"`%o%Sa+Rtrigo_calc%Reals#Coq@()Notations$Init#Coq@%Logic$Init#Coq@*Logic_Type$Init#Coq@)Datatypes$Init#Coq@&Specif$Init#Coq@%Peano$Init#Coq@"Wf$Init#Coq@'Tactics$Init#Coq@%Tauto$Init#Coq@'Prelude$Init#Coq@ )Notations$Init#Coq@0&v!D]hwnv %Logic$Init#Coq@0\͉!Ig)Datatypes$Init#Coq@0.i bYN Z*Logic_Type$Init#Coq@0 1jc6&Specif$Init#Coq@0;RWMi\N'Decimal$Init#Coq@0C涳N*ua#Nat$Init#Coq@0eʤģPSR蠠%Peano$Init#Coq@0 jha|ؠ"Wf$Init#Coq@0q+W,J+'Tactics$Init#Coq@0/9m+ a%Tauto$Init#Coq@0̂"&/rk0JqTttֱ'BinNums'Numbers#Coq@0dmk(5Ju<*EqdepFacts%Logic#Coq@0FI$ͼՋ`)Eqdep_dec%Logic#Coq@0u wWIϰ߼&Basics'Program#Coq@0!bs߯? :VU$Init'Classes#Coq@0](p{yOh.'Tactics'Program#Coq@03u%+Equivalence'Classes#Coq@07;ꮹ-SetoidTactics'Classes#Coq@0S_`nOU$&Setoid'Setoids#Coq@0D9AsWE!>$Bool#Coq@0j 2cZ`FW*Equalities*Structures#Coq@0όe얟)H.Ƞ2Relation_Operators)Relations#Coq@0%s鯰s4Operators_Properties)Relations#Coq@0U3y#h&)Relations#Coq@0r砠*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ&NZSqrt&NatInt'Numbers#Coq@0` .%m%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|&NZBits&NatInt'Numbers#Coq@0MlIpKt'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$&NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ)NMulOrder(Abstract'Natural'Numbers#Coq@04> Aat/ j $NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ'NMaxMin(Abstract'Natural'Numbers#Coq@0]v|Qg̟ʠ'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NLog(Abstract'Natural'Numbers#Coq@0KI'BinList+setoid_ring#Coq@0Au,Ring_polynom+setoid_ring#Coq@0gaKw9`UW+ListTactics%Lists#Coq@0,Jcy{+InitialRing+setoid_ring#Coq@0k/T=cN(Ring_tac+setoid_ring#Coq@0x2]%762f)Ring_base+setoid_ring#Coq@0fbU(2cNe$Ring+setoid_ring#Coq@0Msᬠ)ArithRing+setoid_ring#Coq@0ṔCgt?}%Arith#Coq@0I|кX*o4#Max%Arith#Coq@04=;3$>aU堠#Min%Arith#Coq@0Ce-Fѕ(PreOmega%omega#Coq@0\|چBb~w4%Omega%omega#Coq@0t.J'6\ϨrK(Zpow_def&ZArith#Coq@0f蓜DX;V*ZArithRing+setoid_ring#Coq@0{#'[{nm!/,Zcomplements&ZArith#Coq@0ʾq %RIneq%Reals#Coq@0JUڻIu)$w&DiscrR%Reals#Coq@0z41pV.%Rbase%Reals#Coq@0Jܡ\ c6{%R_Ifp%Reals#Coq@0c4+ZŠ,Fourier_util'fourier#Coq@0ϳ> 4`*r0'Fourier'fourier#Coq@0wV9TN*Rbasic_fun%Reals#Coq@0hܒiclE>%R_sqr%Reals#Coq@0X%MԹ%M+SplitAbsolu%Reals#Coq@0M)&qYlݹ5*SplitRmult%Reals#Coq@0sD\rt/$Even%Arith#Coq@0YO%q}d߫%$Div2%Arith#Coq@0n*Áht!,)ArithProp%Reals#Coq@0B+L?>*e˃a j*Rfunctions%Reals#Coq@0d¹d‹@'Compare%Arith#Coq@0OM v먣5L:'Rseries%Reals#Coq@08]$u+?'SeqProp%Reals#Coq@0Lt2|9D }SSԻ)Rcomplete%Reals#Coq@0{ڸ4q 'PartSum%Reals#Coq@0j&2"(>S)AltSeries%Reals#Coq@0d US^(Binomial%Reals#Coq@0]JrHr#E&Rsigma%Reals#Coq@0䟄WCJҦ<%Rprod%Reals#Coq@0gȀn_}!W+Cauchy_prod%Reals#Coq@0K*ߞ4q(Alembert%Reals#Coq@0I͗Huz&)SeqSeries%Reals#Coq@0Npc$5|T ٠*Rtrigo_fun%Reals#Coq@0T+ɧK/۠*Rtrigo_def%Reals#Coq@0$xR`VcxIaƶ"x*Rtrigo_alt%Reals#Coq@0zsC^,%+OmegaTactic%omega#Coq@0@{4-EܭEUBW'Cos_rel%Reals#Coq@0%}ֺ|3J-tWK(Cos_plus%Reals#Coq@0IWEGն&Rlimit%Reals#Coq@0*r0ē([HAE&Rderiv%Reals#Coq@0?KQ;^WU;H*Ranalysis1%Reals#Coq@0 n;qm.L%)Rsqrt_def%Reals#Coq@0eA~%&Y?%RList%Reals#Coq@05g2NaA:7PropExtensionalityFacts%Logic#Coq@0 +_.ɓoFؘ'Hurkens%Logic#Coq@05[gNk2up.ClassicalFacts%Logic#Coq@0$RzqIF\(4.Classical_Prop%Logic#Coq@0Yh޿JdI1ƽ3Classical_Pred_Type%Logic#Coq@0m[6BZ5)Rtopology%Reals#Coq@0;Wo G#MVT%Reals#Coq@0cq통 gZ+PSeries_reg%Reals#Coq@0䝠|%n͠'Rtrigo1%Reals#Coq@0x'ml^&R_sqrt%Reals#Coq@0 @#DŽe]n b|BĪ5et`Р+Rtrigo_calc%Reals#Coq@A&tan_PI @@@%Logic$Init#Coq@@"eq @,Rdefinitions$#@@!RӀ'Rtrigo1 @#tan 쀀 @"PI G@#IZR/r'BinNums'Numbers#@!Z7@A@@@@@AA@@>@,Field_theory+setoid_ring#Coq@@&FEeval>@@A@A"s @,Ring_polynom+setoid_ring#Coq@@&PEeval"s @@A@BA@A@(sin_3PI2 @@qAa,Rdefinitions%Reals#Coq@@!RӀ*Rtrigo_def%Reals#Coq@@#sinҀ,Rdefinitions%Reals#Coq@@%Rmult׀@@i/rih@@h7@But@@(positive*@A @C5@$Rdiv̀'Rtrigo1%Reals#Coq@@"PI G:4B-@B&CLF@C3C@@@@@'tan_2PI @@Bې@p׀ԐB@\*@BC@@@@@Ӡ+sin_cos_PI4 @@(CliB_BdBC@#cos㹀BBBC@@@@@$/sin_PI3_cos_PI6 @@yDiꀐBACL؀ՀBBAC@@@@@m/sin_PI6_cos_PI3 @@EQ|5/B(A Cb# PJBBHA@C@@@@@)PI6_RGT_0 @@ F~@#Rlt=ܩ@$Rdiv̀㐩 A @@@@@ڠ+PI6_RLT_PI2 @@/G")@@@@@ꠠ'sin_PI6 @@?H/Ω€BvBACʀBCրBBC@@@@@9+sqrt2_neq_0 @@I}@#notШ,Rdefinitions%Reals#Coq@@!RӀ&R_sqrt%Reals#Coq@@$sqrt E؀BBC' @A@@@@@.R1_sqrt2_neq_0 @@JHʀN@!RӀJDB0CNZTB BECkDA@@@@@Ġ-sqrt3_2_neq_0 @@K @@GӀBVB{CBACA@@@@@+Rlt_sqrt2_0 @@dLWˀAʀրBBC@@@@@9+Rlt_sqrt3_0 @@MZ&R_sqrtt@$sqrt E؀d@@@@@T)PI4_RGT_0 @@Nu|w@@@@@i'cos_PI4 @@Ov/)BBBCICB/CMYSBBDC@@@@@'sin_PI4 @@PUR|BHBMBrCqBCBrBC@@@@@'tan_PI4 @@dQTI?2^S@@@@@"'cos3PI4 @@wRg/怐BACЀ̀BBBC쀠CC'!BBC@@@@@'sin3PI4 @@SπnbXNHBAA9C85e_B+B0BUCTyBeCBUBzC@@@@@'cos_PI6 @@GT7B~BACʀրBAC瀐BBC@@@@@J'tan_PI6 @@Uz=@@@@@\'sin_PI3 @@V@4򀩚"BA C /;5B.A&CLFBB7C@@@@@'cos_PI3 @@WBHEuoBhA`C_BpCB\BC@@@@@'tan_PI3 @@NX>3)@#Đ@@@@@ (sin_2PI3 @@`YP署【ـπBBC怐BACЀ󀐩BAC BBC@@@@@s(cos_2PI3 @@ZA71BB"C!NHBAA9C8cCICoiB5BZC@@@@@Ҡ(tan_2PI3 @@'[ '#۩@$Ropp΀@@@@@렠(cos_5PI4 @@@\0~BAzBCˀBBBC倐CC逐BBC@@@@@X(sin_5PI4 @@]<0&BAB C 82BBB(C'RC8CVb\B(BMC@@@@@Š+sin_cos5PI4 @@^ XҀB|ATByCxuBkBpBC׀̀ÀBABC߀BBBC@@@@@G*Rgt_3PI2_0 @@_ABAC%BBC@@@@@)Rgt_2PI_0 @@`ЀDAYOIBB:C2@@@@@+Rlt_PI_3PI2 @@ aBvpBiAaC`]BSBxC@@@@@,Rlt_3PI2_2PI @@ Eb8BACǀBBC怠܀BBC@@@@@ A$plat @ ^}@,Rdefinitions%Reals#Coq@@Ӏ867 kABBABAAB@D L@@@@@ %toRad @!x Ԡ֠A  @$Rinv8  @[.]M@IK T+k67 7 7!7%'@tT\ ϐh@@@@@ %toDeg @7   5-4 @=qs( @t=hF\ T@@@@@ ࠠ'rad_deg @@ 5c^ )M ;@p/D| A@?/C AA@@@@@ )toRad_inj @@ Ud~!y@ Os&B+A ]CB@@@@@ ('deg_rad @@ }eڀ qmBLAA@@@@@ D$sind @ {*Rtrigo_def |@#sinҀ@/D|@Ӛ 8+k7 7$'dX@@@@@ q$cosd @ -@#cos㹀*@*,#d7X@@@@@ $tand @ ʩ G@GI@ ̐dTX@@@@@ 2Rsqr_sin_cos_d_one @@ f.b 쩚 ~@%Rplus+1%RIneq%Reals#Coq@@$Rsqr=MW @.]ZA +@q.\DA ̐@@@@@ +sin_lb_ge_0 @@ Bg!a@ @#Rle=  A@ 穚  * Q Ā & @&sin_lb2@@@@@ !@@@ ӳ2@ ӳ2[)Datatypes$Init#Coq@@A@ Գq@ Գq\ @A@AB@cA " ! @A.0TQ+Ring_theory+setoid_ring#Coq@@ABA.U>[J @B@@"O@(PeanoNat%Arith#Coq@#Nat@&of_int"O#Nat$Init#Coq@@ 6@A@A\@&BinInt&ZArith#Coq@!Z@'quotrem\)BinIntDef&ZArith#Coq@!Z@ /@A@\@@+pred_double\@/S@@A@As2@3@&shiftls2*@vY@A@BCs8@8@&shiftrs8/@vY@A@ѓ@>@&squareѓ5@y@A@@D@&to_intϑ;@@A@z@5@&doublez,@/!@A@ABCD/@O@)log2_iter/F@wd@A@NH/@B@&moduloNH/9@1,@A@A\d@G@&of_int\d>@1?A @A@bz@M@&of_natbzD@1?G!@A@#@S@&shiftl#J@1dV@A@#@Y@&shiftr#P@1d\@A@ABCD/x@&BinPos&PArith#Coq@#Pos@)pred_mask/x)BinPosDef&PArith#Coq@#Pos@ )X@A@6@x@&square6o@19@A@AV+L@}@&to_intV+Lt@2@A@V1b@@&to_natV1bz@2 @A@V5=@@&to_posV5=@2@A@ABCl@@)sqrt_iterl@!$:@A@@@6@(sub_mask@-@)@A@ADEF c@@'testbit c@!ć@A@7 B@D@'of_uint7 B;@*`]?@A@AG@I@)mask_rectG@@+ED@A@F˱@O@)add_carryF˱F@+p@A@AB^Ҷ@@'to_uint^Ҷ@#m@A@gL7@@'sqrtremgL7@40@A@Aq@@'testbitq@5)@A@ݎO@@+succ_doubleݎO@6r@A@A p@l@0double_pred_mask pc@0-+m@A@BCD T@&BinNat&NArith#Coq@!N@!t T)BinNatDef&NArith#Coq@!N@ 2@A@ @@#add @3 @A@A l@@#div l@3@A@ Y@%@#eqb Y@3@A@AB #@*@#gcd #!@3n@A@ T@0@#leb T'@3@A@ACEG "@5@#lor ",@3m@A@ q@?@#ltb q6@3@A@A @D@#max ;@3@A@ @J@#min A@3`@A@AB @O@#mul F@3B@A@ ~@U@#odd ~L@3@A@AC =@Z@#one =Q@3@A@ @b@#pow ˑY@3@A@A c@g@#sub c^@3@A@ @m@#two d@3J@A@AB hx@r@$div2 hxi@>@A@ @x@$even o@>4@A@ACD @}@$ggcd Бt@>U@A@ @@$iter }@>:@A@A 3"@@$land 3"@>m@A@ F)@@$log2 F)@>t@A@AB S@@$lxor S@>@A@ @@$pred @?U@A@AC @@$size ܑ@?'@A@ !@@$sqrt !@?@A@A ! @@$succ ! @?\@A@ !7@@$zero !7@@P@A@ *@@%ldiff *@@A@AB g_@1@+pred_double g_(@25\@A@CD m@6@÷ m-@2j@A@S@=@&of_intS㫑4@4}5@A@AS@B@&of_natS9@4};@A@BEFGH\R@G@(mask_ind\R>@4@A@\^@Q@(mask_rec\^H@4@A@A!,@V@&pred_N!,M@4s)@A@B@[@&shiftlR@5X@A@@b@&shiftrY@5X@A@A&@g@&square&ّ^@5,x@A@BC"@l@&to_int"c@5L@A@"@t@&to_nat"k@5L @A@AnTq@y@+testbit_natnTqp@6n@A@B@@(succ_posB@@A@I@@'abs_natI@?n@A@AB.@@'of_uint.@MS@A@3~@@'sqrtrem3~@7]%{@A@ACD,@ @'bitwise,@/v@A@>4'@@'testbit>4'@8g$@A@A{U@@,sqrtrem_step{U@8R@A@u^@9@(div_euclu^0@ @A@Afz@@'to_uintfz@9w@A@Bl@'@'comparel@3R@A@CDEFs8@,@+of_uint_accs8#@5+@A@}@R@,pos_div_eucl}I@&`@A@3x@(@'compare3x@]=@A@A@^@&doubleU@'޺_@A@BCq@@+of_succ_natq@$@A@w@i@&modulowɑ`@)1@A@ADK@n@&of_intKe@)j,I@A@K@v@&of_natKm@)j2_@A@AI@{@&shiftlIr@*O@A@O@@&shiftrOx@*O@A@AB,@@&square,}@*ow@A@Z@@&to_intZ@*81@A@ACE`@@&to_nat`@*9G@A@e@@+testbit_nateđ@+@A@A+{@@'sqrtrem+{ё@,J@A@5z@@'testbit5z@-T|@A@A @@'to_uint ͑@.@A@ @@+succ_double @.^4@A@A#@'@'compare#ݑ@ )Q@A@BCD%t2@,@(size_nat%t2#@ @A@%9@3@+of_uint_acc%9*@ ΋@A@A%V@8@+double_mask%V/@ S@A@%%@>@'div2_up%%5@ "@A@ABEF'ş@C@'Ndouble'ş:@ @A@(b0@K@*shiftl_nat(b0B@9-@A@A(nՖ@P@*shiftr_nat(nՖG@'@A@(@V@0succ_double_mask(M@@A@*W$@\@,compare_cont*W$S@!@A@.0@b@.sub_mask_carry.0Y@΂@A@ABCD.@@!t.@ ;@A@.먩@@#add.먩@ `@A@A.U@@#div.U@ @A@.B@@#eqb.B@ @A@A. @@#gcd. @ @A@.=@@#leb.=@ @A@ABCEGHI. @@#lor. @ @A@.Z@ @#ltb.Z@ @A@A.p@@#max.p@ '@A@B.@@#min. @ @A@.@@#mul.@ @A@AC.g@@#odd.g@ @A@.&@&@#one.&@ @A@A.뾴@+@#pow.뾴"@ k@A@.L@1@#sub.L(@ @A@.@7@#two..@ @A@ABCD.,a@<@$div2.,a3@ @A@.Xz@D@$even.Xz;@ ?1@A@A.@I@$iter.ؑ@@ @A@B. @N@$land. E@ @A@. @T@$log2. K@ @A@ACE.@Y@$lxor.P@ R@A@.y@`@$pred.yW@ `<@A@A.Ʉ@e@$sqrt.Ʉ\@ ;@A@.@l@$succ.c@ @A@.t @r@$zero.t i@ Z@A@AB/@w@.to_little_uint/n@ @A@CDF/@|@%ldiff/s@ H@A@00@@'compare00@?H{@A@A1P%@w@!t1P%n@  @A@B1P@|@#abs1Ps@ @A@1P&@@#add1P&z@ @A@A1P@@#div1Pґ@ y@A@BC1P@@#eqb1P@ f@A@1P@@#gcd1P@ 0@A@A1P@@#geb1P@ T@A@B1P@@#gtb1Pʑ@ q@A@1Pĺ@@#leb1Pĺ@ a@A@A1Pň@@#lor1Pň@ /@A@BCD1P@@#ltb1Pב@ ~@A@1P@@#max1P@ @A@A1P{@@#min1P{@ "@A@B1P]@@#mul1P]@ @A@1P@@#odd1P@ @A@A1Pɣ@@#one1Pɣ@ J@A@BC1P@@#opp1Pԑ@ {@A@1P1@@#pow1P1@ @A@A1P;@@#rem1P;@ @A@B1P@@#sgn1Pˑ@ r@A@1P@@#sub1Pɑ@ p@A@A1Pe@@#two1Pe@  @A@BCDE1[8@@$div21[8ޑ@ @A@1[d@@$even1[d@ I@A@A1[6@@$ggcd1[6@ i@A@B1[U@ @$iter1[U@ @A@1\@@$land1\@ /@A@A1\@@$log21\ @ 6@A@BC1\$@@$lxor1\$@ @A@1\Y@$@$of_N1\YÑ@ >j@A@A1\@)@$pred1\ @ j@A@B1\@.@$quot1\֑%@ }@A@1\@5@$sqrt1\,@ @A@A1\w@:@$succ1\w1@ @A@BC1\k@?@$to_N1\k6@ @A@1]@G@$zero1]>@ eD@A@A2:@L@%abs_N2:C@ @A@21@R@%ldiff21I@ ߵ@A@2=*@X@%quot22=*O@ @A@ABC2kF@@(size_nat2kF@{@A@3@x@(tail_add3o@^q@A@ADEFGH3@}@(tail_mul3t@^@A@5Z@@*shiftl_nat5Z@y/@A@5f}@@*shiftr_nat5f}@4@A@AB5a@@'iter_op5a@ @A@C6w~@@'of_uint6w~@^5@A@8j@@'of_uint8j@'"h@A@9E@@(div_eucl9Eđ@(*k@A@AB:x@6@,Nsucc_double:x-@ ʭ@A@CD@[@&divmod>R@C@A@>@b@&double>Y@NĴ@A@?2@S@,pos_div_eucl?2J@-u@A@AB?;@m@&modulo?;d@"i@A@CEFGIJ@ (Alembert%Reals#Coq@0I͗Huz&)AltSeries%Reals#Coq@0d US^%Arith#Coq@0I|кX*o4)ArithProp%Reals#Coq@0B+L?>*e˃a j)ArithRing+setoid_ring#Coq@0ṔCgt?}*Arith_base%Arith#Coq@0Ĕ}CS&Basics'Program#Coq@0!bs߯? :VU'Between%Arith#Coq@06v*0ur`C0&BinInt&ZArith#Coq@0BpHޞun^)BinIntDef&ZArith#Coq@0ådR4Tuy'BinList+setoid_ring#Coq@0Au&BinNat&NArith#Coq@0K11ڤs+Π)BinNatDef&NArith#Coq@03@1O,[{ 'BinNums'Numbers#Coq@0dmk(5Ju<&BinPos&PArith#Coq@0vyػ0= u)BinPosDef&PArith#Coq@0}H d.%,b(Binomial%Reals#Coq@0]JrHr#E$Bool#Coq@0j 2cZ`FW*CMorphisms'Classes#Coq@0qیZBeϠ0CRelationClasses'Classes#Coq@0TL;0RUfw1+Cauchy_prod%Reals#Coq@0K*ߞ4q.ClassicalFacts%Logic#Coq@0$RzqIF\(43Classical_Pred_Type%Logic#Coq@0m[6BZ5.Classical_Prop%Logic#Coq@0Yh޿JdI1ƽ'Compare%Arith#Coq@0OM v먣5L:+Compare_dec%Arith#Coq@0jXF 8(Cos_plus%Reals#Coq@0IWEGն'Cos_rel%Reals#Coq@0%}ֺ|3J-tWK@0.i bYN Z)Decidable%Logic#Coq@0ND걸풬/Oߠ'Decimal$Init#Coq@0C涳N*ua&DiscrR%Reals#Coq@0z41pV.$Div2%Arith#Coq@0n*Áht!,%EqNat%Arith#Coq@0AIgՋXRV *EqdepFacts%Logic#Coq@0FI$ͼՋ`)Eqdep_dec%Logic#Coq@0u wWIϰ߼*Equalities*Structures#Coq@0όe얟)H.Ƞ+Equivalence'Classes#Coq@07;ꮹ$Even%Arith#Coq@0YO%q}d߫%)Factorial%Arith#Coq@0@oehJd%Field+setoid_ring#Coq@0J _ȫ)Field_tac+setoid_ring#Coq@0d vDZl^۹H00B~uYٮ٠'Fourier'fourier#Coq@0wV9TN,Fourier_util'fourier#Coq@0ϳ> 4`*r0-GenericMinMax*Structures#Coq@0måj$"Gt%Arith#Coq@0䙛#c:D 'Hurkens%Logic#Coq@05[gNk2up$Init'Classes#Coq@0](p{yOh.+InitialRing+setoid_ring#Coq@0k/T=cN"Le%Arith#Coq@0d}Omq+$List%Lists#Coq@0>I+ListTactics%Lists#Coq@0,Jcy{̐0\͉!Ig*Logic_Type$Init#Coq@0 1jc6"Lt%Arith#Coq@0KZ-eJkP܏#MVT%Reals#Coq@0cq통 gZ#Max%Arith#Coq@04=;3$>aU堠#Min%Arith#Coq@0Ce-Fѕ%Minus%Arith#Coq@0LFtR")Morphisms'Classes#Coq@0Imӽ%\$PD.Morphisms_Prop'Classes#Coq@0% :B'.>u%$Mult%Arith#Coq@0햖Qyb0$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI%NBits(Abstract'Natural'Numbers#Coq@0qteo_hɅ $NDiv(Abstract'Natural'Numbers#Coq@0bz$?[p(5$NGcd(Abstract'Natural'Numbers#Coq@08E-S ;j_Ҡ$NLcm(Abstract'Natural'Numbers#Coq@0 ~xZ9L{:$NLog(Abstract'Natural'Numbers#Coq@0K Aat/ j &NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf+NProperties(Abstract'Natural'Numbers#Coq@0unt"kwpYC%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ%NZAdd&NatInt'Numbers#Coq@00h`ZK4*NZAddOrder&NatInt'Numbers#Coq@0e~1>r砠(NZAxioms&NatInt'Numbers#Coq@0] ρ5r&NZBase&NatInt'Numbers#Coq@0^&8yUL&NZBits&NatInt'Numbers#Coq@0MlIpKt%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZMul&NatInt'Numbers#Coq@0ctR~6[Ƞ*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R'NZOrder&NatInt'Numbers#Coq@0 q;Ve7R W,(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x&NZSqrt&NatInt'Numbers#Coq@0` .%m#Nat$Init#Coq@0eʤģPSR蠠$Nnat&NArith#Coq@0$W;s #%M)Notations$Init#Coq@0&v!D]hwnv *NumPrelude'Numbers#Coq@05WUVŦ]xVXԠ%Omega%omega#Coq@0t.J'6\ϨrK+OmegaLemmas%omega#Coq@0TJ#Jes+OmegaTactic%omega#Coq@0@{4-EܭEUBW4Operators_Properties)Relations#Coq@0U3y#h&&Orders*Structures#Coq@0$Znl0\͗+OrdersFacts*Structures#Coq@05Mܿ獐ζΖLB)OrdersTac*Structures#Coq@05'4Ԗ+9%+PSeries_reg%Reals#Coq@0䝠|%n͠'PartSum%Reals#Coq@0j&2"(>S%Peano$Init#Coq@0 jha|ؠ(PeanoNat%Arith#Coq@0O~2$k[#lZ)Peano_dec%Arith#Coq@0Kݢ*k$Plus%Arith#Coq@04tmG$Pnat&PArith#Coq@0,?pr.gZ(PreOmega%omega#Coq@0\|چBb~w4'Prelude$Init#Coq@0JqTttֱ7PropExtensionalityFacts%Logic#Coq@0 +_.ɓoFؘ%Quote%quote#Coq@0J@ŹVz-,3%%RIneq%Reals#Coq@0JUڻIu)$w%RList%Reals#Coq@05g2NaA:%R_Ifp%Reals#Coq@0c4+ZŠ%R_sqr%Reals#Coq@0X%MԹ%M&R_sqrt%Reals#Coq@0 @#DŽe*Ranalysis1%Reals#Coq@0 n;qm.L%'Raxioms%Reals#Coq@0S]jnj][L%Rbase%Reals#Coq@0Jܡ\ c6{*Rbasic_fun%Reals#Coq@0hܒiclE>)Rcomplete%Reals#Coq@0{ڸ4q D0(2{Ze$ќ8&Rderiv%Reals#Coq@0?KQ;^WU;H)RealField+setoid_ring#Coq@0 >ʾq /RelationClasses'Classes#Coq@0Gz rA6ՠ4Relation_Definitions)Relations#Coq@0]4Ѐd{n^2Relation_Operators)Relations#Coq@0%s鯰s)Relations#Coq@0-SetoidTactics'Classes#Coq@0S_`nOU$&Specif$Init#Coq@0;RWMi\N+SplitAbsolu%Reals#Coq@0M)&qYlݹ5*SplitRmult%Reals#Coq@0sD\rt/'Sumbool$Bool#Coq@0sB ,$11.]m'Tactics$Init#Coq@0/9m+ a'Tactics'Program#Coq@032 Q@@A@#_11@<@A@@@@@@@@#_122M접#_13'`o@@@@b2 Q@@A@#_14@mҰ@A@@@@!@#_152M접 #_16'`o@@@@2 Q@@A@#_17@@@A@@@@@@#_182M접 #_19'`o@@@@2 Q@@A@#_20@',@A@@@@_@#_212M접 #_22'`o@@@@2 Q@@A@#_23/@# 7@A@@@@~@#_242M접 #_25'`o@@@@2 Q@@A@#_26N@?@A@@@@@#_272M접 #_28'`o@@@@a2 Q@@A@#_29m@l@A@@@@@#_302M접 #_31'`o@@@@^2 Q@@A@#_32@i @A@@@@@#_332M접 #_34'`o@@@@m2 Q@@A@#_35@x/@A@@@@@#_362M접 #_37'`o@@@@=2 Q@@A@#_38@Hk,@A@@@@@#_392M접 #_40'`o@@@@2 Q@@A@#_41@L@A@@@@8@#_422M접 #_43'`o@@@@2 Q@@A@#_44@X@A@@@@W@#_452M접 #_46'`o@@@@Ġ2 Q@@A@#_47'@2D@A@@@@v@#_482M접 #_49'`o@@@@2 Q@@A@#_50F@2խ@A@@@@@#_512M접 #_52'`o@@@@2 Q@@A@#_53e@$@A@@@@@#_542M접 #_55'`o@@@@Ǡ2 Q@@A@#_56@>I@A@@@@@#_572M접 #_58'`o@@@@2 Q@@A@#_59@/@A@@@@@#_602M접 #_61'`o@@@@_2 Q@@A@#_62@ji@A@@@@@#_632M접 #_64'`o@@@@k2 Q@@A@#_65@v:e@A@@@@0@#_662M접 #_67'`o@@@@"2 Q@@A@#_68@-+4@A@@@@O@#_692M접 #_70'`o@@@@٠2 Q@@A@#_71@>K@A@@@@n@#_722M접 #_73'`o@@@@2 Q@@A@#_74>@i@A@@@@@#_752M접 #_76'`o@@@@2 Q@@A@#_77]@/@A@@@@@#_782M접 #_79'`o@@@@y2 Q@@A@#_80|@>H@A@@@@@#_812M접 #_82'`o@@@@N2 Q@@A@#_83@Yi@A@@@@@#_842M접 #_85'`o@@@@[2 Q@@A@#_86@fҖ@A@@@@ @#_872M접 #_88'`o@@@@2 Q@@A@#_89@E@A@@@@(@#_902M접 #_91'`o@@@@Ҡ2 Q@@A@#_92@3@A@@@@G@#_932M접 #_94'`o@@@@ؠ2 Q@@A@#_95@@A@@@@f@#_962M접 #_97'`o@@@@2 Q@@A@#_986@{@A@@@@@#_992M접 $_100'`o@@@@<2 Q@@A@$_101U@G'DŽ@A@@@@@$_1022M접 $_103'`o@@@@٠2 Q@@A@$_104t@:I$@A@@@@@$_1052M접 $_106'`o@@@@2 Q@@A@$_107@2N:@A@@@@@$_1082M접 $_109'`o@@@@2 Q@@A@$_110@ @A@@@@@$_1112M접 $_112'`o@@@@2 Q@@A@$_113@ E@A@@@@ @$_1142M접 $_115'`o@@@@[2 Q@@@@$_116@f.]M>@$_1172M접 A$_118'`o@@@@62 Q@@@@$_119:Y@$_1202M접 $_121'`o@A'R_scope@@#2 Q@@@@$_122^}@$_1232M접 $$_124'`o@A!@@2 Q@@A@$_125P@'=@A@@@@@$_1262M접 $_127'`o@AE@@ 2 Q@@A@$_128t@+0@A@@@@@$_1292M접 $_130'`o@Cik@@񠐒@%2 Q@@A@$_131@0{@A@@@@@$_1322M접 $_133'`o@A@@-2 Q@@@@$_134#@$_1352M접 'Raxioms%Reals#Coq@@-total_order_T=ҖX$_136'`o@A@D@,2 Q@@@@$_137O>@$_1382M접 s@)exist_cos$V$_139'`o@A@j@02 Q@@@@$_140@;.]ve@$_1412M접 ,Rdefinitions%Reals#Coq@@%Rmultנ$_142'`o@A@@@2 Q@@A@$_143D@K!@A@@@@@$_1442M접 $_145'`o@A9@@'2 Q@@A@$_146h@2>k@A@@@@@$_1472M접 $_148'`o@C]@@@᠐@C@@@"Jl<8iD4@1(u(|؟P@=>=Ym:1챬G@DZֶo6 5`> =!%Logic$Init#Coq@@(eq_ind_r!2#,Rdefinitions%Reals @!RӀ @#IZR/r'BinNums'Numbers @!Z7@A!r /@"eq @()@$Rdiv̀A*Rtrigo_def1@#cos㹀'Rtrigo1:@"PI G8PD:6C:@(positive*@C5S3U-M(M%RIneqY@)Rmult_0_l+€c@$Rinv8%CIkCc)c=3@&cos_PI0j􀩚B@#sinҀ?>@&sin_PI2ǀC]F@#tan 쀀L{Ȑ!H@%Rplus+1l\BSBW w@%Rmult׀gAk!Ȑ(hyp_list)Datatypes@$list]@A @$prodt@,Ring_polynom+setoid_ring@%PExprk@ǀ"Ȑ'fv_list)BR. @2RField_ring_lemma1!7𚠐(Ring_tac"@0ring_subst_niter!ɐB.E%'5D,:G1?C6`@$Truey@AAb@$boolZ'@A@ Ȑ#lmp]@.mk_monpol_list(X 蚠&BinInt&ZArith@ @#add1P&)BinIntDef&@ ̀@#mul1P] @ @#sub1P@ p@#opp1P@ {%Zbool!@(Zeq_bool0߀*@'quotrem\$@/ŀj@#Monf@@#Polj@@#Peqj*(@*norm_subst7:d0rRQA;5/'T0tTSC=71)VcK-@*double_var?RCkU@&eq_ind J yw'lW/qu3ze! np*y©ĩ7  +֩հ˰Ƞԩϰ̠Π˵@|id0 f0 ?@'sin_PI23ͱ|wqw^@(sin_plusl=cKװѠ̩ːWi Cޠ  @'sin_2PI3£C!!# Ȑ(list_hypqNȐ+field_lemma@3RField_field_lemma1(MkCR5O,Field_theoryj@%FExprs@Eh HmJrDKC{7 }  K3@<4/$nfe1+@&linear@@I 4@%Fnormw$aA@0*$=C$nfe2@V $iIH82,&&K@[a+0pPO?93-%F}M@#num:uDU@%denum00dcSMGA9 w@c@%PCondS<@&Rminus&H@$Ropp΀@#nat@&BinNat&NArith!N@&to_nat`)BinNatDef @*9G(Rpow_def@#pow#׀@#appʀ@)condition.ECߩ@&FEeval>@'X?E@ :4#@)ZAGB<6%Ȑ#res3Ȑ&res_eq٠@Ұ(Ȑ$res0A%'5H,.'>R@Ȑ'res_eq0@Ȑ$res1>@BéE@WȐ'res_eq1@G QN2@@-RField_lemma55vghbc$lock"lea2A(lock_def" 8F<m;UB>C<OEvDEW @X@$Fapp{F!@&Fcons2w$N.- /YCeؠD.QjMkKmJԩ{oʐ SuАTZxXzW\Rtm@dj_]%5 0zZYIC=7/\0|\[KE?91^ kT@'sin_neg3Ho!0\@'neg_sin%H)lkxc@'cos_sin~}{vztFXheakhdܩW@^\Z@]S$~xrlN`@cY$~xr@L@.ʩ@ >%+&i  #@@'-(k" mکFӰ'©~ӵ@%%ϩ   õ@&&ȰJXĠAƠ=c հ `ݰЩ ѐ@)cos_shiftpMڐg$}$y @)sin_shift=j(2񐑵@1Rmult_lt_0_compat=Ȑ<@(PI_RGT_0" @0Rinv_0_lt_compatDH<@"R1Ȁ &DiscrRC@)Rlt_R0_R2Al@1Rplus_lt_0_compat-P@'Rlt_0_14CCX@#Rlt=Tp'Raxiomsb@1Rmult_lt_compat_l`1A A@1Rinv_lt_contravark!Q3>@&IZR_ltNȩ)Decidable@+dec_not_notHɀW@"lt1P-ک^@,lt_decidablè@#notШn@"ge1P,&Omega0x@s1P,i)auxiliary@@*comparison;f@C@%Falsee@ C'8 C*;@'compare3x@]=.C64C/@(Zge_leftsO2&Zorder@*Znot_lt_ge>π C_@.Rmult_eq_reg_lAЩVhΐ٠Dm|OM*'%'  $"!5 79u ;=@Cȩ0E .0G0"|~&(,(* + -3.1G \ J Gf0޶@@#$n6@)$t< @Ӷ@/Qr@SI*zH t@UK,|J"mkjhea_ZP}NL@JdQ{<Q@:Acw0eyHfFh;vjl@DB@~f?#46',%fN@@Y$lLK;5/)2N @_ $rRQA;5/T@ @<}|g@b(@@d*,1@~8v@t nsrmigajt 8o_C< |@\+Rtrigo_calc@/sin_PI3_cos_PI6# 7z@&sin_2a2a@ 'Rmult_integral_contrapositive_currified *©h@'IZR_neq%/A3Ȑ"H0?8!e@@AA@AA@@@@@@D!z@Ҁ@""@)False_induُ)CV%g@(cos_gt_0@)Rlt_transCЩX\@*_PI2_RLT_08AX@)PI6_RGT_0]@+PI6_RLT_PI2 "H1@3Rminus_not_eq_right8K2耰@0Rminus_eq_contrawŀ#@6Rlt_dichotomy_converse,#d*8@"or @A$2@#Rgt=<)Ȑ#Hyp61C@#Rle= "H2,N&R_sqrtO@$sqrt E؀Mѩ9[QvNȐ"H3Cx5@)sqrt_eq_0)t=C֐"@&Rlt_le AlG䐩\~2v쐩d ~Y )@)R1_neq_R0iwa9@1Rinv_neq_0_compat1jJ@+sqrt2_neq_0k, SjYj@%IPR_2ūbZiUni/ Ԡ`3C.bC3]!©@&or_ind" @*not_eq_sym6ԀR@/sqrt_positivity7Ӭŀ\moװMNARB6sX 4YY@@A@A@@@@D!nc.@eNN,C{IةȐ$Hyp2womɠc0$&@РlԠ#;/ {yVSLJID<*;]^' @ةc0e-  N40g/P  BD'E@"H4[I@+Rlt_sqrt2_02D) @)sqrt_lt_1酀171<@)Rplus_0_l 6ʀ٠^@*Rplus_commq @1Rplus_lt_compat_l ]߀kFC@n@#INRrT(@(lt_0_INR "Lt%Arith@(neq_0_lt%s^6niydd[[CG%R_sqr@(Rsqr_inj R`u@(cos_ge_0`@)PI4_RGT_0$΀m24@+PI4_RLT_PI2o;x%'W٩@$Rsqr=MW#dİ M+˰Š [Ұ̠7ǵi׷۰WdxI&ة#%m"٩ΰ1а3Ӱ6@@$>@$D @@<!bz{vHuo^V#D@%f~Lysb!F@'hN{ud#?=<:731S'U.V" @8Z[)%@ ^[?  58?5f4|;N 4C<E;l:A;M@%GH*,Q 4R2T%SV䐩A=[;]^0^:86t15* W?@  @J $]=<,& ?@P$cCB2,& E@@ܩVx@zpQoG$@|rSqIf us@qx~%cx@ah2om9mkih]'%'r8@?=;@}>4$po_YSM r/A@D:$vue_YS5x@-@< @! L@#  N?PU@X@ <2)87$ߵC/< =$*% @|&s1!@+sin_cos_PI4',ҀCө-::C@)Rsqr_sqrt QHL?@&Rsqr_15J =G@(Rsqr_div 1X YհKL@'cos_PI4>I0  f  F@&Rinv_r ;:ݐiy  g ~  m@.R1_sqrt2_neq_0L&C LaTC  "doL:SU~Ͷ@Զж@ ө$] %  ֶ@ ٩$c +   @¶@  @a@ B 8 i 7c@ D : k 9\ZYWTPNpvrFFtM21,A?@=WyMKJ/D@- 4 VA \ ? ] = _f 7  o c F d D f 7 t h v j M k K m r E|tqxszkd@ [aVT ,0 qQP@:4.& S0 sSRB<60( U bC d (d@'sin_PI4/ \87 ` l> > w  u    i(      g@'cos_neg͟ 46P y   ©[Ʃ  ǩ   &e    !W@+Rlt_sqrt3_02խ 3  ˩ .d  ѩ  ө   ש7۷  ܩ        ° D' @    DKK F X X   C   Ѱ S6 O Ϡ   B ѩ   ΩT &Ű ( *Sɰ ,@@ $ 4  ޶@ $ :  @@l  8@  Z  rxs   @ mgV 3:@  \  tzu   B oiX 5310.+'% G  ? V@, N  @n?@(sqrt_defV   4 * 4@'sin_PI6/C  ;dph @$cos2 CBfZ  V JI - K + M % Q ' _ S 6 T 4 V . f Z = [ ; ]  0     t h K i I k Š > { o ɠ   V t T v Р  I  z  ] { [ } נ ٠ R   ݠ ߠ"  j  h  [%   )  %   ӷ u  s 0 =@)Rmult_1_r+17 D@*Rinv_r_sym9lU䀠  B@+Rmult_assoc&E ? A'K@*Rmult_comm8A Z@/Rinv_involutiveCaY `@/Rinv_mult_distrT 9 4 $  Ʃo q   ϩp   s@*Rlt_irreflnQ {C@0oq@)Rmult_1_l9= 2 oiC  ݩ 3ᚠ4@'cos_PI6>KC İ  g     ̰  BC  ᚠG@/sin_PI6_cos_PI3?񗀐  P   ݰ  נ `       ޠ\ g       h  wp   }     p w &  t{ v     !   # d  $  &  [  @*Rinv_l_sym9`g~   [YC  5 6&@'cos_PI3>HE@'sin_PI3/C ! C L T H ^^ - K + M  [ O   \B D^j c W : X 8 Z ͠ ] N 0 m a` D b B d נ `  : x l O m M o [ ˠ D  u Ϡ  Z x X z  M  ~  XQ a   n  & ( )C k   Z ZU K K   >@&double {          z  g                ө  4      Щ ߰ !   |   { { w  r r   g@ n l j@  m c$        |  ^ p@  s i$         @ \@ ><    L 3 9 4 /   . (    ܩ@    P 7 = 8  {   2 , @   ! R 9 ? :  }   4 .       ڵ@֩  ȵ@  n  d   ũİ1 Ӱ Ʃ [8   8 i P V Q L   K E 47  C a<   > o V \ W R $  Q K :=  @ ݰ  נ H r      f _   ]     m   h  Z 7   % / l > Ѱ @i ʩ Ӱ B  E    @ ¶  @   $ K          Ķ@  ǩ $ Q        @ @  . O@ 0 & q       W %  ~ m J Q@ 2 ( s       Y '   o L J H  G E B > < ^ - `   3 Y p !   0 .@ , F h k &   3@Y@)sqrt_sqrt 8R   @&cos_2a0jҀY b V 9 W 7 Y 1 ,  j ^ A _ ? a[ ;   9 7 u 6   N &   Z B @   @ M  $  ` @ ? / ) #   B  @ S  $  f F E 5 / ) # H@ @ Y { @ } s      T   r    @  u      V   t                 f % z x@ v      * h }@D@(cos_2PI3E I@(sin_2PI3ҖC x  Q@  x   v t  o s m  ^ Yj ͩ W ϩ    e   J@ Q O M@  P F$     q k e _  A S@  V L$     w q k e @ ?@ !   @    1     \       @    3     ^         `    ͩ   Ͱ      g  @    Ȱ  )    o  @   ԩ G   0 ΐ2  K   ީ 9|  5wt F  @'neg_cos%/   dN ]    ϰ  X   ~  _  Ɛ     ڰ  ͩ (       ԩ   Z@(sin_5PI4{ `@(cos_5PI4 g p PC    񐑩   2 &   '  )   t r O L J C B =  5 ( 4  @     ϩ  Z      C  5    7   8@⠩   3    M A  $ B@      @)Rplus_0_rH€     E   @)PI2_RGT_0iHB ө i ] Р % % B ` @ b 3 ՠ  е s g ڷ J h H j           @ w v  s s x  n s d ]@ T Z O M    % 0  j J I 9 3 - '   L  0  l L K ; 5 / ) !  N  [ C C ] "  G `       g @ /    [ 3      q @ 9 c I  d M 3 f(    iI!x      ©    ° @$plat.]M ɰ  J  Ͱ  v ϰ  P z  ˩      ީ                    °    @     k X  { S0        } u   U0         w     թ / 1  36/ 5 + 7 9 ; = @3 9 V  A C    ̰    _  1   Ѱ  M O    h  :   ڰ  V X $ A  $ K I & # ! (        /  1  2 2   @       7  0 9        "    7v ښ @'PI_neq0 m@}v\    s  w   Tb  W` ! mKC C 6,     FC@@%toRad/D|@%toDeg/C  P!yS ̩4V `  d!  c ]  %B`@b3 *  f  p.KiIk Š 3> x  q ˠǷVtTvG Р z Ԡз_}] ٠RR ۠ ⵩Ȱlya|_ C]C[ U ).3}@)toRad_inj0TEnGsL Ld @'rad_deg=벀x@)sin2_cos264C,K"㐩 @$cosd.\D , Cȩ; "@$sind.]Z 8 !a׷P  HBAAAA@@@@@D@  Ͱ 詚@&sin_lb2 n@,Rtotal_order%wٰ @+sin_lb_gt_01l S #9   $  C֠( -!" j5)Factorial@$fact>【#NatJ@ ` @ OSP  T( J \\( 8 Z(!l8Ơ ,t'J l:3/ ~Jvc ?y_c]Agb95%v R   PvHDzu<8 eQI E; w.02weq#m%ékg)c+ɩq[ͷة ЩMOQ:ة<ܷ ߩ\^`IK$ kmVXѩ xz|e Π % ؠY/#$   8,-U;/=1' Bo8..!:0267@)Rmult_0_r+ȀM\ m #~~M)C SР9Y署*Rfunctionsd@+pow_ne_zerog O  x )    p jG @  i I  C   ^   8 t T  C 3"3 'i 7  C : _  C  ΠV/X 4v \  P  _' l  C C [*Rtrigo_alt@(sin_term)    hEC sT@(sum_f_R0YcOC }@*sin_approxQSC    栩 ũݐ ɩ{@,Rle_lt_trans*GӀO*n~Waѕ :