"`"/"?y*Rtrigo_alt%Reals#Coq@()Notations$Init#Coq@%Logic$Init#Coq@*Logic_Type$Init#Coq@)Datatypes$Init#Coq@&Specif$Init#Coq@%Peano$Init#Coq@"Wf$Init#Coq@'Tactics$Init#Coq@%Tauto$Init#Coq@'Prelude$Init#Coq@)Notations$Init#Coq@0&v!D]hwnv %Logic$Init#Coq@0\͉!Ig)Datatypes$Init#Coq@0.i bYN Z*Logic_Type$Init#Coq@0 1jc6&Specif$Init#Coq@0;RWMi\N'Decimal$Init#Coq@0C涳N*ua#Nat$Init#Coq@0eʤģPSR蠠%Peano$Init#Coq@0 jha|ؠ"Wf$Init#Coq@0q+W,J+'Tactics$Init#Coq@0/9m+ a%Tauto$Init#Coq@0̂"&/rk0JqTttֱ'BinNums'Numbers#Coq@0dmk(5Ju<*EqdepFacts%Logic#Coq@0FI$ͼՋ`)Eqdep_dec%Logic#Coq@0u wWIϰ߼&Basics'Program#Coq@0!bs߯? :VU$Init'Classes#Coq@0](p{yOh.'Tactics'Program#Coq@03u%+Equivalence'Classes#Coq@07;ꮹ-SetoidTactics'Classes#Coq@0S_`nOU$&Setoid'Setoids#Coq@0D9AsWE!>$Bool#Coq@0j 2cZ`FW*Equalities*Structures#Coq@0όe얟)H.Ƞ2Relation_Operators)Relations#Coq@0%s鯰s4Operators_Properties)Relations#Coq@0U3y#h&)Relations#Coq@0r砠*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ&NZSqrt&NatInt'Numbers#Coq@0` .%m%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|&NZBits&NatInt'Numbers#Coq@0MlIpKt'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$&NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ)NMulOrder(Abstract'Natural'Numbers#Coq@04> Aat/ j $NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ'NMaxMin(Abstract'Natural'Numbers#Coq@0]v|Qg̟ʠ'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NLog(Abstract'Natural'Numbers#Coq@0KI'BinList+setoid_ring#Coq@0Au,Ring_polynom+setoid_ring#Coq@0gaKw9`UW+ListTactics%Lists#Coq@0,Jcy{+InitialRing+setoid_ring#Coq@0k/T=cN(Ring_tac+setoid_ring#Coq@0x2]%762f)Ring_base+setoid_ring#Coq@0fbU(2cNe$Ring+setoid_ring#Coq@0Msᬠ)ArithRing+setoid_ring#Coq@0ṔCgt?}%Arith#Coq@0I|кX*o4#Max%Arith#Coq@04=;3$>aU堠#Min%Arith#Coq@0Ce-Fѕ(PreOmega%omega#Coq@0\|چBb~w4%Omega%omega#Coq@0t.J'6\ϨrK(Zpow_def&ZArith#Coq@0f蓜DX;V*ZArithRing+setoid_ring#Coq@0{#'[{nm!/,Zcomplements&ZArith#Coq@0ʾq %RIneq%Reals#Coq@0JUڻIu)$w&DiscrR%Reals#Coq@0z41pV.%Rbase%Reals#Coq@0Jܡ\ c6{%R_Ifp%Reals#Coq@0c4+ZŠ,Fourier_util'fourier#Coq@0ϳ> 4`*r0'Fourier'fourier#Coq@0wV9TN*Rbasic_fun%Reals#Coq@0hܒiclE>%R_sqr%Reals#Coq@0X%MԹ%M+SplitAbsolu%Reals#Coq@0M)&qYlݹ5*SplitRmult%Reals#Coq@0sD\rt/$Even%Arith#Coq@0YO%q}d߫%$Div2%Arith#Coq@0n*Áht!,)ArithProp%Reals#Coq@0B+L?>*e˃a j*Rfunctions%Reals#Coq@0d¹d‹@'Compare%Arith#Coq@0OM v먣5L:'Rseries%Reals#Coq@08]$u+?'SeqProp%Reals#Coq@0Lt2|9D }SSԻ)Rcomplete%Reals#Coq@0{ڸ4q 'PartSum%Reals#Coq@0j&2"(>S)AltSeries%Reals#Coq@0d US^(Binomial%Reals#Coq@0]JrHr#E&Rsigma%Reals#Coq@0䟄WCJҦ<%Rprod%Reals#Coq@0gȀn_}!W+Cauchy_prod%Reals#Coq@0K*ߞ4q(Alembert%Reals#Coq@0I͗Huz&)SeqSeries%Reals#Coq@0Npc$5|T ٠*Rtrigo_fun%Reals#Coq@0T+ɧK/۠*Rtrigo_def%Reals#Coq@0$xR`VcxIaƶ"xkf9DDH8~儕\=c9Р*Rtrigo_alt%Reals#Coq@A(sin_term @!a,Rdefinitions@@!RӀ!i)Datatypes$Init@#nat@@%Rmult׀(Rpow_def @#pow#׀*@#IZR/r'BinNums'Numbers4@!Z7@C @(positive*@CAG@$Rdiv̀.B#NatC@#add ` @#mul VB\A&'Raxiomsl@#INRr)Factorial%Arithw@$fact>【1@,Rdefinitions%Reals#Coq@@!RӀ)Datatypes$Init#Coq@@#nat@ +k()6 77!7!7 7 7 77!7! 7!7! 77 7!7%',1LY@AA@plРtB@XXlxtA@d`@@@@@AA@@>@,Field_theory+setoid_ring#Coq@@&FEeval>@@A@A"s @,Ring_polynom+setoid_ring#Coq@@&PEeval"s @@A@BA@A@(cos_term @ݩߠ@y +k()77!7 7 77! 7!7! 77 7!7%'$xAA@Tdl ߐxB@ÐDנ\l @@@@@e*sin_approx @DB!n8*RfunctionsF@(sum_f_R0YchO@^)@Zր̀܀ H+k() 7 7%'"th@@@@@*cos_approx @zx6l4,@&*;@B)Jth@@@@@à-pre_sin_bound @@@a@,Rdefinitions%Reals#Coq@@#Rle=Π@@/rAB@CBB%Logic$Init#Coq@@#andЖw@@@QSD$Init#Coq@@ ` @ @@@B BMB*Rtrigo_def%Reals#Coq@@#sinҀ7?EC64B9B۩P~BB@@@@@z-pre_cos_bound @@iAYՀˀ@76@@67@CCB@@:*@B @CB@݀Ӏ&@B BC€@6?PBB@AB A@#cos㹀ܩ& 䩚3詚ۀBB-A&B9A@@@@@%@@@ ӳ2@ ӳ2[)Datatypes$Init#Coq@@A@ Գq@ Գq\ @A@AB@cA&%$@A.0TQ+Ring_theory+setoid_ring#Coq@@ABA.U>[J @B@@"O@(PeanoNat%Arith#Coq@#Nat@&of_int"O#Nat$Init#Coq@@ 6@A@A\@&BinInt&ZArith#Coq@!Z@'quotrem\)BinIntDef&ZArith#Coq@!Z@ /@A@\@@+pred_double\@/S@@A@As2@3@&shiftls2*@vY@A@BCs8@8@&shiftrs8/@vY@A@ѓ@>@&squareѓ5@y@A@@D@&to_intϑ;@@A@z@5@&doublez,@/!@A@ABCD/@O@)log2_iter/F@wd@A@NH/@B@&moduloNH/9@1,@A@A\d@G@&of_int\d>@1?A @A@bz@M@&of_natbzD@1?G!@A@#@S@&shiftl#J@1dV@A@#@Y@&shiftr#P@1d\@A@ABCD/x@&BinPos&PArith#Coq@#Pos@)pred_mask/x)BinPosDef&PArith#Coq@#Pos@ )X@A@6@x@&square6o@19@A@AV+L@}@&to_intV+Lt@2@A@V1b@@&to_natV1bz@2 @A@V5=@@&to_posV5=@2@A@ABCl@@)sqrt_iterl@!$:@A@@@6@(sub_mask@-@)@A@ADEF c@@'testbit c@!ć@A@7 B@D@'of_uint7 B;@*`]?@A@AG@I@)mask_rectG@@+ED@A@F˱@O@)add_carryF˱F@+p@A@AB^Ҷ@@'to_uint^Ҷ@#m@A@gL7@@'sqrtremgL7@40@A@Aq@@'testbitq@5)@A@ݎO@@+succ_doubleݎO@6r@A@A p@l@0double_pred_mask pc@0-+m@A@BCD T@&BinNat&NArith#Coq@!N@!t T)BinNatDef&NArith#Coq@!N@ 2@A@ @@#add @3 @A@A l@@#div l@3@A@ Y@%@#eqb Y@3@A@AB #@*@#gcd #!@3n@A@ T@0@#leb T'@3@A@ACEG "@5@#lor ",@3m@A@ q@?@#ltb q6@3@A@A @D@#max ;@3@A@ @J@#min A@3`@A@AB @O@#mul F@3B@A@ ~@U@#odd ~L@3@A@AC =@Z@#one =Q@3@A@ @b@#pow ˑY@3@A@A c@g@#sub c^@3@A@ @m@#two d@3J@A@AB hx@r@$div2 hxi@>@A@ @x@$even o@>4@A@ACD @}@$ggcd Бt@>U@A@ @@$iter }@>:@A@A 3"@@$land 3"@>m@A@ F)@@$log2 F)@>t@A@AB S@@$lxor S@>@A@ @@$pred @?U@A@AC @@$size ܑ@?'@A@ !@@$sqrt !@?@A@A ! @@$succ ! @?\@A@ !7@@$zero !7@@P@A@ *@@%ldiff *@@A@AB g_@1@+pred_double g_(@25\@A@CD m@6@÷ m-@2j@A@S@=@&of_intS㫑4@4}5@A@AS@B@&of_natS9@4};@A@BEFGH\R@G@(mask_ind\R>@4@A@\^@Q@(mask_rec\^H@4@A@A!,@V@&pred_N!,M@4s)@A@B@[@&shiftlR@5X@A@@b@&shiftrY@5X@A@A&@g@&square&ّ^@5,x@A@BC"@l@&to_int"c@5L@A@"@t@&to_nat"k@5L @A@AnTq@y@+testbit_natnTqp@6n@A@B@@(succ_posB@@A@I@@'abs_natI@?n@A@AB.@@'of_uint.@MS@A@3~@@'sqrtrem3~@7]%{@A@ACD,@ @'bitwise,@/v@A@>4'@@'testbit>4'@8g$@A@A{U@@,sqrtrem_step{U@8R@A@u^@9@(div_euclu^0@ @A@Afz@@'to_uintfz@9w@A@Bl@'@'comparel@3R@A@CDEFs8@,@+of_uint_accs8#@5+@A@}@R@,pos_div_eucl}I@&`@A@3x@(@'compare3x@]=@A@A@^@&doubleU@'޺_@A@BCq@@+of_succ_natq@$@A@w@i@&modulowɑ`@)1@A@ADK@n@&of_intKe@)j,I@A@K@v@&of_natKm@)j2_@A@AI@{@&shiftlIr@*O@A@O@@&shiftrOx@*O@A@AB,@@&square,}@*ow@A@Z@@&to_intZ@*81@A@ACE`@@&to_nat`@*9G@A@e@@+testbit_nateđ@+@A@A+{@@'sqrtrem+{ё@,J@A@5z@@'testbit5z@-T|@A@A @@'to_uint ͑@.@A@ @@+succ_double @.^4@A@A#@'@'compare#ݑ@ )Q@A@BCD%t2@,@(size_nat%t2#@ @A@%9@3@+of_uint_acc%9*@ ΋@A@A%V@8@+double_mask%V/@ S@A@%%@>@'div2_up%%5@ "@A@ABEF'ş@C@'Ndouble'ş:@ @A@(b0@K@*shiftl_nat(b0B@9-@A@A(nՖ@P@*shiftr_nat(nՖG@'@A@(@V@0succ_double_mask(M@@A@*W$@\@,compare_cont*W$S@!@A@.0@b@.sub_mask_carry.0Y@΂@A@ABCD.@@!t.@ ;@A@.먩@@#add.먩@ `@A@A.U@@#div.U@ @A@.B@@#eqb.B@ @A@A. @@#gcd. @ @A@.=@@#leb.=@ @A@ABCEGHI. @@#lor. @ @A@.Z@ @#ltb.Z@ @A@A.p@@#max.p@ '@A@B.@@#min. @ @A@.@@#mul.@ @A@AC.g@@#odd.g@ @A@.&@&@#one.&@ @A@A.뾴@+@#pow.뾴"@ k@A@.L@1@#sub.L(@ @A@.@7@#two..@ @A@ABCD.,a@<@$div2.,a3@ @A@.Xz@D@$even.Xz;@ ?1@A@A.@I@$iter.ؑ@@ @A@B. @N@$land. E@ @A@. @T@$log2. K@ @A@ACE.@Y@$lxor.P@ R@A@.y@`@$pred.yW@ `<@A@A.Ʉ@e@$sqrt.Ʉ\@ ;@A@.@l@$succ.c@ @A@.t @r@$zero.t i@ Z@A@AB/@w@.to_little_uint/n@ @A@CDF/@|@%ldiff/s@ H@A@00@@'compare00@?H{@A@A1P%@w@!t1P%n@  @A@B1P@|@#abs1Ps@ @A@1P&@@#add1P&z@ @A@A1P@@#div1Pґ@ y@A@BC1P@@#eqb1P@ f@A@1P@@#gcd1P@ 0@A@A1P@@#geb1P@ T@A@B1P@@#gtb1Pʑ@ q@A@1Pĺ@@#leb1Pĺ@ a@A@A1Pň@@#lor1Pň@ /@A@BCD1P@@#ltb1Pב@ ~@A@1P@@#max1P@ @A@A1P{@@#min1P{@ "@A@B1P]@@#mul1P]@ @A@1P@@#odd1P@ @A@A1Pɣ@@#one1Pɣ@ J@A@BC1P@@#opp1Pԑ@ {@A@1P1@@#pow1P1@ @A@A1P;@@#rem1P;@ @A@B1P@@#sgn1Pˑ@ r@A@1P@@#sub1Pɑ@ p@A@A1Pe@@#two1Pe@  @A@BCDE1[8@@$div21[8ޑ@ @A@1[d@@$even1[d@ I@A@A1[6@@$ggcd1[6@ i@A@B1[U@ @$iter1[U@ @A@1\@@$land1\@ /@A@A1\@@$log21\ @ 6@A@BC1\$@@$lxor1\$@ @A@1\Y@$@$of_N1\YÑ@ >j@A@A1\@)@$pred1\ @ j@A@B1\@.@$quot1\֑%@ }@A@1\@5@$sqrt1\,@ @A@A1\w@:@$succ1\w1@ @A@BC1\k@?@$to_N1\k6@ @A@1]@G@$zero1]>@ eD@A@A2:@L@%abs_N2:C@ @A@21@R@%ldiff21I@ ߵ@A@2=*@X@%quot22=*O@ @A@ABC2kF@@(size_nat2kF@{@A@3@x@(tail_add3o@^q@A@ADEFGH3@}@(tail_mul3t@^@A@5Z@@*shiftl_nat5Z@y/@A@5f}@@*shiftr_nat5f}@4@A@AB5a@@'iter_op5a@ @A@C6w~@@'of_uint6w~@^5@A@8j@@'of_uint8j@'"h@A@9E@@(div_eucl9Eđ@(*k@A@AB:x@6@,Nsucc_double:x-@ ʭ@A@CD@[@&divmod>R@C@A@>@b@&double>Y@NĴ@A@?2@S@,pos_div_eucl?2J@-u@A@AB?;@m@&modulo?;d@"i@A@CEFGIJ@(Alembert%Reals#Coq@0I͗Huz&)AltSeries%Reals#Coq@0d US^%Arith#Coq@0I|кX*o4)ArithProp%Reals#Coq@0B+L?>*e˃a j)ArithRing+setoid_ring#Coq@0ṔCgt?}*Arith_base%Arith#Coq@0Ĕ}CS&Basics'Program#Coq@0!bs߯? :VU'Between%Arith#Coq@06v*0ur`C0&BinInt&ZArith#Coq@0BpHޞun^)BinIntDef&ZArith#Coq@0ådR4Tuy'BinList+setoid_ring#Coq@0Au&BinNat&NArith#Coq@0K11ڤs+Π)BinNatDef&NArith#Coq@03@1O,[{ 'BinNums'Numbers#Coq@0dmk(5Ju<&BinPos&PArith#Coq@0vyػ0= u)BinPosDef&PArith#Coq@0}H d.%,b(Binomial%Reals#Coq@0]JrHr#E$Bool#Coq@0j 2cZ`FW*CMorphisms'Classes#Coq@0qیZBeϠ0CRelationClasses'Classes#Coq@0TL;0RUfw1+Cauchy_prod%Reals#Coq@0K*ߞ4q'Compare%Arith#Coq@0OM v먣5L:+Compare_dec%Arith#Coq@0jXF 8jih@0.i bYN Z)Decidable%Logic#Coq@0ND걸풬/Oߠ'Decimal$Init#Coq@0C涳N*ua&DiscrR%Reals#Coq@0z41pV.$Div2%Arith#Coq@0n*Áht!,%EqNat%Arith#Coq@0AIgՋXRV *EqdepFacts%Logic#Coq@0FI$ͼՋ`)Eqdep_dec%Logic#Coq@0u wWIϰ߼*Equalities*Structures#Coq@0όe얟)H.Ƞ+Equivalence'Classes#Coq@07;ꮹ$Even%Arith#Coq@0YO%q}d߫%)Factorial%Arith#Coq@0@oehJd%Field+setoid_ring#Coq@0J _ȫ)Field_tac+setoid_ring#Coq@0d vDZl^۹H 0B~uYٮ٠'Fourier'fourier#Coq@0wV9TN,Fourier_util'fourier#Coq@0ϳ> 4`*r0-GenericMinMax*Structures#Coq@0måj$"Gt%Arith#Coq@0䙛#c:D $Init'Classes#Coq@0](p{yOh.+InitialRing+setoid_ring#Coq@0k/T=cN"Le%Arith#Coq@0d}Omq+$List%Lists#Coq@0>I+ListTactics%Lists#Coq@0,Jcy{%Logic$Init#Coq@0\͉!Ig*Logic_Type$Init#Coq@0 1jc6"Lt%Arith#Coq@0KZ-eJkP܏#Max%Arith#Coq@04=;3$>aU堠#Min%Arith#Coq@0Ce-Fѕ%Minus%Arith#Coq@0LFtR")Morphisms'Classes#Coq@0Imӽ%\$PD.Morphisms_Prop'Classes#Coq@0% :B'.>u%$Mult%Arith#Coq@0햖Qyb0$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI%NBits(Abstract'Natural'Numbers#Coq@0qteo_hɅ $NDiv(Abstract'Natural'Numbers#Coq@0bz$?[p(5$NGcd(Abstract'Natural'Numbers#Coq@08E-S ;j_Ҡ$NLcm(Abstract'Natural'Numbers#Coq@0 ~xZ9L{:$NLog(Abstract'Natural'Numbers#Coq@0K Aat/ j &NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf+NProperties(Abstract'Natural'Numbers#Coq@0unt"kwpYC%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ%NZAdd&NatInt'Numbers#Coq@00h`ZK4*NZAddOrder&NatInt'Numbers#Coq@0e~1>r砠(NZAxioms&NatInt'Numbers#Coq@0] ρ5r&NZBase&NatInt'Numbers#Coq@0^&8yUL&NZBits&NatInt'Numbers#Coq@0MlIpKt%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZMul&NatInt'Numbers#Coq@0ctR~6[Ƞ*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R'NZOrder&NatInt'Numbers#Coq@0 q;Ve7R W,(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x&NZSqrt&NatInt'Numbers#Coq@0` .%m#Nat$Init#Coq@0eʤģPSR蠠$Nnat&NArith#Coq@0$W;s #%M)Notations$Init#Coq@0&v!D]hwnv *NumPrelude'Numbers#Coq@05WUVŦ]xVXԠ%Omega%omega#Coq@0t.J'6\ϨrK+OmegaLemmas%omega#Coq@0TJ#Jes4Operators_Properties)Relations#Coq@0U3y#h&&Orders*Structures#Coq@0$Znl0\͗+OrdersFacts*Structures#Coq@05Mܿ獐ζΖLB)OrdersTac*Structures#Coq@05'4Ԗ+9%'PartSum%Reals#Coq@0j&2"(>S%Peano$Init#Coq@0 jha|ؠ(PeanoNat%Arith#Coq@0O~2$k[#lZ)Peano_dec%Arith#Coq@0Kݢ*k$Plus%Arith#Coq@04tmG$Pnat&PArith#Coq@0,?pr.gZ(PreOmega%omega#Coq@0\|چBb~w4'Prelude$Init#Coq@0JqTttֱ%Quote%quote#Coq@0J@ŹVz-,3%%RIneq%Reals#Coq@0JUڻIu)$w%R_Ifp%Reals#Coq@0c4+ZŠ%R_sqr%Reals#Coq@0X%MԹ%M'Raxioms%Reals#Coq@0S]jnj][L%Rbase%Reals#Coq@0Jܡ\ c6{*Rbasic_fun%Reals#Coq@0hܒiclE>)Rcomplete%Reals#Coq@0{ڸ4q  G0(2{Ze$ќ8)RealField+setoid_ring#Coq@0 >ʾq /RelationClasses'Classes#Coq@0Gz rA6ՠ4Relation_Definitions)Relations#Coq@0]4Ѐd{n^2Relation_Operators)Relations#Coq@0%s鯰s)Relations#Coq@0-SetoidTactics'Classes#Coq@0S_`nOU$&Specif$Init#Coq@0;RWMi\N+SplitAbsolu%Reals#Coq@0M)&qYlݹ5*SplitRmult%Reals#Coq@0sD\rt/'Sumbool$Bool#Coq@0sB ,$11.]m'Tactics$Init#Coq@0/9m+ a'Tactics'Program#Coq@032 Q@@@@#_10@)@A@@@@@@@@#_112M접@נ#_12'`o@B'R_scope)nat_scope@8-@Ϡ2 Q@@@@#_13@&/.@#_142M접 ,#_15'`o@B('@^S@2 Q@@@@#_16TS@#_172M접 BB@A#_18'`o@BNM@y@2 Q@@@@#_19 qzy@#_202M접 BB@A#_21'`o@Bts@@2 Q@@@@#_22K@I@A@@@@@#_232M접 #_24'`o@D@@@ՠʠ@2 Q@@A@#_25|@@A@@@@@#_262M접 #_27'`o@DΠ͠@@@栐@@@zsC^,%@ liʂ_lC7@]m?;"G#`@)_o"KJ%[sZ!a,Rdefinitions%Reals#Coq@@!RӀ!n)Datatypes$Init@#nat@!H@#Rle=%@#IZR/r'BinNums'Numbers-@!Z7@AB"H0CB@(positive*@B  CР%LogicD@"or @BAAAA@@@@@D@@"eq @oDL@#notШ%@#andЖw@b*Rtrigo_alt@*sin_approxQSE#Nat}@#add ` @#mul BA8*Rtrigo_def@#sinҀ& 2*+J%RIneq@'Req_dec3{T%Hyp_a`t@(eq_ind_r!2#ϩXRAJB=O83] JEVYB·!rrΠlҠp}A۠ypةߠک}KB@#Rlt= 鵩'PartSum@)sum_eq_R06 @(sin_term)"n0"H1%Peano@"le UxT@[i23@%Rmult׀(Rpow_def:@#pow#׀ #aHJ*&CU@$Rdiv̀'Raxioms\@#INRr)Factorial%Arithf@$fact>【堩ݠ8QyUz|J2LNI`IK@$Rinv84,qȐ(hyp_list@$list]@A@$prodt@,Ring_polynom+setoid_ring@%PExprk@Ȑ'fv_list&BwC?/ɩ@2RField_ring_lemma1!7𚠐(Ring_tac&@0ring_subst_niter!1G(6D- / 1 3AC8é:A @$Truey@AA@$boolZ'@A@ Ȑ#lmpe@.mk_monpol_list(`Ț&BinInt&ZArith@1P&)BinIntDef@ ̀@1P] @ @#sub1P@ p@#opp1P@ {%Zbool@(Zeq_bool0߀(@'quotrem\#@/ŀ@#Monf@@#Polj@@#Peqj*(@*norm_subst7:d0;PO@;5/'0=RQB=71)a6FFV@)Rmult_0_l+€ C uC>+B%ID[JL(  eC"Y9]4,Rq\s*Rfunctions@'pow_add2}^C:C@W@&eq_sym X@(sum_f_R0YcC@%sin_08Tt@fƠBfDʠF  r @)False_induُݠG=)Hyp_a_pos&署@%Rplus+1ޠTG!i堐Hc&u@$pred `<|to;j& <jd}8zU/*o(!WB)>29%I76Y, .j|E۷_F߰HIOyRSv{mB~ha@^SQ+09NM>93-%0;PO@;5/'_@&Rinv_1 ;9ۀCn<@  C vD?,֩&C'C5@&eq_ind Ju堷J nө";@&Rminus&H p@'and_ind14ۀЩ6,(Y@462"H2"H3à,=KK5کѠK됩XSdPנ G㠐Ltlgib]Y xswpY@.Rplus_le_reg_l -<@$Ropp΀)!24 :-?& S9/f/ I0C_<(M:9UyBJ{DUB-`G*tZ2G@*Rplus_commqb/[@)Rplus_0_l 6ʀb7@+Rplus_opp_l73[qIl@+Rplus_assoc P~qWRgcm~LepSJtPuXOȠEzߩyAi><e6h1t+v@o@ǩz m ӐȐ"UnYvƩ%ZR(&@!N7@ 6)ArithRing'@0natr_ring_lemma1 ,M 3E&BinNat&NArith$@&of_natK)BinNatDef*@)j2_R1 3\7 9  @(?@ADB'@z  @{3 ,@x %@y3B !xSB4@#eqb Y.@3:@(div_euclu^4@ keީgh0j+($$]YS0l-*&!&_[5)Cɰ#24',*Ұ,@<cB1? m۰5BF7:8Р,S?6NQ|8 XŠѠbWi1uwwuzs@peqO]0splglb_Y0urninda[qCk:nFusu琩OK{1%Xv䠷O堩OO )AltSeries@&tg_alt dF/ްРkݩH ̵@Zlg0i0éc̩%L֩/٩r*ϩƠPKF4٩?af@&sum_eqcǀ \mР"dbB?=?ƠQvnii6eI  HFE@<ک8]:_7<a0)^>cb%@ةi0k  PL0m  RN C%ՠMؐА C԰= p )cm5@(scal_sumWJ1wN|RlSܠ8>g l: WtB(wyȠmd}~ᐩӠxUޠ=,.j٩װKٰ`RC5ln+NkysXtoCAxw`<mISdMߩMF!40DE Vj9z$nЩ*_'  j&Ơ ̐  "H4Π7H@H_ZȐ"H5ecC@>SAZ<:940ΩJQ_FV.%X'0@ͩ^ݩ0`EA0bGC fwj$ p*'B)~M6_a  I!'#*%0  @1Ropp_le_contravar>=a02 Y\@z@頩EKuygKQ{ѐ{@6alternated_series_ineq 3[lũðtLNéʩ@,s>90};0C5  C?   CD! שN+# "%'tUrj|H@;;%7~v JH(%#%[]|NaKM(&% =@BD@Jɩ0L1-0N3/CԠϠT ٠ԠM ߠAII/ĠEwӠV ѐi2b#ݐՐcY@#m@1Rmult_le_compat_lڀ{ŐvAO2X4@&pow_lt!Eۀũ@.Rmult_le_reg_l΀.2YܠԠϩϐ̷b`jM@(lt_0_INR "Lt@(neq_0_lt y|&m, D@%Falsee@8@*fact_neq_0)    C;'qv%G0x:iNǩpBϩ Kk֩$Щ +'ԩMةʠ3%ߩXԠ=a$2ɠé MѠ0> ՠ1$ W۠ݠ=ΩK ˷2 AS Gӷ: ! m %? & rXf /&h 1B*ɷM 4 c q :KaӷW > !Soo} FWte L /a T"_r Y <)npr ev h K8}@+   w { ^ǩKSE 0"  p٩]e$1$11 F٩ mɰ˰ϰѰà nЩհǠ r o s٩Π y v x s xxtyy ۵@ i{v0!  3x0#  ҩ r ۩젩 XX 5\ Ð0m n   ʠ̠ __Πa   栩ӠW 3 O@)Rle_trans"Y([ 퐩 Ӑ А  10c`USRM I Ejtt7l.'@ $r0t Y U 0v [ W %C Ű . u@$Rsqr=MW $  7  Q 8  X h%R_sqr >@+Rsqr_incr_17@ ={ @&IZR_leN  # g 鰛 C@*comparison;f@B@'compare3x=@]= 5 Cl B@@@@@D!y@  @ " = ~&(Ȑ"H6+%!e..@@@@@@@@@@@D!c7A .   @ *A33 E7C@ n1P,= ǩU嵷 9PJDA;U@ AX 9 Ր 6'_4Q # !C%lemma O ɠ ө)Morphisms'Classes @0reflexive_properm+("r1 ɶ"r2 C@*respectful%WO?   l  M&Basics'Program @$flip$YYY @$impl7o-@:reflexive_eq_dom_reflexive=[ % g/RelationClasses6@.flip_Reflexive-q @.impl_ReflexiveJ G@(symmetry0xj 3@,eq_Symmetric9^ DT% 7 ޠ  ֩ Q 20 ]@/eq_proper_proxy)f ̐: h@1Rplus_le_compat_r?A . o@4Rplus_le_le_0_compat 93/ v@,Rmult_le_posN858 񩚠 @'pos_INR [ [ ݰ Q@  y yX Zک a  zC $ikm ,mqm C EQ 2wy{ :   @%S_INR=s*  . @(mult_INR>@ @(plus_INR yG RS @)Rmult_1_r+1n @*Rinv_r_sym9lU䀠@.INR_fact_neq_0, >@+Rmult_assoc&S n pW Y0 L o5ǩ @*fact_simpl;tLxvK |  K0橚 @*Rinv_l_sym9`g~+F&  h@*Rmult_comm8  2C  {   G ? : : 7  C'SeqProp @-Un_decreasing"? @1cv_speed_pow_fact='Rseries @%Un_cvɀ    ] #+ Ե#eps  @#Rgt=< 1 ⩚ @&ex_ind 5{ F   @ @"ge Uw C  *Rbasic_fun @$Rabs; wn Ҡ #  ϐ    @"ex @ &( ' * (@' 3  ꠩ ;  5 4L5A :< ; > <@; G4  Y*$ 3 s  8 IH   0Ȑ"H7    W )   1 v o@  l amK Y 0olhch^[U    0qnjej`]W   mC  g  IKC  k ݐMO o | t rp  (PeanoNat  @(le_trans:   m   o%Rprod @'le_n_2n% 쩚$Mult 7@0mult_le_compat_lm,  "@.le_succ_diag_r  "Le I@&le_n_S8 - { :C= 0    C @    @  /@&R_dist AC㠷   { " C  Ȑ!s 2@)exist_sin$l€񩛠&Specif @#sig#* @ 췐!l 署 H@&sin_in!"ꀠ "BBB@@@@D)   1  X 6 U+BBB@@@@@?5 , * H  H ! @ V  M $!p$- ) L+B s@1Rmult_lt_0_compat=    b ~@0Rinv_0_lt_compatD $@+Rabs_pos_ltC @ #  b F )  5Jԩ Ƞ  < + KM L O M@L XE   k W 4 @%sin_n  5B\  < =  [[JBBB@@@@D@T tv u x v@u n Ԡ ۠   ]) Xe]  _  B ~(l    @  젩  p  w  u ֐ 5*j    @     ^   &   jf  Ʃ נ b ( : )    j!  ש   ٩ r ۩  ' u  .&    }        $              o   C    Š  q yC      }C  7 y    Ԡ_ S   ۠ : ֠  o b  F ߠ쐐`   muV  \%  ?& ( " t © = Y } 6" a   b  q: K # ˩ $  G3 r 5 7 s  bI K E ^p0 P a c  nU W %Q ; [7 u\ ^ ,X q  I6F f) h O 8- mo Q q ? Z5 v Š ~j G9 bj?A p" [ Ȑ"H8    ͩ ˰ ?  ©   V  @'    L 9  \ C, |  ^ Kh   Q 7 n p P ͩ tzb r>  | w dC ^ { 3   a  Zé   ǩ ŷ ̩e    (0 > <   / . 1      )   +  -    @}      3  0 5         0 7         C  * ,8 à09< `@(pow_Rsqr(ѡA ŠC iE` |C   נ ٠   ؠ  ᠩ琐c ߠ    ɠJ   i f d$ f& h( j* l, e c b ]Y U z W | Y ~ y M [  H X  }  \ } c  ` e  g  [ N G@ܰ D 9 7     0  4 3 $     yu 0 ! 6 5 & !    {w ECN  ;}$! VC^,.1K,M0 NM ?3 '+/@9Ropp_mult_distr_l_reverse/Mv@7@9Ropp_mult_distr_r_reverse) X? )A,#@+Rplus_opp_r {G   L $ LK o  "M@/Ropp_plus_distr:C+bة  .C1hީ  4 n 8i  uשp  ש  }Ix @*decomp_sum-  6@)lt_0_succ5% Y©/  \" >ȩ   b  i ˷ҩ͠  "ҩ  ߩ % y' ̐㠩А  Ր  ِ -8ߐ  *͠ 萩 R Ԡ0 A    Q*  & (D .R\5 1  3O 9]& 7j 9G ;mF-(U Ei2 C vm6 GyŷR94! N PBl9 VzC Tb VI Z \gNI6 gT0nUP= j\ l r_@.Rmult_lt_reg_l>eЩސNO | ҩ61Z u[ytIc Okt  nX! ac طk jl) ҩu!) "z  Ġ8 1Q Ѡé EɩĠ ޠg P ө :o֩Ѡ   TީĐ ǐ |  h$  ֐  ؐ  /,ᐩ* 2: 쐩 0"  ٩j @C /@)Rmult_1_l9 *`@/Ropp_involutive"29?=@@)Rabs_Ropp&#F fG=vr 3tM@2Rmult_plus_distr_l0ylɀVzҩ!@)Rabs_mult)۩'@)Rabs_Rinv&CB$\)@)Rplus_0_rH€D ~ giw$ y&2 27 7oq8 :XKV Lx[9~C<CkX  CkjȠ  w Ơ tL vICutҠ t  )  - LWՠp eְgi  өѰ   +C*sbx@"lt UxcЩ ѩ "    CG(zC<@@sIC@*cos_approx?P\Z$@#cos㹀 f?:K7ڷ̷' @-total_order_T=ҖX{ @%sumor$|@@'sumbool7̂K@BAAAA@@@@@D0@ ?K@;F NPE6AA%BAAAA@@@@@DJ/TJcE!^ 6 hJ Y#Hltc4Pc Tϰ8Tcɷ#Heqb=Yl= Ϸ#Hgt7g@6Ropp_0_gt_lt_contravar  C&1 rH+6 \s =R3D h@(cos_term& *E -eQ<Ke,9 1ik9! A)!>` |CPg JR:2O\N '^F>[;&cKC`m$`.n+p(KCgCCz7Z4 Is@(Rsqr_neg  }8u:MyŠOCWjk C[ĩ i ȶͩ 1ѩZ ѩ̩ܩߩhĠȠ uѠ Ӡ. ' +-t吩E0 lJ=$b@'cos_sym6Q*Kv#=Nyu@::@_  @=_᰷"a0"j_(9 =z3ؠ0/K2aku>OAo^EΠ*ZUARQ7 |\v]_-w.un@k`^(80F[ZKF@:20H]\MHB<4l  C u C #CzH(E%C\nޠ<yũ ķũ)Wp<[Щ!H=ɠP+͠T$ ש Zqݠd©{m&  SݩwŠD ŷ͠=XV+&-&ܠ &ĩ +24#9974 .6',;I,1&Bf)oRDT'7 J$"0JΐLD!4PðPR@tO@{Bɩo4 Hue0.頩B搩ސhi=M~|{C?AFDFYHV L $NQO砩CjV|`Kd= C fiېݐ۷pnpMBr v5۩x {ym۠9ڠ(uީܰ7nTv\DةZys )۩}(&uéuǩ?nfMCeΩ[~{s^ Ct76ȐG|A4F_sϠ8%ԠBFb`@=;J64H͠PXѩ}ՠ#  7[Ia (g:Eeb` ԩb" _[C&֠XCɰ2ܠ-=cѰ:7 >X?Ƞ$* ~-wopנ3Wd7Щ=ߩC#GM rMѩ~ vBũt'v#@us=*M%0[po`[UOG '0]rqb]WQI !q֠$5٠' zߠ-!!}o˩ͩu8j.p6e !g#{DP@mY߶@Gf`IWZ^J^f"n1ǵﵵF!\   XS@{©#Щ0%b0' CMaR%ӠTΐƐ ݠ7ڐr; 8 搩ސ bI,vŐ@1Rmult_le_compat_lڀQΐQ@&pow_le!È $ T     s^ a̩   eЩ ߩ ٠ C5Cmpn`MOQ ͩS:WYk4,ub;(Khzj 6q"d)'kKk1 i"s:d+vũlm˩JѩxͷթTީ@Πje Ӡo "0&2 *}Π- ;   ɩB  %  G *ᠩ&( R 5젩13 ]& @' <> 9zw jid`Z\ `RQSeZqqs \U@RGE0-BA2-'!#0/DC4/)#S\mo .>' ٩@!4y{ {n v@ uXl o  q= >| 6T 1 +Z %  "  6@" 9     2 @  2   C  LUP0 G A[V ; # 8 2 L@8 O 0̐ *  , H V + H   C  DKK (   M   OީĠƠ W U iZ \P  P  # %  z R g a U ~ W  s V: C A >C :   q2 ߩp   { c x r @x   p  j  l ^  k Q Z  X UC Q  CҠϩ     $ 1  u) p k f.ϠѠ>4 l@6? OtT ] a˩ bةݠ w \  } Wީ C͠ P PPJC)v*NC PA G B!ڠ]e :6? 8 1* ,+.,@ +7 $  ! 8 :9<:@ 9E 2J%~0ɷ GF  I KJMK@ JV C *:6A.W  +: =   ԩ  Cש ư?C eI  C }y@ { Mm onqo@ nz 3C xv1NHeC  @)exist_cos$Vd  @&cos_inoD  ɩ   wѩ  @  թ ˠ  ܐ@}ߐ   =   @  $@%cos_nt I \@ ɷ ʶ˶@ ʩ֠ Ð)0թ  ܷ ݶ޶@ ݩ頩 ֐<CKA$ #  @  鐩OV^өTq շ9  H"ᠩJsݠ0tg  頩Rl堩 " K<#% Ht ʵ FCİ-éCʰ3ɩߠCΰ7"9ϷS:Ӱ<ԩOm N:. N 1 ᵩSmTVibN+B-(fw ,Or^;R=-8/6t v )(x ({}/[k,8  +ϩͰ3ة&]C') aG;/é 렷mDS2  4 G % # ! E|~^ } Ij f  ; 0ĩ]ʠ 5Ʃ Ӡ 7ƩeΩ = ? J թnש  Ω V ҩQO/,* ٩,. ݩ0)'&!> ;@B @Hǩ0J/+0L1-CҠԠ Vؠ \ZR9 9CޠࠩIY ޠ ˩n װG-ː  1  7 C°+u ; 9Cư/yǩB˩?+> )iF2x %p  I WMWC NnUP=r'`q &Iy}d_Ly{Svb?=uڷvq^ BHk7 L \U % W|02f8 ǷuàHŠ0Ϡ<%ũ֠EA|̩Ǡ   N G = 9w@ q젩[Nu}]Pw[[bb}caec ѐ bC꠩א= C  AC y &o&&_& &JJ ) K +&mE9HF86Ckm 6pr{ t W]=a a<[O^JIC   dJC _JDӷ6ċ^ [8