!97 7 7 7! 7!77 77&'77 77&'L7 7! 7 7 7 7%'677 7 GL77LL77 +77 77#'67 7!77 77&'+ L 7!T' +7!77 77&'L7 7! 7 7 7 7%'L7 7! 7 7 7 7%' 7%' 7 7%'77 7!7%'|alpԠG( 4D@lDx  AA@dK$ $4((s$ X8hdEAA@AA@\( h(( L<,\Xư|sT"H$ @ PL ̰tM   xDAA@AA@CAA@EB@EA@BB@XlJ0} ؠA@8 |(T@,P bpDd  0\(xH4X@@@@@%exp_0 @@/BW @3@@@@@$cosh @201@$Rdiv̀=@$Ropp΀J@I񀚠󀐐 t+k67 7 7 7 7!7%'ࠒl%`8HxĐTAB@T3\@@@@@蠠$sinh @vtD3?5@z"$1ࠒFlU`ETkHxAB@Tc\@@@@@$tanh @t^@=Bcc@Qgh@[] H+k7 7 7%'Xth@@@@@D&cosh_0 @@C ө(u@@@@@S&sinh_0 @@D<@@@@@b%cos_n @ԩCŐnpp@[Z |+k77!7 7 77 7!7%' ѐlAA@Xϐ\hB@HxJ`P@@@@@+simpl_cos_n @@KEwg@Ӏl@̀[@gtBA A@΀#Nat$Init#Coq@@#mul @BBA@#add `%BAB @@@@@-archimed_cor1 @@FUR@@#Rlt=~A@"ex @Y@#andЖw@ G@@@@@X,Alembert_cos @@G'Rseries%Reals#Coq@@%Un_cvɀةĠ@tlː@@@@@}*cosn_no_R0 @@Ha`UKʀA@@@@@&cos_in @*()1@1ـ(݀ϐ +k() +7%'7! 7 7%'/tTpOd@@@@@Ǡ)exist_cos @@eIU쀠Ro@ABA@@@@@堠#cos @sqKBBB@@@@@!sW~t7@b@$Rsqr=MWBC@C$V J!a@S@BD +k7 7 = R '>''+k6'd$X>ABABH@@@@@1%sin_n @ϩ@r +k6 77!7!7 7 77 7!7%'(@tAA@`p|B@\LhA@TĐd@@@@@y+simpl_sin_n @@J]\C̩Ȁ!@^퀐nBA AƀMGĀ̀B>BABBRBA@@@@@נ,Alembert_sin @@uK3M9#@u)>@@@@@)sin_no_R0 @@LԛӀȀwAW@@@@@&sin_in @z1WX@LPBstgTpLd@@@@@9)exist_sin @ũʷ˩C@ӷԩjط٩@I!"u@o,3@e'@욠 @e!"ꀠBA H+k67 77#'p"T)\h@@@@@#sin @     F @f$l€ '@  @ -Հ׀ +k7 7 = R'> 7%''+k6'Р l :dXADH@@@@@Š'cos_sym @@ cM S i@㹀AA@@@@@砠+sin_antisym @@ N u L @kҀ%A*A@@@@@ %sin_0 @@ OӀ T@ҀBn@@@@@ *exist_cos0 @   /}m_ ]V L  @J@;6   1}0/ ,*&з 1/P{7  ԩ\   +  ' j'4 7 2 ué< 7 z /]x @+Rplus_opp_r {G~Cp!@)Rmult_1_r+1 )ǩ+C̠ 젩Cǐՠ   1CҐࠩi bw ,r ܩ <y 4RHxvVSp =G|ZRQI HQ70@-" d 0f Q Y,C J L MՠϠ I ZԠ ]{ SCөΠ 4z@)Rplus_0_rH€ I3 'ʩUD / *CC h5C @  % t"Q ; H+ 77 :k() +L:'() +++7#'() +7! 9 +7! #GL77LLL7 7!:97 :779L7 7!97 7! 8 +7!7 L7  +7!7! 7  + +7!77 +L7 77+9L7 7!97 7! +7!7!77# 'L7 7! 7 7%'L7 7! 7 7%'L7 7! 7 7%'L7 7! 7 7%'77 7!7 7%'L7 7! 7 7%'77  +7!7!7!7 7%'L7 7! 7 7%'77 7!7 7%'L7 7! 7 7%'677 7 67 77 7!7 77 77 77 7!7! i67 7 77 77 7! B67 7 77 7 77 7! 6L7 7 +QL7 77+KL7 77+H77 77+L77 77 7!77+H77 77#' 7%' 7 7%'77 7!7 7%'77 7!7 7%'77 77 77 7!7!7!7 7%' + L 7!T'77  +7!7!7 7%'L7 7! 7 7%'lm蠒 h(ࠒ I, X|4Xh qD 4 ,  <4tP|     < Ԡ`H(>4 |k  8  `hhtH, ((hDp   D ܠǐH$  P  x , ,EB@EA@BB@8Ɛ)|A@l      H  x d (T4|hT(P@P$  D  l t y        P   l 0\<p\0X Lp(LD\X@@@@@ l%cos_0 @@ P 2  @㹀@@@@@ @@@ ӳ2@ ӳ2[)Datatypes$Init#Coq@@A@ Գq@ Գq\ @A@AB@cA   ~@A.0TQ+Ring_theory+setoid_ring#Coq@@ABA.U>[J @B@@"O@(PeanoNat%Arith#Coq@#Nat@&of_int"O#Nat$Init#Coq@@ 6@A@A\@&BinInt&ZArith#Coq@!Z@'quotrem\)BinIntDef&ZArith#Coq@!Z@ /@A@\@@+pred_double\@/S@@A@As2@3@&shiftls2*@vY@A@BCs8@8@&shiftrs8/@vY@A@ѓ@>@&squareѓ5@y@A@@D@&to_intϑ;@@A@z@5@&doublez,@/!@A@ABCD/@O@)log2_iter/F@wd@A@NH/@B@&moduloNH/9@1,@A@A\d@G@&of_int\d>@1?A @A@bz@M@&of_natbzD@1?G!@A@#@S@&shiftl#J@1dV@A@#@Y@&shiftr#P@1d\@A@ABCD/x@&BinPos&PArith#Coq@#Pos@)pred_mask/x)BinPosDef&PArith#Coq@#Pos@ )X@A@6@x@&square6o@19@A@AV+L@}@&to_intV+Lt@2@A@V1b@@&to_natV1bz@2 @A@V5=@@&to_posV5=@2@A@ABCl@@)sqrt_iterl@!$:@A@@@6@(sub_mask@-@)@A@ADEF c@@'testbit c@!ć@A@7 B@D@'of_uint7 B;@*`]?@A@AG@I@)mask_rectG@@+ED@A@F˱@O@)add_carryF˱F@+p@A@AB^Ҷ@@'to_uint^Ҷ@#m@A@gL7@@'sqrtremgL7@40@A@Aq@@'testbitq@5)@A@ݎO@@+succ_doubleݎO@6r@A@A p@l@0double_pred_mask pc@0-+m@A@BCD T@&BinNat&NArith#Coq@!N@!t T)BinNatDef&NArith#Coq@!N@ 2@A@ @@#add @3 @A@A l@@#div l@3@A@ Y@%@#eqb Y@3@A@AB #@*@#gcd #!@3n@A@ T@0@#leb T'@3@A@ACEG "@5@#lor ",@3m@A@ q@?@#ltb q6@3@A@A @D@#max ;@3@A@ @J@#min A@3`@A@AB @O@#mul F@3B@A@ ~@U@#odd ~L@3@A@AC =@Z@#one =Q@3@A@ @b@#pow ˑY@3@A@A c@g@#sub c^@3@A@ @m@#two d@3J@A@AB hx@r@$div2 hxi@>@A@ @x@$even o@>4@A@ACD @}@$ggcd Бt@>U@A@ @@$iter }@>:@A@A 3"@@$land 3"@>m@A@ F)@@$log2 F)@>t@A@AB S@@$lxor S@>@A@ @@$pred @?U@A@AC @@$size ܑ@?'@A@ !@@$sqrt !@?@A@A ! @@$succ ! @?\@A@ !7@@$zero !7@@P@A@ *@@%ldiff *@@A@AB g_@1@+pred_double g_(@25\@A@CD m@6@÷ m-@2j@A@S@=@&of_intS㫑4@4}5@A@AS@B@&of_natS9@4};@A@BEFGH\R@G@(mask_ind\R>@4@A@\^@Q@(mask_rec\^H@4@A@A!,@V@&pred_N!,M@4s)@A@B@[@&shiftlR@5X@A@@b@&shiftrY@5X@A@A&@g@&square&ّ^@5,x@A@BC"@l@&to_int"c@5L@A@"@t@&to_nat"k@5L @A@AnTq@y@+testbit_natnTqp@6n@A@B@@(succ_posB@@A@I@@'abs_natI@?n@A@AB.@@'of_uint.@MS@A@3~@@'sqrtrem3~@7]%{@A@ACD,@ @'bitwise,@/v@A@>4'@@'testbit>4'@8g$@A@A{U@@,sqrtrem_step{U@8R@A@u^@9@(div_euclu^0@ @A@Afz@@'to_uintfz@9w@A@Bl@'@'comparel@3R@A@CDEFs8@,@+of_uint_accs8#@5+@A@}@R@,pos_div_eucl}I@&`@A@3x@(@'compare3x@]=@A@A@^@&doubleU@'޺_@A@BCq@@+of_succ_natq@$@A@w@i@&modulowɑ`@)1@A@ADK@n@&of_intKe@)j,I@A@K@v@&of_natKm@)j2_@A@AI@{@&shiftlIr@*O@A@O@@&shiftrOx@*O@A@AB,@@&square,}@*ow@A@Z@@&to_intZ@*81@A@ACE`@@&to_nat`@*9G@A@e@@+testbit_nateđ@+@A@A+{@@'sqrtrem+{ё@,J@A@5z@@'testbit5z@-T|@A@A @@'to_uint ͑@.@A@ @@+succ_double @.^4@A@A#@'@'compare#ݑ@ )Q@A@BCD%t2@,@(size_nat%t2#@ @A@%9@3@+of_uint_acc%9*@ ΋@A@A%V@8@+double_mask%V/@ S@A@%%@>@'div2_up%%5@ "@A@ABEF'ş@C@'Ndouble'ş:@ @A@(b0@K@*shiftl_nat(b0B@9-@A@A(nՖ@P@*shiftr_nat(nՖG@'@A@(@V@0succ_double_mask(M@@A@*W$@\@,compare_cont*W$S@!@A@.0@b@.sub_mask_carry.0Y@΂@A@ABCD.@@!t.@ ;@A@.먩@@#add.먩@ `@A@A.U@@#div.U@ @A@.B@@#eqb.B@ @A@A. @@#gcd. @ @A@.=@@#leb.=@ @A@ABCEGHI. @@#lor. @ @A@.Z@ @#ltb.Z@ @A@A.p@@#max.p@ '@A@B.@@#min. @ @A@.@@#mul.@ @A@AC.g@@#odd.g@ @A@.&@&@#one.&@ @A@A.뾴@+@#pow.뾴"@ k@A@.L@1@#sub.L(@ @A@.@7@#two..@ @A@ABCD.,a@<@$div2.,a3@ @A@.Xz@D@$even.Xz;@ ?1@A@A.@I@$iter.ؑ@@ @A@B. @N@$land. E@ @A@. @T@$log2. K@ @A@ACE.@Y@$lxor.P@ R@A@.y@`@$pred.yW@ `<@A@A.Ʉ@e@$sqrt.Ʉ\@ ;@A@.@l@$succ.c@ @A@.t @r@$zero.t i@ Z@A@AB/@w@.to_little_uint/n@ @A@CDF/@|@%ldiff/s@ H@A@00@@'compare00@?H{@A@A1P%@w@!t1P%n@  @A@B1P@|@#abs1Ps@ @A@1P&@@#add1P&z@ @A@A1P@@#div1Pґ@ y@A@BC1P@@#eqb1P@ f@A@1P@@#gcd1P@ 0@A@A1P@@#geb1P@ T@A@B1P@@#gtb1Pʑ@ q@A@1Pĺ@@#leb1Pĺ@ a@A@A1Pň@@#lor1Pň@ /@A@BCD1P@@#ltb1Pב@ ~@A@1P@@#max1P@ @A@A1P{@@#min1P{@ "@A@B1P]@@#mul1P]@ @A@1P@@#odd1P@ @A@A1Pɣ@@#one1Pɣ@ J@A@BC1P@@#opp1Pԑ@ {@A@1P1@@#pow1P1@ @A@A1P;@@#rem1P;@ @A@B1P@@#sgn1Pˑ@ r@A@1P@@#sub1Pɑ@ p@A@A1Pe@@#two1Pe@  @A@BCDE1[8@@$div21[8ޑ@ @A@1[d@@$even1[d@ I@A@A1[6@@$ggcd1[6@ i@A@B1[U@ @$iter1[U@ @A@1\@@$land1\@ /@A@A1\@@$log21\ @ 6@A@BC1\$@@$lxor1\$@ @A@1\Y@$@$of_N1\YÑ@ >j@A@A1\@)@$pred1\ @ j@A@B1\@.@$quot1\֑%@ }@A@1\@5@$sqrt1\,@ @A@A1\w@:@$succ1\w1@ @A@BC1\k@?@$to_N1\k6@ @A@1]@G@$zero1]>@ eD@A@A2:@L@%abs_N2:C@ @A@21@R@%ldiff21I@ ߵ@A@2=*@X@%quot22=*O@ @A@ABC2kF@@(size_nat2kF@{@A@3@x@(tail_add3o@^q@A@ADEFGH3@}@(tail_mul3t@^@A@5Z@@*shiftl_nat5Z@y/@A@5f}@@*shiftr_nat5f}@4@A@AB5a@@'iter_op5a@ @A@C6w~@@'of_uint6w~@^5@A@8j@@'of_uint8j@'"h@A@9E@@(div_eucl9Eđ@(*k@A@AB:x@6@,Nsucc_double:x-@ ʭ@A@CD@[@&divmod>R@C@A@>@b@&double>Y@NĴ@A@?2@S@,pos_div_eucl?2J@-u@A@AB?;@m@&modulo?;d@"i@A@CEFGIJ@(Alembert%Reals#Coq@0I͗Huz&)AltSeries%Reals#Coq@0d US^%Arith#Coq@0I|кX*o4)ArithProp%Reals#Coq@0B+L?>*e˃a j)ArithRing+setoid_ring#Coq@0ṔCgt?}*Arith_base%Arith#Coq@0Ĕ}CS&Basics'Program#Coq@0!bs߯? :VU'Between%Arith#Coq@06v*0ur`C0&BinInt&ZArith#Coq@0BpHޞun^)BinIntDef&ZArith#Coq@0ådR4Tuy'BinList+setoid_ring#Coq@0Au&BinNat&NArith#Coq@0K11ڤs+Π)BinNatDef&NArith#Coq@03@1O,[{ 'BinNums'Numbers#Coq@0dmk(5Ju<&BinPos&PArith#Coq@0vyػ0= u)BinPosDef&PArith#Coq@0}H d.%,b(Binomial%Reals#Coq@0]JrHr#E$Bool#Coq@0j 2cZ`FW*CMorphisms'Classes#Coq@0qیZBeϠ0CRelationClasses'Classes#Coq@0TL;0RUfw1+Cauchy_prod%Reals#Coq@0K*ߞ4q'Compare%Arith#Coq@0OM v먣5L:+Compare_dec%Arith#Coq@0jXF 8jih@0.i bYN Z)Decidable%Logic#Coq@0ND걸풬/Oߠ'Decimal$Init#Coq@0C涳N*ua&DiscrR%Reals#Coq@0z41pV.$Div2%Arith#Coq@0n*Áht!,%EqNat%Arith#Coq@0AIgՋXRV *EqdepFacts%Logic#Coq@0FI$ͼՋ`)Eqdep_dec%Logic#Coq@0u wWIϰ߼*Equalities*Structures#Coq@0όe얟)H.Ƞ+Equivalence'Classes#Coq@07;ꮹ$Even%Arith#Coq@0YO%q}d߫%)Factorial%Arith#Coq@0@oehJd%Field+setoid_ring#Coq@0J _ȫ)Field_tac+setoid_ring#Coq@0d vDZl^۹Ha0B~uYٮ٠'Fourier'fourier#Coq@0wV9TN,Fourier_util'fourier#Coq@0ϳ> 4`*r0-GenericMinMax*Structures#Coq@0måj$"Gt%Arith#Coq@0䙛#c:D $Init'Classes#Coq@0](p{yOh.+InitialRing+setoid_ring#Coq@0k/T=cN"Le%Arith#Coq@0d}Omq+$List%Lists#Coq@0>I+ListTactics%Lists#Coq@0,Jcy{0\͉!Ig*Logic_Type$Init#Coq@0 1jc6"Lt%Arith#Coq@0KZ-eJkP܏#Max%Arith#Coq@04=;3$>aU堠#Min%Arith#Coq@0Ce-Fѕ%Minus%Arith#Coq@0LFtR")Morphisms'Classes#Coq@0Imӽ%\$PD.Morphisms_Prop'Classes#Coq@0% :B'.>u%$Mult%Arith#Coq@0햖Qyb0$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI%NBits(Abstract'Natural'Numbers#Coq@0qteo_hɅ $NDiv(Abstract'Natural'Numbers#Coq@0bz$?[p(5$NGcd(Abstract'Natural'Numbers#Coq@08E-S ;j_Ҡ$NLcm(Abstract'Natural'Numbers#Coq@0 ~xZ9L{:$NLog(Abstract'Natural'Numbers#Coq@0K Aat/ j &NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf+NProperties(Abstract'Natural'Numbers#Coq@0unt"kwpYC%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ%NZAdd&NatInt'Numbers#Coq@00h`ZK4*NZAddOrder&NatInt'Numbers#Coq@0e~1>r砠(NZAxioms&NatInt'Numbers#Coq@0] ρ5r&NZBase&NatInt'Numbers#Coq@0^&8yUL&NZBits&NatInt'Numbers#Coq@0MlIpKt%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZMul&NatInt'Numbers#Coq@0ctR~6[Ƞ*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R'NZOrder&NatInt'Numbers#Coq@0 q;Ve7R W,(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x&NZSqrt&NatInt'Numbers#Coq@0` .%m#Nat$Init#Coq@0eʤģPSR蠠$Nnat&NArith#Coq@0$W;s #%M)Notations$Init#Coq@0&v!D]hwnv *NumPrelude'Numbers#Coq@05WUVŦ]xVXԠ%Omega%omega#Coq@0t.J'6\ϨrK+OmegaLemmas%omega#Coq@0TJ#Jes4Operators_Properties)Relations#Coq@0U3y#h&&Orders*Structures#Coq@0$Znl0\͗+OrdersFacts*Structures#Coq@05Mܿ獐ζΖLB)OrdersTac*Structures#Coq@05'4Ԗ+9%'PartSum%Reals#Coq@0j&2"(>S0 jha|ؠ(PeanoNat%Arith#Coq@0O~2$k[#lZ)Peano_dec%Arith#Coq@0Kݢ*k$Plus%Arith#Coq@04tmG$Pnat&PArith#Coq@0,?pr.gZ(PreOmega%omega#Coq@0\|چBb~w4'Prelude$Init#Coq@0JqTttֱ%Quote%quote#Coq@0J@ŹVz-,3%%RIneq%Reals#Coq@0JUڻIu)$w%R_Ifp%Reals#Coq@0c4+ZŠ%R_sqr%Reals#Coq@0X%MԹ%M'Raxioms%Reals#Coq@0S]jnj][L%Rbase%Reals#Coq@0Jܡ\ c6{*Rbasic_fun%Reals#Coq@0hܒiclE>)Rcomplete%Reals#Coq@0{ڸ4q 0(2{Ze$ќ8)RealField+setoid_ring#Coq@0 >ʾq /RelationClasses'Classes#Coq@0Gz rA6ՠ4Relation_Definitions)Relations#Coq@0]4Ѐd{n^2Relation_Operators)Relations#Coq@0%s鯰s)Relations#Coq@0-SetoidTactics'Classes#Coq@0S_`nOU$10;RWMi\N+SplitAbsolu%Reals#Coq@0M)&qYlݹ5*SplitRmult%Reals#Coq@0sD\rt/'Sumbool$Bool#Coq@0sB ,$11.]m'Tactics$Init#Coq@0/9m+ a'Tactics'Program#Coq@032 Q@@@@"_7 @A@@@@@@@@"_82M접 @"_9'`o@B'R_scope@MP@ 2 Q@@A@#_10@ C@A@@@@+@#_112M접 #_12'`o@A)nat_scope@"@2 Q@@A@#_13@$Z#@A@@@@P@#_142M접 'Raxioms%Reals#Coq@@-total_order_T=ҖX#_15'`o@AY@@\2 Q@@@@#_16@g3.}@#_172M접 -#_18'`o@Az@@K2 Q@@A@#_196@VT(@A@@@@@#_202M접 #_21'`o@Bt@@d@!2 Q@@A@#_22^@,  @A@@@@@#_232M접 @#_24'`o@@@@M2 Q@@A@#_25{@X[x@A@@@@@#_262M접 #_27'`o@@@@Y2 Q@@@@#_28@dQg@#_292M접 @qנ#_30'`o@A@M@:2 Q@@@@#_31@EBD'@#_322M접 %#_33'`o@A$@n@+2 Q@@@@#_34@6eH@#_352M접 F#_36'`o@AE@@ 2 Q@@A@#_37@+@A@@@@j@#_382M접 #_39'`o@@@@02 Q@@A@#_40 @;!.@A@@@@@#_412M접 #_42'`o@@@@@2 Q@@@@#_43@#_442M접 #_45'`o@Ay@@2 Q@@A@#_46_@ 5(@A@@@@@#_472M접 #_48'`o@A@@ʠ2 Q@@A@#_49@$^'@A@@@@@#_502M접 #_51'`o@B@@6@2 Q@@A@#_52@O@A@@@@@#_532M접 #_54'`o@@@@2 Q@@A@#_55@6@A@@@@3@#_562M접 #_57'`o@A@)@2 Q@@@@#_58#U@#_592M접 S#_60'`o@BRT@@2 Q@@A@#_61@$V@A@@@@|@#_622M접 #_63'`o@A{@@2 Q@@@@#_64#@#_652M접 "#_66'`o@A@@2 Q@@@@#_676C@#_682M접 #_69'`o@A@@a2 Q@@A@#_70w@l5i@A@@@@@#_712M접 #_72'`o@A@@'2 Q@@A@#_73@2e'@A@@@@@#_742M접 #_75'`o@@@@-2 Q@@A@#_76@8,3@A@@@@#@#_772M접 #_78'`o@A@@22 Q@@@@#_79#E@#_802M접 C#_81'`o@BBD@@-2 Q@@A@#_82@8$l@A@@@@l@#_832M접 #_84'`o@Ai@@2 Q@@@@#_85!@#_862M접 <#_87'`o@A@@2 Q@@A@#_88E@6Q@A@@@@@#_892M접 #_90'`o@A@@2 Q@@A@#_91i@@A@@@@@#_922M접 #_93'`o@A@@2 Q@@A@#_94@@A@@@@@#_952M접 #_96'`o@@@@2 Q@@A@#_97@ @A@@@@@#_982M접 @#_99'`o@@@@2 Q@@A@$_100@tn@A@@@@2@$_1012M접 $_102'`o@@@@@@$xR`VcxIaƶ"xG@q|3X 6$z~?p@@G 8fGzT@ę@tJS5/.„U|;F:D!n)Datatypes$Init#Coq@@#nat@%RIneq%Reals @1Rinv_neq_0_compat1j'Raxioms @#INRr)Factorial%Arith#@$fact>【A*Rfunctions#@.INR_fact_neq_0, !i>!H%PeanoA@"lt UxcLA@+pow_ne_zerogB"H0%Logic[@"eq @e' @&eq_ind JmC3o.$@.&&@)False_induُ@%Falsee@(PeanoNat\#Nat@)lt_irrefl>jS?C.@#notШ6T&Specif@)proj2_sigV,Rdefinitions@!RӀ!l *Rtrigo_def@&exp_in8Հ@#IZR/r'BinNums'Numbers@!Z7@A@)exist_exp$Z#$&@#exp3 C;3/@*exist_exp0  5--)B-@(positive*@C@,infinite_sum(䀠\@%Rmult׀c@$Rinv8(Rpow_def@#pow#׀^0 D'PartSum@.uniqueness_sum"ڶ?%N=C@@@RİRA򐑵@(eq_ind_r!2#x!rӰ@$Rdiv̀@%Rplus+1oo_]Bag#i  ps(&vA{b] Q@*Rinv_r_sym9lU䀠'X@'IZR_neq%,/2 5!e@@AA@AA@@@@@@D!zAV@.@$Truey@@ Ad"fC )C=je_Ϛ@%exp_0[x@$Ropp΀ݚ@&Ropp_0 GU`CS@$coshQg֐a #@&Rminus&H*+n- 34w6۠y#@)Rmult_0_l+€<@+Rplus_opp_r {GCK+O9NICCPE@$sinhB(AȐ(hyp_list@$list]@A@$prodt@,Ring_polynom+setoid_ring@%PExprk@`@!N7@#Ȑ'fv_list*B+֩/- )ArithRing @0natr_ring_lemma1 ,M𚠐(Ring_tac)@0ring_subst_niter!멜4E+9D0d>C5&BinNat&NArithP;@&of_natK)BinNatDefA@)j2_cB&N#صk@$boolZ'@A@ Ȑ#lmpk@.mk_monpol_list(fgAkB7@#add 1@3 =@#mul 7@3B !x|gF@#eqb Y@@3L@(div_euclu^F@ M@#Monf@@#Polj@@#Peqj*&@*norm_subst7:d0C@<6<0-'0EB>8>2/)_TCkǩG@C `nn jҩ sթ{:ՠ+'Cʐ @[ ِѐ V㐩9 g +-npޠ.*P+w8 !,'")+ IEݷٰ=?AK3<,$J LGX/ PNGA0.,d.02h^<P@2RField_ring_lemma1!7,5XG *,1.A4 9;pI74!# %#@2#(!&BinInt&ZArith@1P&)BinIntDef@ ̀@1P] @ @#sub1P@ p@#opp1P@ {%Zbool@(Zeq_bool0߀(@'quotrem\#@/ŀjUwX 0Z9*%f0\;,'!I[r1֠ؠڠܠא ֩栩 ~IRT©Oܐ4D7g%hjީ&|޷}$& /Fʰ.0931  03ݩK԰ ְ"@(0* 0, CH琩V6M쐩:SQ[]X>6tpEaI}7 EjIpnөxzu]I Րzb (_7q-vd<p~LqBuL,Z~ O6^>$!d#ȠʠmM)Πɐ#ː0s2נ٠۠֐$`q<㠩&̷CEkG-"շLNuQ((߷VX$\]_!+j?ɵ ϰǩѰ@ub]0 _0 Cð!!$"Ȱ,I.)]/KemOKFةC$ސ۩(MjOJ2P81^Y[22g><>   09^Hߵ@ĩ0?H0 AJz@n@/Rinv_mult_distrEAu@)not_0_INR#rTJL1NB6(C@@A@A@@@@Dj"@ Pl#C_}{kxvumvP=@L=20:CQ,GGN{)Z@4 {` qeW^ڠ֐G44yL1C; d@(mult_INR>Oؠ 󩚠@)Rmult_1_r+1驚@*Rinv_l_sym9`g~ͩ@+Rmult_assoc&  1$ש@*Rmult_comm87wMr|mmjCt l^n`ʩ ~~{C@ 'Rmult_integral_contrapositive_currified #}L2Q@*fact_simpl;tL +,IGTKCΰ24<&6Q@)Rmult_1_l9K٠I @+pow_nonzerocө۰cgjCÐ VX `#*E@/Rinv_involutiveCa-)+[dX4Z6' "U C ȩ68e:e?ɐnVEoG@'pow_add2)+QC&S@%cos_nt_]鐩vƩΠ6#eps^@#Rlt=LM@(archimed ŀ.S@#andЖw@@#Rgt=< "@"upʠ(@#Rle= q@'and_ind14ۀЩ#ڐn A "H1"H2")8.SF6@&le_IZR̀C@"or @AhUlW@)Rlt_transC^"&@0Rinv_0_lt_compatD詚@"le1P,e2? id%C@#IZN=D{p1@"ex @:!m=ϩB@bz@1?G!@&ex_ind 5{PQVH&Z=\ a"H33AijϠJ.@#max.p@ 'Aޠ~fIA9Ȑ"H4~ש ِJ~99+#Ր &,mclnb̩ g=L@,Rle_lt_trans*GӀЩ {АK@.Rmult_le_reg_l΀  a,-ԠҐ!h|x3!%@,Rlt_le_trans92(<~IK$OBQ*©@&le_INR逰L#Max@(le_max_l2EY@+INR_IZR_INZ#]K\KmbnG<Ct8k,x[aq2~<X&RMf;>*hERjL=Ұ|"H5ڰ6Ȑ"H6A@(le_max_r2Kg@) UxT@oȐ"H7@)lt_0_succ5% Ȑ"H8@+lt_le_trans ŵ0dig&8 9Cސ5hXésvyER(Nͩ t@*Rlt_irreflnQC$ѷff@1Rinv_lt_contravark!ਗ਼@1Rmult_lt_0_compat=7vN@8): WA"^ZxQ  =;C1Chu_Qw+(q!@-archimed_cor1$^'{ҷxө&8cjٷک-?j@@"ge UwM@&R_dist*Rbasic_fun@$Rabs; wΠ{}Pʷo #*    @&l  )*to02.2-oʵs591 MOK_9 H,  "T6%7'T 57 7߷(2_Z \  Q@.Rmult_lt_reg_l>e  X@(lt_0_INR S  vtPMK s HFEC  u  w` z x  z-OB K  |Pf  989L S Z X pUh?c a @<_INR%耰6~6{x+onf o Il:l:8@ G8-+d0(%!! p y 7C N |C22 F f   nP "Lt @<_n_S` pqr ĠpߩeǠshcuAe m  ~E d <<   T9C C1wp5ՐMRSyݩ*@*le_lt_n_Sm u^CC    i   "Le @&le_n_S8%Rprod @'le_n_2n% ҩ  ĠD֩x ۩m Щ  LT  h ~ RЩ r  ߩ   ѩà31   0C ְ 2s  4ӐOKҩr  o   B *Gĩ©۩   S n  X S ;okJ * L@4Rmult_gt_0_lt_compat8F ߀  a I}yy V69sqMJH pECC  r>  t+b F g@'Rlt_0_14C  KJ M M |11/b_VC )   =֩?) 1 C B  ( A  E a C  c}{L@*Rabs_right |T @&Rle_ge @ H   K  DJ>y  \qsQmjZ\Z{{\xuege- ;c@ rcXV-;0SPLFL@=7 "0URNHNB?9  dC { ש"     { . ~ ~'   @)Rabs_Ropp&#@,Rabs_Rabsolué ɠ O @)Rplus_0_rH€ e _Cj L ICo"L g@+simpl_cos_n5( C'Rseries @%Un_cvɀ " - p ' %N *HP  L JC  ذ [ C  ܰ     @#sig#* @    W L J R© F    C@   =@$Pser  *    @&cos_in(Alembert V@+Alembert_C3΀ > @*cosn_no_R06‚ @,Alembert_cosO | z =   ~   %  R T l d Z r j 퐩  z t  o  @  m o q  ݠ E   Š        i   a  Š Ǡ #   (  ) l + Р $  |   2ߩ  4  6  8J{yx { : ߠ ᠩ   ސ Ɛ    .ݩ    4  P   2h  W  Y ǩ T  ᐩ  7   e #  f  h    ܩ        yU  z  | ! #   '   C   ǰ  + - 1  귐"n0 , 4 2        ܩ      @ ۰        ~0 "            0 $            C  @  z  V F D  # H  ] M K  M   h d    Z X 4 1 ( '  (   ?J%  A!  ˵ @       G ˩ 0 I         + 4  0 K         - 6   ( 8' 9  i  ȩ  n  - t r  ש | ~ y _ W;  ِ ~ f  T    c   g   2       } 5 w  .   E       F |3     C    Z   B (   Ġ P  # f % ʠ ̠ ǐ Р g T :  1 ֠ ѐ# Ӑ  8 { : ߠ  c I  @ 堩 # ҷ  G  I    $ v \  S    &  Z  \ g  ^ - "  c  ep  g ' '  l  n  0#{  r 0  s  u  7 *    }; ܩ   @ .먩 W @ . = ' = ɷ - + Ѱ -   / 7 5            @ ۰        w ~ C  < m u ? =   A z  F D  F)%!  P N * '       5   7    9D  õ @       ? é 0 A         # , 0 C         % .   / 0; sC e @/mul_add_distr_l2̀ { k   j q  l o m  K ͐ r Z  ( T ܩ  b E c T  %      n (< 鐩  v  D p   ~ 8  r  C   ĩ   , XW  2   R    -     ? @   c " Ǡ  ɠ>  ! Ɛ ϠB$  . Ӡ ΐ8 АX  5 x 7 ܠ  ޠS " ې5}  A(  B  D  ?"      Jb  L1 ð N         n         e @    j : D  J ?0  D  l ] X R L D   A0  F  n _ Z T N F    0  Ʃ       z z    wC  ε    o C   (d* ک .  ĩ      C   ! *  а,  թ /    C !2c3h Nm  @[ [h]6c-B^b`0O`sf2 KS hYUt7Ơڵ  N  Q  "  C Ȑ T ]נ_ b 3  C ِTɩM ΩO(IQp?JHC ө x z lΩ | F A   6Mɩ*ǩN.   }Ω  %x C,  Y [  ] ש 쐩 y  !gC<  i @%sin_n us     JqYhک[@թΠɐ &'C  /÷`ƷlǶȶ@,tv̷ 2 - Ґ   x @+ AA퐩  D 鐩ѐ  '  U% Y [) ^* `* f +u?= 9 L . *= < !       ɩ ް       @ɰ     q   l0            n0            CҰ. g Cְ2 ѐ!6 Ր Q M(PB-G/ z   2©   D7IЩU=  EEGB* j h D A7 8IC g  Ck n     *  GG;H٠yaiᠩiC;꠩79\h/Age= 8 ٩J5Pk    }3 tCG ܠ DAYCK FE\B?DaVS|6>|M 4 5d 0ݵT\m4S ++pC(C2 Ʃ+İ j)ci    ]   {     p     y { }   } ES {@ { p n E 2  S -0  k h d ^ d X U O  /0  m j f ` f Z W Q   |C (+ *   03 2 #     :נ]nhC sU RC x+  UZp@+simpl_sin_n5i C #!.q(&  O+CװC۰ %R_sqr/@(Rsqr_neg :@$Rsqr=MW   ӷ(BBB@@@@@!s"ŷƩ w7ɩ@)exist_cos$V& !aշ@7ڷ۩ܩL ߷@((*#C(W 7@6D _C4󩚠@#cos㹀hI]`W6MtELEe @&sin_in!"@)exist_sin$l€D@ ce^~!"\#US&@̠ iqBqp@@@@Do2*3*Lw6~f9@"5.T"x0B  G Iy    z | } { \@y a 1; A60; c T O I C ;  }iCYN@#sinҀZѐ<Ơiaja?۩o qߐs@ aag z  6  ǩ Ԡg @ǰ  eo uj0oG    } w o l0qI     y q Cа6b{-"@)proj1_sigY 隠3@&Rsqr_0 OgA?A @ %C CȰ@*exist_cos0 )x/ks g~^CC@@HHa {tgĆiK