"`%<% B'Rtrigo1%Reals#Coq@<*Rtrigo_fun%Reals#Coq@*Rtrigo_def%Reals#Coq@*Rtrigo_alt%Reals#Coq@'Cos_rel%Reals#Coq@)Notations$Init#Coq@%Logic$Init#Coq@*Logic_Type$Init#Coq@)Datatypes$Init#Coq@&Specif$Init#Coq@%Peano$Init#Coq@"Wf$Init#Coq@'Tactics$Init#Coq@%Tauto$Init#Coq@'Prelude$Init#Coq@(Cos_plus%Reals#Coq@)Notations$Init#Coq@0&v!D]hwnv %Logic$Init#Coq@0\͉!Ig)Datatypes$Init#Coq@0.i bYN Z*Logic_Type$Init#Coq@0 1jc6&Specif$Init#Coq@0;RWMi\N'Decimal$Init#Coq@0C涳N*ua#Nat$Init#Coq@0eʤģPSR蠠%Peano$Init#Coq@0 jha|ؠ"Wf$Init#Coq@0q+W,J+'Tactics$Init#Coq@0/9m+ a%Tauto$Init#Coq@0̂"&/r'Prelude$Init#Coq@0JqTttֱ'BinNums'Numbers#Coq@0dmk(5Ju<*EqdepFacts%Logic#Coq@0FI$ͼՋ`)Eqdep_dec%Logic#Coq@0u wWIϰ߼&Basics'Program#Coq@0!bs߯? :VU$Init'Classes#Coq@0](p{yOh.'Tactics'Program#Coq@03u%+Equivalence'Classes#Coq@07;ꮹ-SetoidTactics'Classes#Coq@0S_`nOU$&Setoid'Setoids#Coq@0D9AsWE!>$Bool#Coq@0j 2cZ`FW*Equalities*Structures#Coq@0όe얟)H.Ƞ2Relation_Operators)Relations#Coq@0%s鯰s4Operators_Properties)Relations#Coq@0U3y#h&)Relations#Coq@0r砠*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ&NZSqrt&NatInt'Numbers#Coq@0` .%m%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|&NZBits&NatInt'Numbers#Coq@0MlIpKt'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$&NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ)NMulOrder(Abstract'Natural'Numbers#Coq@04> Aat/ j $NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ'NMaxMin(Abstract'Natural'Numbers#Coq@0]v|Qg̟ʠ'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NLog(Abstract'Natural'Numbers#Coq@0KI'BinList+setoid_ring#Coq@0Au,Ring_polynom+setoid_ring#Coq@0gaKw9`UW+ListTactics%Lists#Coq@0,Jcy{+InitialRing+setoid_ring#Coq@0k/T=cN(Ring_tac+setoid_ring#Coq@0x2]%762f)Ring_base+setoid_ring#Coq@0fbU(2cNe$Ring+setoid_ring#Coq@0Msᬠ)ArithRing+setoid_ring#Coq@0ṔCgt?}%Arith#Coq@0I|кX*o4#Max%Arith#Coq@04=;3$>aU堠#Min%Arith#Coq@0Ce-Fѕ(PreOmega%omega#Coq@0\|چBb~w4%Omega%omega#Coq@0t.J'6\ϨrK(Zpow_def&ZArith#Coq@0f蓜DX;V*ZArithRing+setoid_ring#Coq@0{#'[{nm!/,Zcomplements&ZArith#Coq@0ʾq %RIneq%Reals#Coq@0JUڻIu)$w&DiscrR%Reals#Coq@0z41pV.%Rbase%Reals#Coq@0Jܡ\ c6{%R_Ifp%Reals#Coq@0c4+ZŠ,Fourier_util'fourier#Coq@0ϳ> 4`*r0'Fourier'fourier#Coq@0wV9TN*Rbasic_fun%Reals#Coq@0hܒiclE>%R_sqr%Reals#Coq@0X%MԹ%M+SplitAbsolu%Reals#Coq@0M)&qYlݹ5*SplitRmult%Reals#Coq@0sD\rt/$Even%Arith#Coq@0YO%q}d߫%$Div2%Arith#Coq@0n*Áht!,)ArithProp%Reals#Coq@0B+L?>*e˃a j*Rfunctions%Reals#Coq@0d¹d‹@'Compare%Arith#Coq@0OM v먣5L:'Rseries%Reals#Coq@08]$u+?'SeqProp%Reals#Coq@0Lt2|9D }SSԻ)Rcomplete%Reals#Coq@0{ڸ4q 'PartSum%Reals#Coq@0j&2"(>S)AltSeries%Reals#Coq@0d US^(Binomial%Reals#Coq@0]JrHr#E&Rsigma%Reals#Coq@0䟄WCJҦ<%Rprod%Reals#Coq@0gȀn_}!W+Cauchy_prod%Reals#Coq@0K*ߞ4q(Alembert%Reals#Coq@0I͗Huz&)SeqSeries%Reals#Coq@0Npc$5|T ٠J0T+ɧK/۠G0$xR`VcxIaƶ"xD0zsC^,%+OmegaTactic%omega#Coq@0@{4-EܭEUBWJ0%}ֺ|3J-tWK 0IWEGն&Rlimit%Reals#Coq@0*r0ē([HAE&Rderiv%Reals#Coq@0?KQ;^WU;H*Ranalysis1%Reals#Coq@0 n;qm.L%)Rsqrt_def%Reals#Coq@0eA~%&Y?%RList%Reals#Coq@05g2NaA:7PropExtensionalityFacts%Logic#Coq@0 +_.ɓoFؘ'Hurkens%Logic#Coq@05[gNk2up.ClassicalFacts%Logic#Coq@0$RzqIF\(4.Classical_Prop%Logic#Coq@0Yh޿JdI1ƽ3Classical_Pred_Type%Logic#Coq@0m[6BZ5)Rtopology%Reals#Coq@0;Wo G#MVT%Reals#Coq@0cq통 gZ+PSeries_reg%Reals#Coq@0䝠|%nV'N09&r:^Р'Rtrigo1%Reals#Coq@A)CVN_R_cos @@@"fn@)Datatypes$Init#Coq@@#nat@@,Rdefinitions%Reals#Coq@@!RӀ @%Logic$Init#Coq@@"eq @@)Datatypes$InitG@@#nat@@,RdefinitionsS @!RӀ A!N!x@%Rmult׀@$Rdiv̀(Rpow_def@#pow#׀)@#IZR/r'BinNums'Numbers>@!Z7@C @(positive*@CB'RaxiomsF@#INRr)Factorial%Arith\@$fact>【#Nath@#mul tBzA+Qh+PSeries_reg%Reals#Coq@@%CVN_R>;@@@@@AA@@>@,Field_theory+setoid_ring#Coq@@&FEeval>@@A@A"s @,Ring_polynom+setoid_ring#Coq@@&PEeval"s @@A@BA@A@.continuity_cos @@A*Ranalysis1%Reals#Coq@@*continuity**Rtrigo_def%Reals#Coq@@#cos㹀@@@@@@.sin_gt_cos_7_8 @@B,Rdefinitions%Reals#Coq@@#Rgt=<%@#sinҀ@$Rdiv̀87@@/rC@@7@B̠ˠO@@*@A Aϩ'!B@BB B詚sKHBB;A@A[UB4B9B>B@@@@@٠(PI_2_aux @@C&Specif$Init#Coq@@#sig#* @@Ӏ!z@#andЖw@%Logic@#andЖw@@#Rle={lgB_Aey iBq" 4@"eq @@$Ropp΀*Rtrigo_def@#cos㹀ĩA@@@@@S#PI2 @&Specif@)proj1_sigY淐qhj<@"[0@~ 6 +77"kG7 7 7 77"77 77 7! 7! 77 77 7!7!7!7%'4ABBB@`\LTAAA@UHABB@t=DLd{h |x@@@@@"PI @/[@q ䷸@~}|@@qӀ ,677 7!kF`DAB@L7)0I &@E驚=X@ 쀀EV2L8_FJh$ (&}W!u8!<:@@@@@͠&sin_2a @@YIws{BZB CABtB:CA䀐A@@@@@&cos_2a @@ZӀƀ怠ЀBBoCA A"AA A@@@@@h*cos_2a_cos @@?[䚠NG2BBCAXLP:4BBC~AAUOBC@@@@@Ǡ*cos_2a_sin @@\C~q{uBTBCAB+CB~BDCĀAɀA@@@@@&&tan_2a @@]݀@uՀ A܀@瀰#@ 驚,Щ$瀐O뀐S0 i<& BBC[>U?9BBC)x~XRBC~AE@@@@@֠'sin_neg @@ ^ R  |AA@@@@@'cos_neg @@ _ v  ਗ਼ـӀA‐A@@@@@ %tan_0 @@ `  @$ 쀀@@@@@ .'tan_neg @@ a  倩 ؀%A A@@@@@ R)tan_minus @@ )b Κ = @ A :B &@ S L  7@Ȁ (d ]XVo 2L@݀ =ܩ` C a$"(w Sm Y4!6 jD-HF wAXA\Z@@@@@ (cos_3PI2 @@ c ϩ Ȁ  B A @@@@@c+PI4_RLT_PI2 @@:v 0  L@@@@@r*PI2_Rlt_PI @@Iw ? Z X@@@@@(sin_gt_0 @@Wx7@ R- GA@ \ؚ ' b= AR @@@@@(cos_gt_0 @@y*e@   A@ l   m A @@@@@ޠ(sin_ge_0 @@zZ@ > A@ H6  N A @@@@@ (cos_ge_0 @@{À@ l ‐ A@ vdʀ  k ~ˀ 3A @@@@@<(sin_le_0 @@|@  ـA@    3  : eA@@@@@j(cos_le_0 @@A}暠!@ ʀ Y A@ Ԁ© ;␩vn h ߀_ m0 A@@@@@(sin_lt_0 @@t~T@ o :A@ w󩚠 l   h ^ A@@@@@ˠ,sin_lt_0_var @@G@   A@ #  ˩ A@@@@@(cos_lt_0 @@@w@ ̀ PA@ ׀S ̀  ߀퀐  &A@@@@@+(tan_gt_0 @@A‶@ ؀A@ 造 $ ꀐ ǀ /@@@@@X(tan_lt_0 @@/BԚ@ * . IA@ 4) <  X5@@@@@-cos_ge_0_3PI2 @@\C<@ 倠L vA@ ݩV ~ D A~ @@@@@%form1 @@D!pm!qreBA}#BA5ƀBAG@@@@@ %form2 @@EV€Uƀ 倠򀐐BA〠瀠р䀐ဠBA䀐󀠩BA@@@@@`%form3 @@7F1"B'A8<&̩]5\BA8ީJGeBAJ@@@@@%form4 @@Gkob KvB{Az BA2€BAD@@@@@0sin_increasing_0 @@HÀ@l ‐B@vʀk@  @ ܀}@쀐  G @@@@@Q0sin_increasing_1 @@(I͚< @ +FB@IN@Ȁ >YV@рB%`ƶ@L  P9E= @@@@@0sin_decreasing_0 @@pJPT@Be*@[@w<@m@} 1 J 9@@@@@ᠠ0sin_decreasing_1 @@K]̚@EBr׶@ODݶ@X⩚@aVֶ@܀ u ɀ }ِ̀@@@@@)0cos_increasing_0 @@L䀶@ʀB@$@ۀ*@ 4@ . 2 ֩, Ő@@@@@m0cos_increasing_1 @@DM隠$X(@рB@ـc@h@†n@造ZPx@d  hv]z @@@@@0cos_decreasing_0 @@N-hl@b|B@\@&s@/l@ E ^ M@@@@@0cos_decreasing_1 @@Oq@YB@c횠@j@s䚠@쀠   @@@@@9(tan_diff @@P$@쀰(!B @:3  󩚠6 逐8 퀐U*JHa>[P_m@@@@@0tan_increasing_0 @@mQMQ@p@B@X@ S@j@E.IG6@@@@@ޠ0tan_increasing_1 @@RZɚ@BB@L֩Ѷ@Uˀ@^ϩ@ـr݀ҩ~@@@@@&*sin_incr_0 @@S݀ံ@B@耠#@.+@5@ שƐ@@@@@n*sin_incr_1 @@ETꚠ%Y)@ҀHcB@܀f0kѶ@倠[vs@_B}@VbZ@@@@@*sin_decr_0 @@U2mq@BG@$x@-Y@6+@?NgKV@@@@@*sin_decr_1 @@Vz隠@bBʀ@la@u܀@~Ҁ s@怐ꀐ@@@@@F*cos_incr_0 @@Wš1@瀐B@<A@G@€3)Q@ˀKکO󩚠׀:@@@@@*cos_incr_1 @@aXAuE@+B@]@<@wm@/z&@@@@@Π*cos_decr_0 @@YJ@2B@<ƚy@CѶ@L@SӀb׀{_j@@@@@*cos_decr_1 @@Zɀ̀@vÀݐB@ @Ԁ@̀@@@@@@V*tan_incr_0 @@-[Қ A@0 B@ĀNSI@̀C [@րG*e[@߀ 뀠N@@@@@*tan_incr_1 @@u\UY@x HB@ `@ [@r@'2G+QU>@@@@@栠*sin_eq_0_1 @@]b@@"ex @'BinNums'Numbers#Coq@@!Z7@ Bŀl€Y A@@@@@%*sin_eq_0_0 @@^܀@Ѐ̩A׀񩛠LH Z倰$<)@@@@@Q*cos_eq_0_0 @@(_͚@81AkA{w S7m[@@@@@*cos_eq_0_1 @@X`8@ 4BXUQ@#IZR/rA7P=OIB(BCb hA@@@@@ՠ.sin_eq_O_2PI_0 @@aQ@5A@?-4ζ@֩ /*ɩ ;6՚<۩р_@@@@@!.sin_eq_O_2PI_1 @@b؀@΀A@y@ o〰"倐 {*.ဩ049 '@@@@@m.cos_eq_0_2PI_0 @@Dc隠$@̀4A@׀ũ>f@+g`n1K ǀ;*aD1C=BBSByoYSBLAn[mgBFB#@@@@@ᠠ.cos_eq_0_2PI_1 @@d]@AA@K9@ڶ@ /⩚M&꩚ǀ 񩛠署耐ݩӐ@@@@@#@@@ ӳ2@ ӳ2[)Datatypes$Init#Coq@@A@ Գq@ Գq\ @A@AB@cA$#"@A.0TQ+Ring_theory+setoid_ring#Coq@@ABA.U>[J @B@@"O@(PeanoNat%Arith#Coq@#Nat@&of_int"O#Nat$Init#Coq@@ 6@A@A\@&BinInt&ZArith#Coq@!Z@'quotrem\)BinIntDef&ZArith#Coq@!Z@ /@A@\@@+pred_double\@/S@@A@As2@3@&shiftls2*@vY@A@BCs8@8@&shiftrs8/@vY@A@ѓ@>@&squareѓ5@y@A@@D@&to_intϑ;@@A@z@5@&doublez,@/!@A@ABCD/@O@)log2_iter/F@wd@A@NH/@B@&moduloNH/9@1,@A@A\d@G@&of_int\d>@1?A @A@bz@M@&of_natbzD@1?G!@A@#@S@&shiftl#J@1dV@A@#@Y@&shiftr#P@1d\@A@ABCD/x@&BinPos&PArith#Coq@#Pos@)pred_mask/x)BinPosDef&PArith#Coq@#Pos@ )X@A@6@x@&square6o@19@A@AV+L@}@&to_intV+Lt@2@A@V1b@@&to_natV1bz@2 @A@V5=@@&to_posV5=@2@A@ABCl@@)sqrt_iterl@!$:@A@@@6@(sub_mask@-@)@A@ADEF c@@'testbit c@!ć@A@7 B@D@'of_uint7 B;@*`]?@A@AG@I@)mask_rectG@@+ED@A@F˱@O@)add_carryF˱F@+p@A@AB^Ҷ@@'to_uint^Ҷ@#m@A@gL7@@'sqrtremgL7@40@A@Aq@@'testbitq@5)@A@ݎO@@+succ_doubleݎO@6r@A@A p@l@0double_pred_mask pc@0-+m@A@BCD T@&BinNat&NArith#Coq@!N@!t T)BinNatDef&NArith#Coq@!N@ 2@A@ @@#add @3 @A@A l@@#div l@3@A@ Y@%@#eqb Y@3@A@AB #@*@#gcd #!@3n@A@ T@0@#leb T'@3@A@ACEG "@5@#lor ",@3m@A@ q@?@#ltb q6@3@A@A @D@#max ;@3@A@ @J@#min A@3`@A@AB @O@#mul F@3B@A@ ~@U@#odd ~L@3@A@AC =@Z@#one =Q@3@A@ @b@#pow ˑY@3@A@A c@g@#sub c^@3@A@ @m@#two d@3J@A@AB hx@r@$div2 hxi@>@A@ @x@$even o@>4@A@ACD @}@$ggcd Бt@>U@A@ @@$iter }@>:@A@A 3"@@$land 3"@>m@A@ F)@@$log2 F)@>t@A@AB S@@$lxor S@>@A@ @@$pred @?U@A@AC @@$size ܑ@?'@A@ !@@$sqrt !@?@A@A ! @@$succ ! @?\@A@ !7@@$zero !7@@P@A@ *@@%ldiff *@@A@AB g_@1@+pred_double g_(@25\@A@CD m@6@÷ m-@2j@A@S@=@&of_intS㫑4@4}5@A@AS@B@&of_natS9@4};@A@BEFGH\R@G@(mask_ind\R>@4@A@\^@Q@(mask_rec\^H@4@A@A!,@V@&pred_N!,M@4s)@A@B@[@&shiftlR@5X@A@@b@&shiftrY@5X@A@A&@g@&square&ّ^@5,x@A@BC"@l@&to_int"c@5L@A@"@t@&to_nat"k@5L @A@AnTq@y@+testbit_natnTqp@6n@A@B@@(succ_posB@@A@I@@'abs_natI@?n@A@AB.@@'of_uint.@MS@A@3~@@'sqrtrem3~@7]%{@A@ACD,@ @'bitwise,@/v@A@>4'@@'testbit>4'@8g$@A@A{U@@,sqrtrem_step{U@8R@A@u^@9@(div_euclu^0@ @A@Afz@@'to_uintfz@9w@A@Bl@'@'comparel@3R@A@CDEFs8@,@+of_uint_accs8#@5+@A@}@R@,pos_div_eucl}I@&`@A@3x@(@'compare3x@]=@A@A@^@&doubleU@'޺_@A@BCq@@+of_succ_natq@$@A@w@i@&modulowɑ`@)1@A@ADK@n@&of_intKe@)j,I@A@K@v@&of_natKm@)j2_@A@AI@{@&shiftlIr@*O@A@O@@&shiftrOx@*O@A@AB,@@&square,}@*ow@A@Z@@&to_intZ@*81@A@ACE`@@&to_nat`@*9G@A@e@@+testbit_nateđ@+@A@A+{@@'sqrtrem+{ё@,J@A@5z@@'testbit5z@-T|@A@A @@'to_uint ͑@.@A@ @@+succ_double @.^4@A@A#@'@'compare#ݑ@ )Q@A@BCD%t2@,@(size_nat%t2#@ @A@%9@3@+of_uint_acc%9*@ ΋@A@A%V@8@+double_mask%V/@ S@A@%%@>@'div2_up%%5@ "@A@ABEF'ş@C@'Ndouble'ş:@ @A@(b0@K@*shiftl_nat(b0B@9-@A@A(nՖ@P@*shiftr_nat(nՖG@'@A@(@V@0succ_double_mask(M@@A@*W$@\@,compare_cont*W$S@!@A@.0@b@.sub_mask_carry.0Y@΂@A@ABCD.@@!t.@ ;@A@.먩@@#add.먩@ `@A@A.U@@#div.U@ @A@.B@@#eqb.B@ @A@A. @@#gcd. @ @A@.=@@#leb.=@ @A@ABCEGHI. @@#lor. @ @A@.Z@ @#ltb.Z@ @A@A.p@@#max.p@ '@A@B.@@#min. @ @A@.@@#mul.@ @A@AC.g@@#odd.g@ @A@.&@&@#one.&@ @A@A.뾴@+@#pow.뾴"@ k@A@.L@1@#sub.L(@ @A@.@7@#two..@ @A@ABCD.,a@<@$div2.,a3@ @A@.Xz@D@$even.Xz;@ ?1@A@A.@I@$iter.ؑ@@ @A@B. @N@$land. E@ @A@. @T@$log2. K@ @A@ACE.@Y@$lxor.P@ R@A@.y@`@$pred.yW@ `<@A@A.Ʉ@e@$sqrt.Ʉ\@ ;@A@.@l@$succ.c@ @A@.t @r@$zero.t i@ Z@A@AB/@w@.to_little_uint/n@ @A@CDF/@|@%ldiff/s@ H@A@00@@'compare00@?H{@A@A1P%@w@!t1P%n@  @A@B1P@|@#abs1Ps@ @A@1P&@@#add1P&z@ @A@A1P@@#div1Pґ@ y@A@BC1P@@#eqb1P@ f@A@1P@@#gcd1P@ 0@A@A1P@@#geb1P@ T@A@B1P@@#gtb1Pʑ@ q@A@1Pĺ@@#leb1Pĺ@ a@A@A1Pň@@#lor1Pň@ /@A@BCD1P@@#ltb1Pב@ ~@A@1P@@#max1P@ @A@A1P{@@#min1P{@ "@A@B1P]@@#mul1P]@ @A@1P@@#odd1P@ @A@A1Pɣ@@#one1Pɣ@ J@A@BC1P@@#opp1Pԑ@ {@A@1P1@@#pow1P1@ @A@A1P;@@#rem1P;@ @A@B1P@@#sgn1Pˑ@ r@A@1P@@#sub1Pɑ@ p@A@A1Pe@@#two1Pe@  @A@BCDE1[8@@$div21[8ޑ@ @A@1[d@@$even1[d@ I@A@A1[6@@$ggcd1[6@ i@A@B1[U@ @$iter1[U@ @A@1\@@$land1\@ /@A@A1\@@$log21\ @ 6@A@BC1\$@@$lxor1\$@ @A@1\Y@$@$of_N1\YÑ@ >j@A@A1\@)@$pred1\ @ j@A@B1\@.@$quot1\֑%@ }@A@1\@5@$sqrt1\,@ @A@A1\w@:@$succ1\w1@ @A@BC1\k@?@$to_N1\k6@ @A@1]@G@$zero1]>@ eD@A@A2:@L@%abs_N2:C@ @A@21@R@%ldiff21I@ ߵ@A@2=*@X@%quot22=*O@ @A@ABC2kF@@(size_nat2kF@{@A@3@x@(tail_add3o@^q@A@ADEFGH3@}@(tail_mul3t@^@A@5Z@@*shiftl_nat5Z@y/@A@5f}@@*shiftr_nat5f}@4@A@AB5a@@'iter_op5a@ @A@C6w~@@'of_uint6w~@^5@A@8j@@'of_uint8j@'"h@A@9E@@(div_eucl9Eđ@(*k@A@AB:x@6@,Nsucc_double:x-@ ʭ@A@CD@[@&divmod>R@C@A@>@b@&double>Y@NĴ@A@?2@S@,pos_div_eucl?2J@-u@A@AB?;@m@&modulo?;d@"i@A@CEFGIJ@(Alembert%Reals#Coq@0I͗Huz&)AltSeries%Reals#Coq@0d US^%Arith#Coq@0I|кX*o4)ArithProp%Reals#Coq@0B+L?>*e˃a j)ArithRing+setoid_ring#Coq@0ṔCgt?}*Arith_base%Arith#Coq@0Ĕ}CS&Basics'Program#Coq@0!bs߯? :VU'Between%Arith#Coq@06v*0ur`C0&BinInt&ZArith#Coq@0BpHޞun^)BinIntDef&ZArith#Coq@0ådR4Tuy'BinList+setoid_ring#Coq@0Au&BinNat&NArith#Coq@0K11ڤs+Π)BinNatDef&NArith#Coq@03@1O,[{ 'BinNums'Numbers#Coq@0dmk(5Ju<&BinPos&PArith#Coq@0vyػ0= u)BinPosDef&PArith#Coq@0}H d.%,b(Binomial%Reals#Coq@0]JrHr#E$Bool#Coq@0j 2cZ`FW*CMorphisms'Classes#Coq@0qیZBeϠ0CRelationClasses'Classes#Coq@0TL;0RUfw1+Cauchy_prod%Reals#Coq@0K*ߞ4q.ClassicalFacts%Logic#Coq@0$RzqIF\(43Classical_Pred_Type%Logic#Coq@0m[6BZ5.Classical_Prop%Logic#Coq@0Yh޿JdI1ƽ'Compare%Arith#Coq@0OM v먣5L:+Compare_dec%Arith#Coq@0jXF 8(Cos_plus%Reals#Coq@0IWEGն'Cos_rel%Reals#Coq@0%}ֺ|3J-tWK@0.i bYN Z)Decidable%Logic#Coq@0ND걸풬/Oߠ'Decimal$Init#Coq@0C涳N*ua&DiscrR%Reals#Coq@0z41pV.$Div2%Arith#Coq@0n*Áht!,%EqNat%Arith#Coq@0AIgՋXRV *EqdepFacts%Logic#Coq@0FI$ͼՋ`)Eqdep_dec%Logic#Coq@0u wWIϰ߼*Equalities*Structures#Coq@0όe얟)H.Ƞ+Equivalence'Classes#Coq@07;ꮹ$Even%Arith#Coq@0YO%q}d߫%)Factorial%Arith#Coq@0@oehJd%Field+setoid_ring#Coq@0J _ȫ)Field_tac+setoid_ring#Coq@0d vDZl^۹H!20B~uYٮ٠'Fourier'fourier#Coq@0wV9TN,Fourier_util'fourier#Coq@0ϳ> 4`*r0-GenericMinMax*Structures#Coq@0måj$"Gt%Arith#Coq@0䙛#c:D 'Hurkens%Logic#Coq@05[gNk2up$Init'Classes#Coq@0](p{yOh.+InitialRing+setoid_ring#Coq@0k/T=cN"Le%Arith#Coq@0d}Omq+$List%Lists#Coq@0>I+ListTactics%Lists#Coq@0,Jcy{"/0\͉!Ig*Logic_Type$Init#Coq@0 1jc6"Lt%Arith#Coq@0KZ-eJkP܏#MVT%Reals#Coq@0cq통 gZ#Max%Arith#Coq@04=;3$>aU堠#Min%Arith#Coq@0Ce-Fѕ%Minus%Arith#Coq@0LFtR")Morphisms'Classes#Coq@0Imӽ%\$PD.Morphisms_Prop'Classes#Coq@0% :B'.>u%$Mult%Arith#Coq@0햖Qyb0$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI%NBits(Abstract'Natural'Numbers#Coq@0qteo_hɅ $NDiv(Abstract'Natural'Numbers#Coq@0bz$?[p(5$NGcd(Abstract'Natural'Numbers#Coq@08E-S ;j_Ҡ$NLcm(Abstract'Natural'Numbers#Coq@0 ~xZ9L{:$NLog(Abstract'Natural'Numbers#Coq@0K Aat/ j &NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf+NProperties(Abstract'Natural'Numbers#Coq@0unt"kwpYC%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ%NZAdd&NatInt'Numbers#Coq@00h`ZK4*NZAddOrder&NatInt'Numbers#Coq@0e~1>r砠(NZAxioms&NatInt'Numbers#Coq@0] ρ5r&NZBase&NatInt'Numbers#Coq@0^&8yUL&NZBits&NatInt'Numbers#Coq@0MlIpKt%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZMul&NatInt'Numbers#Coq@0ctR~6[Ƞ*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R'NZOrder&NatInt'Numbers#Coq@0 q;Ve7R W,(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x&NZSqrt&NatInt'Numbers#Coq@0` .%m#Nat$Init#Coq@0eʤģPSR蠠$Nnat&NArith#Coq@0$W;s #%M)Notations$Init#Coq@0&v!D]hwnv *NumPrelude'Numbers#Coq@05WUVŦ]xVXԠ%Omega%omega#Coq@0t.J'6\ϨrK+OmegaLemmas%omega#Coq@0TJ#Jes+OmegaTactic%omega#Coq@0@{4-EܭEUBW4Operators_Properties)Relations#Coq@0U3y#h&&Orders*Structures#Coq@0$Znl0\͗+OrdersFacts*Structures#Coq@05Mܿ獐ζΖLB)OrdersTac*Structures#Coq@05'4Ԗ+9%+PSeries_reg%Reals#Coq@0䝠|%n͠'PartSum%Reals#Coq@0j&2"(>S%Peano$Init#Coq@0 jha|ؠ(PeanoNat%Arith#Coq@0O~2$k[#lZ)Peano_dec%Arith#Coq@0Kݢ*k$Plus%Arith#Coq@04tmG$Pnat&PArith#Coq@0,?pr.gZ(PreOmega%omega#Coq@0\|چBb~w4'Prelude$Init#Coq@0JqTttֱ7PropExtensionalityFacts%Logic#Coq@0 +_.ɓoFؘ%Quote%quote#Coq@0J@ŹVz-,3%%RIneq%Reals#Coq@0JUڻIu)$w%RList%Reals#Coq@05g2NaA:%R_Ifp%Reals#Coq@0c4+ZŠ%R_sqr%Reals#Coq@0X%MԹ%M*Ranalysis1%Reals#Coq@0 n;qm.L%'Raxioms%Reals#Coq@0S]jnj][L%Rbase%Reals#Coq@0Jܡ\ c6{*Rbasic_fun%Reals#Coq@0hܒiclE>)Rcomplete%Reals#Coq@0{ڸ4q $70(2{Ze$ќ8&Rderiv%Reals#Coq@0?KQ;^WU;H)RealField+setoid_ring#Coq@0 >ʾq /RelationClasses'Classes#Coq@0Gz rA6ՠ4Relation_Definitions)Relations#Coq@0]4Ѐd{n^2Relation_Operators)Relations#Coq@0%s鯰s)Relations#Coq@0-SetoidTactics'Classes#Coq@0S_`nOU$$0;RWMi\N+SplitAbsolu%Reals#Coq@0M)&qYlݹ5*SplitRmult%Reals#Coq@0sD\rt/'Sumbool$Bool#Coq@0sB ,$11.]m'Tactics$Init#Coq@0/9m+ a'Tactics'Program#Coq@03(2 Q@@A@#_21(@( Y @A@@@@@@@@#_222M접#_23'`o@B.function_scope@@A( @'U2 Q@@A@#_24(G@'`4@A@@@@*@#_252M접 #_26'`o@@@@'P2 Q@@A@#_39(f@'[)y@A@@@@I@#_402M접 #_41'`o@@@@&֠2 Q@@@@#_60(@&"[0@A@@@@h@#_612M접 #_62'`o@@@@&{2 Q@@@@#_63(@& ䷸@#_642M접 #_65'`o@@@@&42 Q@@@@#_66$:@#_672M접 %#_68'`o@@@@& 2 Q@@A@#_69(@&+Ј@A@@@@@#_702M접 #_71'`o@@@@&/2 Q@@A@#_72(@&:* @A@@@@@#_732M접 #_74'`o@@@@&12 Q@@A@#_75)@&<ݤ@A@@@@@#_762M접 #_77'`o@B'R_scope@))@&2 Q@@A@#_78)F@&64@A@@@@)@#_792M접 #_80'`o@A*@)@@%2 Q@@A@#_81)j@% C@A@@@@M@#_822M접 #_83'`o@AN@)d@%֠2 Q@@A@#_84)@% @A@@@@q@#_852M접 #_86'`o@Ar@)@%Ơ2 Q@@A@#_87)@%ѡ@A@@@@@#_882M접 #_89'`o@@@@%Ϡ2 Q@@A@#_96)@%m@A@@@@@#_972M접 #_98'`o@B@@'X'!@%Š2 Q@@A@$_105)@%3ͱ@A@@@@@$_1062M접 $_107'`o@@@@%2 Q@@A@$_111*@%" @A@@@@@$_1122M접 $_113'`o@@@@%2 Q@@A@$_117*7@% @A@@@@@$_1182M접 $_119'`o@@@@%ʠ2 Q@@A@$_120*V@% m@A@@@@9@$_1212M접 $_122'`o@@@@%֠2 Q@@A@$_123*u@%0j@A@@@@X@$_1242M접 $_125'`o@@@@%Ԡ2 Q@@A@$_126*@%2@A@@@@w@$_1272M접 $_128'`o@@@@%נ2 Q@@A@$_129*@%@$_2142M접 $_215'`o@B?@.W.h@"=2 Q@@A@$_216.@"H=j@A@@@@g@$_2172M접 $_218'`o@Ah@.~@"*2 Q@@A@$_219.@"5pM@A@@@@@$_2202M접 $_221'`o@A@.@"2 Q@@A@$_222.@""@A@@@@@$_2232M접 $_224'`o@A@.@"2 Q@@A@$_225.@"i@A@@@@@$_2262M접 $_227'`o@@@@"2 Q@@A@$_228/@" 0@A@@@@@$_2292M접 $_230'`o@A@/ @"2 Q@@A@$_231/3@"9@A@@@@@$_2322M접 $_233'`o@A@/-@!2 Q@@A@$_234/W@!\@A@@@@:@$_2352M접 $_236'`o@A;@/Q@!ߠ2 Q@@A@$_237/{@!&z@A@@@@^@$_2382M접 $_239'`o@A_@/u@!ˠ2 Q@@@@$_240!#@$_2412M접 A$_242'`o@A@/@!2 Q@@@@$_243 C@$_2442M접 A$_245'`o@A@/@!2 Q@@@@$_246 c@$_2472M접 A$_248'`o@A@/@!2 Q@@@@$_249 @$_2502M접 A$_251'`o@A@/@!2 Q@@A@$_2520@!1l S@A@@@@@$_2532M접 $_254'`o@C@@@0,5+@!2 Q@@A@$_2550K@! @A@@@@.@$_2562M접 $_257'`o@C/@@@0G++@!2 Q@@A@$_2580w@! @A@@@@Z@$_2592M접 $_260'`o@C[@@@0s,,@!y2 Q@@A@$_2640@!8A@A@@@@@$_2652M접 $_266'`o@@@@!2 Q@@A@$_2700@!o;@A@@@@@$_2712M접 $_272'`o@@@@!2 Q@@A@$_2760@!.@A@@@@@$_2772M접 $_278'`o@@@@!2 Q@@@@$_2791@!kUD@A@@@@@$_2802M접 $_281'`o@C@@@0--@!2 Q@@@@$_2821,@!@A@@@@ @$_2832M접 $_284'`o@C@@@1(-B-E@!2 Q@@A@$_2851X@!k@@A@@@@ ;@$_2862M접 $_287'`o@C<@@@1T,,@!2 Q@@A@$_2881@!@A@@@@ g@$_2892M접 $_290'`o@Ch@@@1-(-+@!2 Q@@A@$_2911@!k@A@@@@ @$_2922M접 $_293'`o@C@@@1-T-W@!2 Q@@A@$_2941@!u@A@@@@ @$_2952M접 $_296'`o@C@@@1ؠ--@!2 Q@@A@$_2972@!k;@A@@@@ @$_2982M접 $_299'`o@C@@@2..!@!2 Q@@A@$_30024@! I@A@@@@ @$_3012M접 $_302'`o@C @@@20.J.M@!2 Q@@A@$_3032`@!@A@@@@ C@$_3042M접 $_305'`o@C D@@@2\.v.y@!2 Q@@A@$_3062@!&C@A@@@@ o@$_3072M접 $_308'`o@C p@@@2..@!2 Q@@A@$_3092@!&DY@A@@@@ @$_3102M접 $_311'`o@C @@@2.Π.@!2 Q@@A@$_3122@!- @A@@@@ @$_3132M접 $_314'`o@C Ƞ@@@2ࠐ..@!2 Q@@A@$_3153@!!] @A@@@@ @$_3162M접 $_317'`o@B  @3 3@!X2 Q@@A@$_31839@!c!]!@A@@@@ @$_3192M접 $_320'`o@B  @3538@!,2 Q@@A@$_3213b@!7!]"@A@@@@ E@$_3222M접 $_323'`o@B F H@3^3a@!2 Q@@A@$_3243@! !]#@A@@@@ n@$_3252M접 $_326'`o@B o q@33@ ֠2 Q@@A@$_3273@  z@A@@@@ @$_3282M접 $_329'`o@G  @@@@@@33/`/c/f/i/@ ʠ2 Q@@A@$_3303@  {@A@@@@ @$_3312M접 $_332'`o@G ՠ נ@@@@@@3򠐑3////0@ 2 Q@@A@$_3334.@  ;@A@@@@ @$_3342M접 $_335'`o@G  @@@@@@4/42/ڠ/ݠ/ࠐ/㠐0X@ 2 Q@@A@$_3364k@  ;@A@@@@ N@$_3372M접 $_338'`o@G O Q@@@@@@4l4o0000 0@ 2 Q@@A@$_3394@ P@A@@@@ @$_3402M접 $_341'`o@G  @@@@@@440T0W0Z0]0@ 2 Q@@A@$_3424@ P@A@@@@ @$_3432M접 $_344'`o@G ɠ ˠ@@@@@@4栐4預00001@ 2 Q@@A@$_3455"@ 2@A@@@@ @$_3462M접 $_347'`o@G  @@@@@@5#5&0Π0Ѡ0Ԡ0נ1L@ 2 Q@@A@$_3485_@ 2@A@@@@ B@$_3492M접 $_350'`o@G C E@@@@@@5`5c1 1111@ 2 Q@@A@$_3515@ &Ct@A@@@@ @$_3522M접 $_353'`o@D  @@@551417@ a2 Q@@A@$_3545@ ll@A@@@@ @$_3552M접 $_356'`o@G  @@@@@@5Π5Ѡ1y1|111@ V2 Q@@A@$_3576 @ al@A@@@@ @$_3582M접 $_359'`o@G  @@@@@@6 6111124@ K2 Q@@A@$_3606G@ V5@A@@@@*@$_3612M접 $_362'`o@G + -@@@@@@6H6K1󠐑1111@ @2 Q@@A@$_3636@ K5@A@@@@g@$_3642M접 $_365'`o@G h j@@@@@@66202326292<@ 52 Q@@A@$_3666@ @4@A@@@@@$_3672M접 $_368'`o@G  @@@@@@6 6Š2m2p2s2v2y@ *2 Q@@A@$_3696@ 54 @A@@@@@$_3702M접 $_371'`o@G ⠐ @@@@@@6722222@ 2 Q@@A@$_3727;@ *I@A@@@@@$_3732M접 $_374'`o@G!@@@@@@7<7?2砐2ꠐ22𠐑2@ 2 Q@@A@$_3757x@ #I@A@@@@[@$_3762M접 $_377'`o@G\^@@@@@@7y7|3$3'3*3-30@ 2 Q@@A@$_3787@  z@A@@@@@$_3792M접 $_380'`o@G@@@@@@773a3d3g3j3m@ 2 Q@@A@$_3817@  z@A@@@@@$_3822M접 $_383'`o@G֠ؠ@@@@@@7󠐑733333@ 2 Q@@A@$_3848/@ 4r@A@@@@@$_3852M접 $_386'`o@G@@@@@@80833۠3ޠ3᠐3䠐3@2 Q@@A@$_3878l@ 4s@A@@@@O@$_3882M접 $_389'`o@GPR@@@@@@8m8p4444!4$@2 Q@@A@$_3908@5 @A@@@@@$_3912M접 $_392'`o@B@@8 @֠2 Q@@A@$_3938@5 @A@@@@@$_3942M접 $_395'`o@B@@8̠8@Ҡ2 Q@@A@$_3968@FV@A@@@@@$_3972M접 $_398'`o@Bݠ@@88@ʠ2 Q@@A@$_3999!@FV@A@@@@@$_4002M접 $_401'`o@B@@9 ~@2 Q@@A@$_4029I@$ '@A@@@@,@$_4032M접 $_404'`o@D-@@@@9F44񠐒9?@2 Q@@A@$_4059y@$ (@A@@@@\@$_4062M접 $_407'`o@D]@@@@9v55!+@f2 Q@@A@$_4089@q9w@A@@@@@$_4092M접 $_410'`o@D@@@@95N5Q9@"2 Q@@A@$_4119@-9w@A@@@@@$_4122M접 $_413'`o@D@@@@9֠5~5,_@@@x'ml^@ ckQRvĄ@bk^【#Natx@#mul BA+Qh!r%RIneq@'posreal̠@Ȑ"H0 @(cond_pos 1y@#Rlt=gaA @#pos=D."H1 ^%@&eq_ind JC<&!l!(##@)False_induُ@%Falsee@K@*Rlt_irreflnQC@#notШΰݵ/B@ Ӱ@BE%hyp_r&Specif@$sigT#6@A@"An@#sig#* @!l@#andЖw@'Rseries @%Un_cvɀ!n&*Rfunctions@(sum_f_R0Yc!k3*Rbasic_fun&@$Rabs; wD@!y5@+PSeries_reg7@%Boule>ߌG)B@#Rle=#JE:^1S@$Rinv8G23ש(Alemberte@+Alembert_C2̀L}J!\M@*Rabs_no_R0 )@ 'Rmult_integral_contrapositive_currified .!@1Rinv_neq_0_compat1j.o@.INR_fact_neq_0,1u@+pow_nonzero37A*Rtrigo_def@,Alembert_cosO{|@%cos_nt7#eps@#Rgt=<Ȑ"H2:@1Rmult_lt_0_compat=qrC@$Rsqr=MW*FM@0Rinv_0_lt_compatD%R_sqr@+Rsqr_pos_lt8CJE-PKà0%J@&ex_ind 5{@%Peano@"ge Uwl@&R_dist琩蠩꠩ݩe}ݩW|K@"ex @89:@4*  &$ &"N0V"H3T*A^7_<`@ZP236>&2MK?G'; ̐IVz"H4vYȐ"H5$_tSHېLȐ"H6v@(eq_ind_r!2#lhikf^!ܩB:0(vqiLD:2G(aaYOGGZNsskaYLҩEDBBbְƠϩ!+Đ̠>.kҠΐbАw۠ݠِ㠩נA頩吩琩8x퐩:xnx-D-: !2%4L;JB5D%%.H)%l'4OBQ2240.246 ȩ`kaTcDDFOBLHJs<7B.zm|]_ajYce]/| np|wy[uJVz"@1Rmult_eq_compat_l$(\Է1ϩ_O2r<d =PCĩƩv_HЩ"O5U֩ɰة&VܩbְƠ"ɠfo Ӡϐנv|ܐ 蠩䐩-η+(7 5.: -Ω'; ?/ݐ Q3&5NЩ78+:S>?2AZ"K+E+F9Ha)L<M@Oh0:ҵȐ(hyp_listi@$list]@Aq@$prodt@,Ring_polynom+setoid_ringy@%PExprk@7@a7@"Ȑ'fv_list)BW. )ArithRing@0natr_ring_lemma1 ,M𚠐(Ring_tac(@0ring_subst_niter!I3E*8C/&BinNat&NArith@&of_natK)BinNatDef@)j2_DOGFTDKv M#(O%Q"Q @$Truey@AA@$boolZ'@A@Ұ Ȑ#lmpy@.mk_monpol_list(tuAyBK@#add E@3 Q@ J@3B 暠W@#eqb YQ@3]@(div_euclu^W@ @#Monf@@#Polj@@#Peqj*&@*norm_subst7:d0@=939.-'0B?;5;0/)kQC =@> `C(EÐJȐu*N3B#%O 7됛۩ٰ]002e g@2RField_ring_lemma1!7W) ,B0ð&Ű(  @s(.&BinInt&ZArithE@1P&)BinIntDefJ@ ̀@&1P] @' @#sub1P@ p@#opp1P@ {%Zbool@(Zeq_bool0߀(@'quotrem\#@/ŀ`7SUbde0gI9*%*O0i K;,'!,EC© ʩmmPѩİө '۩!_Ӱʩ0ŠǠ*h̠ܰ;|oӠ weACE^81@.#Rb0iupjd\u0kwrlf^w/C &SS+@*Rinv_l_sym9`g~K\O=@+Rmult_assoc&Tca agi @*Rabs_right |T@&Rle_ge @ H#@&pow_le!È.@"or @A8G#02)@,Rabs_Rabsolu$#@0@)Rabs_Rinv&DѰ?ACvO%JxQ'R^B@)Rabs_mult)aN0f@*Rmult_comm8#@/Rinv_involutiveCa 7,橚@/Rinv_mult_distr?=  08oF<@)Rmult_1_l9ܩ~@)pow_1_abs'3ـ5éH&l詚 @'IZR_neq%l *WpȐ"H7\u!e_v@@AA@AA@@@@@@D!zjA@x@* C"C8:24iLGJʩyȩ|ة}֩ȠթƐΠCg͐ΠנRk Iޠڐ۠ݠPߠ@q吩 @&Rminus&HZ񩚠@.Rmult_lt_reg_l>eЩǐ4"ԩO:Je'Ր+-ې\1J2%4c6 Q S@)Rle_0_sqr!X)]Cs<Kd>M 4O*$R5>1L;P<=?:2JE= ܩ[*"[cWxgcdfaYD>6,$rmeNH@U  )|#~ +x4*0=_?7?)HQDũ.l/SIGѩSԩ=̠y<m lWOY$РkC۰LCаdCi@)Rmult_0_r+Ȁpo@3Rmult_minus_distr_l Ios[ڠ֐y{CgYCm㐩䠩琩ש퐩թzˠV{C 1 ِِѐǠ D>>?4,P*"S (~33UOOPE=a;3d19-oDDcBBB@@@@D!soiij_W{UM~KS"GX^^~xxyvphf^\d3X,qqtX@V$vMkGthN~!p4A^U@lvYpީmAJt>ַɷ=>Fܩ Tک,<`_-eɠҩŐ3#j}pԠ+ "qM(Z%Rprod@-INR_fact_lt_06cZ`lg%\pkD q ͠퐩Ɛ@1Rmult_le_compat_lڀܩީﰩ"  /$ } 1  5 @,pow_maj_Rabs,  @  A + F: I@*Rminus_0_r-  թ2 K Z B5):E@(RPow_absa=>Z@\;^@&Rlt_le Ae XԩK S C4R ZZCE@%CVN_r>ဠ4C  @ wN@%CVN_R>ڐ  t t  r   'Rtrigo1 @)CVN_R_cos Y  ʠ  C  !X m@)CVN_R_CVS=gf       'PartSum @"SP?v    "cv  Ƞ · é  ԩ     ص @  B*Ranalysis1 @(mult_fct)? @'fct_cte€    @'pow_fct,ݛڀ ϩ 9_ ˩   re#@*continuity* c)@/continuity_mult O0@4derivable_continuous\7@/derivable_const#ڒ ?@-derivable_pow[    |  v C'N   ,   /.    & 0 * * +   <}  u Էͩ : 4 4 5 *  F "  " - < CBBB@@@@@ M G G H@&cos_in 8 P@)exist_cos$V !a \@ ! g a a b W K s O  O g O i@  R"x1 n#HUn< "% | v v w/ b  ~ ~ 7 j u H!    A t  t4 @ < _ w"x0 $Hcos @&eq_sym X  O J'SeqProp @+UL_sequenceiހз  ` / \ W z       @  !i ɩ   ^  m  r з  Ѷ  Ҷ@̩ . S yL  ~ ۷ # ޷  ߶  @ک <Р&U p     "m-@&sum_eqcǀ-  Ǡ <  $, ӷ   . 6 @"le UxT@S ԩ ͠ 6  Р |  ՠ       ܠ  R <  'Cos_rel @'pow_sqr?A C  !C    { p&V ٩  % B ԩ > ֩ w + u <   6  w  3  + !    "  K '  'C  <T  wC ; C ; J @#cos㹀  @#SFL>.H ' ? ; X Ͷ > [ N ]   G   L i  j@  I m#alp p m  V s@ q&Rderiv w@#D_x> H@'no_cond' 7 m  b} s = 8  hAI r @CK t  G y       -     @+  |UG ' TWI )  [  >     @<  l m  j(  q o O     @ ME   .    x 4 à   @'and_ind14ۀЩ '  =  ܶ@ ڠia  ɩ J ٠   , P ĐߠQ     #   @ _ ӐF  . %   @ @ l> թ n ␩R N  P  ЩP `̶  @        ѩ  o  ӷ '   *ڰa ·  -  % z  ʩ  6m   9  1 '    !  " +    -C@ * G  H@  ' K L I  2 O@ Mܩ  O   R  < Y  Z@  9 ] ^ [  D a@ ˠ _ C@ J g  h@  G k l i  R&Rlimit p@$Base /h @%R_met Րs@ |  ꠩@$dist 3^ r < 7   @ r   @ ߩ o &    z(@ # NC@  /@(limit_in=,,U \ ة1)  Y `    55c dC@  A@)limit1_in8   op C@  F@+continue_in C   ĩ{F C@  ȩ@-continuity_pt?ZL*   Щ C@ m  0@9 ǐ @.SFL_continuity <ŀ   }  Q Q Q Q Q )Coq_Reals_Rtrigo1_sin_gt_cos_7_8_subproof  Q ɠ  ~ A  Đ  *Coq_Reals_Rtrigo1_sin_gt_cos_7_8_subproof0 Ơ Ґ  *Coq_Reals_Rtrigo1_sin_gt_cos_7_8_subproof1 Ϡ ې & *Coq_Reals_Rtrigo1_sin_gt_cos_7_8_subproof2 ؠ, 䐩 Ȑ#lo1 4Ȑ#up1 Ȑ"lo Ȑ"up ѩ*Rtrigo_alt ,@-pre_sin_boundIF   z 2 @*sin_approxQSQ ؠ   ˩ @#sinҀ\  `  ݩ"   OBBB@@@@D@'  G%lower,$_tmp <@-pre_cos_bound   > k /G@*cos_approx?P9 7-(@! e%upper  @,Rle_lt_trans*GӀ+E q @,Rlt_le_trans9WL   _@bz@1?G! &    @%Rplus+1   w 3  p     =  ˩ P H C h     M  ֩ [ S S s U W Y [ ] _ a c e g i k m o q s u w y { }  =S נL Ҡ   ܠI נ ҠҠI    ϐp R   skm f d~ b `[w p $#   鐩[ $  xv(q o 4 K 8 } (#G.Ȑ$hypsȐ%hyps' Ȑ'hyps_eq >@I@Ȑ*f_rw_lemma @3RField_field_lemma2(Ml   J"fe,Field_theory @%FExprs@ #nfe @&linear@ #@m @%Fnormw$ ,  0k@@%PCondS<  k~@$Ropp΀ + :Y @&to_nat` @*9Gi 21@)condition. GK:@&FEeval>@  4 T Poy B wA@2display_pow_linear"O܀P ; # W 9 v+InitialRing B@)get_signZ#7 Q 0 a C 3 $     $ 驚R@#num:u h 0 j! L < - ( "   - 򩚠[@%denum0 Ȑ#resYA x . z \ \ ^ ` b d f h쐩 l n p r x z  Y                        0   ,  ة  2  ܩ             Ȑ&res_eq q,@7ԩ$       E  G K C   婜J    w=  l      ΩC& # "  ө $' & %Gg;Ȑ#thmȰ<1l@x@ i|b6 2Q[ $A⩷  gXZ~yto% +zum 1Ȑ$res0 U  W 9 9 ; = A Cǐ Gː K Mǩ & r T H w ͩ J y L { / {,`Ȑ'res_eq0@ɰf\$ : e U F A ; 5    | w v   BȐ$thm0׶@lR@V Ri c MPX Tk V  QeH  0 X  s d _ Y S K d@ 0 Z  u f a [ U M f9  xؠɐTː;nzﵩ@.Rmult_lt_reg_r>k @&IZR_ltNvM E&@*comparison;f@B $&֐((+- 1 26 88 ::='?7A2G- F'F)+O92S© U6ȩ8 ȷZà=\F  ` aʠDcFO ik4 ڠ!q: yvߠ `i d)@(mult_IZR> ad @)Rmult_1_r+158@&Rinv_l($@*not_eq_sym6Ԁ @*Rlt_not_eq`Y W] _Cs\ > =+&! C'C+7.D@-RField_lemma55v i7 y&$lockߩ Y (lock_def̰éW8? j; RM L xZ ʐ C`<H sD [V U @@$Fapp{F @&Fcons2w$ V  q b ] W Q I(UW۠P֠Ѡ NܠנI⠩ݠՐJ | KEC@>:@Ɛ2 - C}x(t&$ m$ C C$C?@+INR_IZR_INZ#]K\ ө C3.;6 C> ɠM©Hv4U©Py${C堩ݠߠW@(cos_term&頩a@(sin_term)C}NIQ[C#dO,Fourier_util'fourier@2Rfourier_not_gt_le#߽ @"R1Ȁ   3new_hyp_for_fourier &@+Rfourier_ltSD!|!1@1Rfourier_gt_to_ltvڀ!,8@0Rlt_mult_inv_pos8ş//>@*Rlt_zero_1&րLƠ1Ƞ>J@*Rnot_lt_lt;EĀ  \&Ep@&Rinv_1 ;9ۀL-IN}ᠩxcWeYg[i]k_maX  imdȐ(list_hyp  Ȑ+field_lemma@3RField_field_lemma1(Mk  ذ ҩH ש ũ ǩ ɩ ˩ ͩ ϩ ѩ өI F           v @$nfe1@P$      :I$nfe2@X$      &Q@]  O  ɩ J0           Dة Q0          "ݩ @<~ ^ q 'FP @#appʀ 0 09ʩ{@l e9 5T^ 'e@n g; 7V` )K@ Q=@  ( >       } A  C\na)ɵ[@@@Ȑ$res1 .Ȑ'res_eq1b@??e XvS @= D+ V9ڷյ@] \ĩ5 ` ` { ֩ =!@*Rle_not_ltg(@0Rle_mult_inv_pos ȩ/@2Rle_zero_pos_plus1:QXϩϩ ϩ ϩ ϩ'+4C@*Rle_zero_1RI@2Rlt_zero_pos_plus1-   ?CLB35 3gC䐵`wMXER[C_ >:a 5u'D'+ "bg |p~rtvxz|~5) -'<)#  ! )   ܩ ީ          3# <+ @@^$     .W@d$     ]@ @jy@{[ nT($CM:@} ] pV*&EO/ @ة+-F^QK@""N@xy }٩ְ{}̠}Π}Р}Ҡ}Ԡ}֠}ؠ}ڠ}ܠ}ޠ}}}}$C , ҩMΩЩH3'5)ȩ ̠Ʃ L{ȩ{}# :@}@v$To`[UOܶ@|$Zufa[U@@^@b^ uo `@d` wq;Pts];fː:@q o@mCC .PcGZWERGMGO7 W$C#@"R0ǀ}jw!"h c_ZLiLP-.G@;</>:2 6%0#2,*(2#  s@@K$D@Q$ J@@Wf@hH [A0v:@jJ ]C2x<-ũΠ3~E82@յ5@_jy; mH}?wyy{iiC #Coq_Reals_Rtrigo1_PI_2_aux_subproofw $Coq_Reals_Rtrigo1_PI_2_aux_subproof0r $Coq_Reals_Rtrigo1_PI_2_aux_subproof1t"o$$xzd(u~. $Coq_Reals_Rtrigo1_PI_2_aux_subproof2 $Coq_Reals_Rtrigo1_PI_2_aux_subproof3#cvpU+Y $Coq_Reals_Rtrigo1_PI_2_aux_subproof4#cun' v$+&:Ȑ"cc @.continuity_opp򆀠  ?@.continuity_cos4׀ ␷WةN ,Ȑ%int78 ݠ@3ַ̐g@{8pӐ"cln[Cc^C@@QC@ p@ǠuYC@@[[Q~ʰ O7f@Ķ@${@$@@*@, :@.!<g|gܩީD  h@  sש*@##8GZZKL PD35W@)Rlt_minus u  @-Rsqr_incrst_19f3Ҁ" @.sin_gt_cos_7_8)y  +@)Rlt_transC2# ,1(Cos_plusy@(cos_plus-B9ié)Rsqrt_def@#IVT+Qր?^ѵ@2Rfourier_not_ge_lt#M瀰t  Ouߩ@#Rge=-@.Rfourier_le_ltI؀ }䩚@+Rfourier_leS5 멚@1Rfourier_ge_to_le1 4'k'+#ѩLͩϩŠ24BBK]H|ɩx D}*A@@}$[vgb\V@$a|mhb\@@<gczut&g@ kg~x*(i@ miz,(DY}|fDo?@vJHĩƩ @$$ Th }\F|USPV8+ 9L[NfC<1$?R@c$3g)sw9|@(Rnot_lt0!r ((xEC~ &)BC 1 / 13> ;sTUngbcVeYƠJU&LW&SQOݩs,[0ö@!@@n $(  g@@<cv,KUv@gz`40OY@i|b62Q[;L~{9uTP@S FdA|Ͱ%ķ8)| Ed n+C</ Kjt1fO@qNuoC ީtҩ@*Rnot_le_le;Ѐ ɩDũ0{s;jz|t~ #@~f@xh@ΰka$?jZKF@:Ƕ@v@e԰}C@Gr CZT3WV@{vvL KyP~~ vZ@!!X.INķ/Hg@3Rlt_not_le_frac_opp>v6  'GCi rhaNnvxtmex^s U렩dw()B;67*9                      Ġ Ơ Ƞ ʠ ̠ Π© Рĩ ҠƩ Ԡȩ ֠ʩ ؠ̩ ڠΩ ܠЩ ޠҩ ԩ ֩ ة ک ܩ ީ              թW               " $ & ( * ,  ." 0$ 2& 4( 6* 8, :. <0 >2 @4 B6 D8 F: H< J> L@ NB PD RF TH VJ XL ZN \P ^R `T bV dX fZ h\ j^Щ˩ư©ѰӰհװٰ۰ݰ߰©ĩƩȩʩ̩ΩЩҩԩ֩ةکܩީ                   !  #  %  '  )  +  -   /"  1$  3&  5(  7*  9,  ;. G0 ?2  A4  C6 " E8 $ G: & I< ( K> * M@ , OB . QD 0 SF 2 UH 4 WJ 6 YL 8 [N : ]P < _R > aT @ cV B eX D gZ F i\ H k^ J m` L ob N qd P sf R uh T wj V yl X {n Z }p \ r ^ t ` v b x d z f | h ~ j  l  n  p  r  t  v  x  z  |  ~Щ       ͠      5L@  @  $frmga @  $lxsmg#@@ p@t p    r@v r " + M b  o M©xĩݐ ( * , ]ͩ5    Y @++ d3   @..h)8, <:6gXZ\^`bdfhjlnprtvxz|~ ةĠةƠȠʠ̠ΠРҠԠ֠ؠڠܠޠȩ################## # ########## #"#$#&#(#*#,#.#0#2#4#6#8#:#<#>#@#B#D#Fh5C3׷Щ=7y857 O&(3Bj5D\@)proj1_sigYM5@(PI_2_aux"[08U @UW o  Sb ؐƩWf3N !q^m <ѩq 琩 鐩+wjya۩{ݷ|o~ ᚠ@&Ropp_0 GU`l@/Ropp_involutive"2Cn2TDJ[]A|CL@#PI2 ䷸D=mc `eb[RtTNTU#EЩq syn} ooCöj 8:"CǠ 68(ӷԵQשˠ%_ 0 aհ̩ CǠ2ɠ 1 9m䠩Ԡ   mHt p g} թ T "/|F]Zĩ^g XQ@NCr0|0~OK@+sin_antisymV@'cos_sym6Q퐩 C/>4˩ $&hK-JM 02WWTGV>XNDD _`Sb@%cos_0tn ƠQ멚@+Rplus_opp_r {GCbq$@)cos_minusݤۀ ֠(*%@*Rplus_commqCr ࠩk  ~+xʐ<B: 310G'E(Ե@L0N0  20P2" 4@)sin2_cos2640C32G*:թN>ĩ# <U > @<Lͩ.ҩ13cVשʰU=[ܩϰ!=ȩ V X'`P XdHM#@)Rplus_0_l 6ʀ*,R1@+Rplus_assoc 64 r]6}@/Ropp_plus_distr:CxR}򐩚{@$cos2 C{    / ǩ ϰ 3 W?n@ ̶  @  $;  @  $@ Ŷ@ <2%  @  %4 @6) D I @8+ F   q      q>   k @  vC     @ y0  0  z x u? {6 8P0C  ^ "6  sC <V6I  d (< >@ IX2;AA^Ʒ_@̩SbķXK K@'cos_pi2ЈC\k!G@"PI GY֐ 'Coq_Reals_Rtrigo1_sin_pos_tech_subproofas (Coq_Reals_Rtrigo1_sin_pos_tech_subproof0d"t'CYp~fa= tש~{C@IK$int1 $int2A|Yk~FcBe`srg\=ey~z~tp@ ީ94!ttaS@vY۵  ˩ Wiթ                        ð     D,[@ @$u|vp( @ ${|v$@ @<}-!2 #@%3':@) 72bw    bשv  b9 b d  b @%% m m I rE @// y0  +  z x u? {68P0C^"+ 8U5Hc'ӰW wC<Z:M"h,B@ CM\=R:5 àGBKMթHQS  Ӡՠנ٠    "~_5t\W; } n80 l j't87xŶܶ@: 7@"$?! ~ 5%@($E'@ 3@ "@/{OKjt=@1}QMlv?Vg   Rim7 ׵i@ : l@ >4t9E@(pow_incr(1ǀL&]*^_OHé ]`0jU5gkk GàŠ rCOJGˠ@Ơ Р=ˠƠ }C^YV@(sin_term)Ckf젩 Cpk+ }  b _ Uv    y@.Rfourier_le_leIɀ  U tl s  k zא !{   av  Xܩ X  ' S @    u5  ("?@ Y RM NAP16 H ; FP 83 C= J  H FԩjRv . 4 +( "#%  8! D %0#+% 2 9'),+ 33-Ҷ@0 -@{$5"t +@$; $z@ )@<#v ?^h53 @)|uIEd n94@-yMIhr2Rc  NfP2&Un8صj@$$ XZ q\^婜LIcG9h;jM @33 up  /     E8-X)@;t:/H J82].E@y?Nm  CO<7b3JE~D@ & Ȱˠ'٩հ . %  0 '  Ӡ@Ġ ٠ 8w 7̠% Ce _ ; 5 3 T 8 E ; A + @ = C " 6 B 8   M R   .   x  ˰  &G/^@ @$xys  @ $~y@ @ "@$2@&4_t  _ԩ.[@  @  d%4 5 h* S s:84   e   E `&&v CCĐ "Coq_Reals_Rtrigo1_sin_PI2_subproof:y #Coq_Reals_Rtrigo1_sin_PI2_subproof0~3D:CCRTUHW[Ȑ$int'@'pi2_int*  @_L[$ Ȑ#lo2@,sin_pos_techmπ]ޠ٩3Ȑ"t2}Xr\ k@-Rsqr_eq_abs_0+x x !ΐC*+ 02RԠ46 ^(@&Rsqr_0 OgAM"!@$sin2  񚠐@&Rsqr_15JJ@'Rabs_R10CQ@OFǶOtSWRBN@+Rabs_pos_equ_m:aeO!oĐQ OI+# DL.:; ɠRR O :6T  58VO  Q  = ;LM FKzޠ b o >f    y Ѡ ٩ ΰ˰ $ DͰ  &N6e@ö @ $z  @ $ @ @  )@ +   9@ -    ;f{  f  `@ k'      @""u + 6 EH9UW IL G C=t?o X 5 5C F ° 1  4A s (  :  < G {|  2} wp k l _ n 0bϠ .mѠo`Z$XV^ ` .5#2% , 4' 6̶@*'@ *!@ w $1 p@@Z } @  n g;7 V  `t D@  p i=9 X  bvBS &! ! < @BD(nF ^pc+ ]@Y    c@B  g    XC` #Coq_Reals_Rtrigo1_PI_RGT_0_subproof T VU]@   ( CI  @2Rfourier_not_le_gt#>݀ ,        "5     ~2   ,6  C "  3 4 - 2 a  հ  Š ڠG  ˠ ͠8 VM Ѡ0 ӠIةd      @(W@@!$ q}xrl @!$ w~xr @@! !{@! {   !+ %}@! }   !- %XmzX   R@]ҩԩs֩u @d!!%!4P(_c !8T 6 22,c4.MG!$!$ tC?Coq_Reals_Rtrigo1_PI_4_subproof u <}@!1!@ ~ C E   @.Rfourier_lt_leK`   !K!' ̠Ġ Ơ!J Щ  }v !q· !r!e!t!U Z $ukؠ!\ ܠ e/'cai!k4.G C1@3;5 D7 Ŷܶ@:7@!"$? !!~5%@!($E '!@3@n!!@!!/!!{ OK!j!!t@!!1!!} QM!l!!vVgRjxg7׵i@WY[] t _a x x x wFx@""t!!!HWY! !L !! wC!!![!,!>:@(PI_RGT_0" !D!!d!S! "!!6! "!!C!!ϩD!m;qq![@*double_var?v!ذ! x!5! !i!!ݰ!!h!⠩!Ѡ!Ӡ!u!!!!!t!!z!!!!!ɩ|"!d!"!"! r!x!!V  XIB@"?4cs0!z{um"0!|}wo"@@'cos_PI2ѡ-@'sin_PI23ͱܐL L""!I" "/ kP nS"-!":!";"."="'"@&cos_PI0j"7"F ""@"M !"P"C"R#"<"< }@(Rsqr_neg "M"\-"T!"a"I"T"c 4!٩!@.Rplus_eq_reg_l7X<!ϩ"o!"p"c"rѠC"\"v#"^Щ!@)Rplus_0_rH€"q"O!⩷! @)Rsqr_eq_0&V"q!󐑷2"!w""a0!O#api!S!'k!h!"E"@)Rle_trans"!o0"@$PI_4 퀐 $Coq_Reals_Rtrigo1_cos_bound_subproof"" %Coq_Reals_Rtrigo1_cos_bound_subproof0e!p"+ҩ %Coq_Reals_Rtrigo1_cos_bound_subproof1 %Coq_Reals_Rtrigo1_cos_bound_subproof2"s!~R"j"ķ!"ӷe!""wK!"`f!"7 !"N@.Rmult_le_reg_rԀ ]"I["pz"  oo1@t@"ڰwm$"KvfWRLF "Ӷz@"}s$"Q|l]XRL"ٶ@@o<""WS"je"#d"w""W@""[W"n"!"#h" Y@""]Y"p"!"# j"4ImlV4 .@e9 e@! !:!!"N""cB.b;96#<"8#"so""#"4 A4LC<#"yu" "#%":""@h# #d"S"i#h"#!ݠm#Lթ " # "ϩ! # S  !W#   N# >ܰ֩ΰ BfN}@۶@¶@#(ũ$"#!@ж@H#.#=@#?"#2#!##M#b R@#A"#!4#!# #O#dz r!@A#;#J۩#+1"#N߷"#O"#9#H0 #<#K !""ѩ #A#N#"ϠǠ ɠ ""~w"#r÷"#s#f#u i֠#Ze ڠc-%a_#i >,;. =0 ն@30@ *@#$:"  #y@(@##@#" $#w #p"D@#_##i @#" &#y#r"FB#a##kK\   *  IKgNe2i3e@### vAC"# z t##"婷#""#C𐵩!###"{ ##ɩ###D#ũ##éyq9h#xz@{x`@rb@#Ȱe[$#9 dTE@:4 #@p@_#ΰ#=@##A l=#T#"##N#z-QP:pFrD@B#Ω#ٰ#ܠ#8# ###$CBP#Ҡ=>5"BA## #۠0G#ݠ2 B29K40M#+#+#kc e C$$#Z$_#$$$Br#&=v#fB$>ܰʩٰ̩԰۩ְ=@^Fu@Ӷ@4@$ $# $@ȶ@@$&$5@$7# $*$"#$E$ Zp,h)D(@7p$&$1$@ 4<>#$D $,$,#|IC$*$G!$I=$,$. S#$P$C$R$: !$T##$U$H$WK$:%$< ~$E !$_$(#$`$S$bV$E$N$G #  $l `$V$ ^3dW@$hũ[#թV0%#!$dX0'#! $faH?K@&sin_PI2ǀ9$o$n$"$$p&G$r $$$$  "$!%$$$$ $6$$ ĩ"$$$%$$$ ɩ$$$!=  Z`X 2 0$ թ 2$QON $$$eEc e gI@$?m !0o$&!QA2-'! 2$[|']$R$$η#$ϩ"K$ѩG4j6"b$X$٩$̰$$é:$ )$ $  d b$y d$$- f$$ X$$ P R} ة S~ U~  * #@$  tDT0$[!vgb\VN g$0$]!xid^XP i$ !$$^`$$.$Q%df$N$$% $% 4k$#ީ$  )"% $ϐe$ ?$%%%! "%#ې"$%*%%,"%萩$%%  N,%."%<`$%=%0%?$%)  ũ ð%G$ Ű%I %3$ ک ک    @%E ~ s 8  30 $! %A 50 $! %C  }C%N%]7$%`$2$%c%V%eې[%J!̠ $! %PaР%T1 %W.i"%{ $%|%o%~t%c t%z#%W% %%}% !#%\%%%%%y& %a  @'sin_cos3돀$:%%n$%/%$%%%%%5%%'>%?%D!c i a!;!9%!;%G!=% !?%N ^ \ [!1%%r p  r! t V! v x z   !!@%Ű   R "   2 0 %9"d T E @ : 4 ,!E%  n%{K@'neg_cos%/$%ĩKȩߩlߩD zF$%ЩT%%$%ﵩ#l%Q%ՠ  %נB %x%%%%Z s %M&%&%&c %  #&  %& %& l2 !  !!& )!&_!&   !&%Ʃ!} !~    !U!N@&!K!@  o!  !0 %"      y!& !0 %"      {!&!L H  M  񩚠@(sin_plusl= C&"&1 && W& <&&;% &<&2%i ߷%%%m&6&Ev%$%u&>&MA"ܩ&0@#tan 쀀Ʃ$%#&[%&\&O&^&8&H%$$&>Š&B n&D `"&O#&qe&T&V %&x&k&z&T۠&_ ɩ&a &j$;$&栩&j#&l&p&r թ%A&u!%D &&&&&&~&  $&2&%&&&&&"&& %`#&1@1Rplus_eq_compat_lH01H$9&& &K6&C&ĩ&&&'$B&ȩ& &98&L&ͩ&&ϩ&թ& U4$O&թ&   $S&٩&Qe&]&ީ&Ѱ&&&C&0&&Š\ *&h&&ܰ&&̠&Π&8P&=&&Ҡ&Ԡ>}2&C&&ؠ&ڠD1&{&&&_&L'&ᠩ&Mqp&'&'&蠩&& BVn&['&&}&a'#&'' '&&&&' bi$'"&'#''%''' ' t$'-' q&'0'#'2''+ &'8'T&';'.'= '%$'?' '"]˷&'D'7'F'.'' =$'J'+ש'-  #j$'R'3&'U'H'W'?L$'Y':u'< &'_#&'`'S'b'CY'LYߐ &@*Rinv_r_sym9lU䀠&!S#!#1!V1'S'U!\M&@9Ropp_mult_distr_r_reverse)R ! 'b$ &V!l!n!p'mש'o!v't!&Ω!'!} !#*'~,$.'M@2Rmult_plus_distr_l0ylɀ5$5C'''9 $;=&'' $A'4''''' ' $b' ' &s&u $X' %H'Ω'&~5&"'T'թ'Ȱ'ש' ''''۩''c '_''Ӱ''#'0''Š'Ǡ8 *U'h''ܰ''̠'Π6&'Ҡ"& 6'֠6%%t'Y'ݠ.'ߠ0'('(B'%('Ut'('( Ii'S''S'%(' I'_'(( (Xx('`'Zm%(!('( g '(&(((g(  Z( 2(%(0( g'(3(&(5((j( r %(?( - v'(B(5(D(' v(2'(L(-(/'(Q(D(S(6(? '(Y(:V'(\(O(^(A(C(Ej (N'(h(I(K%(n'(o(b(q-Р(T(Vũ%(y '(z(m(|8۠8(_(hΩ#(T(@.Rinv_r_simpl_m=  '=?']4"sn"u }"w"$"%<(v"} ɩ"'M'k(@2Rmult_plus_distr_r~$"ҩ((ȩ'(('((((('Z!%=((( ֩'d (#(('n!%Q(( (" 7(P"R'| "N5 'Y9(!Ǡ84(C(Ȱ(ש(&h(:s(jg!Ӡ%n(C''nC(ܰ( (ƠM'#!%(((&s(X (z((((ޠ("K&})b( ( () () ((Z) ()))p(6_()((ѩz&))()"))$) (@&double {(#3("*9  ة))())9&);B()<)/)>"2)!)#ee )+)H&)JQ()K)>)M"A)0)28%൩&)V)7= ()Y)L)[) ) )I &)c"W()e)X)g)OƠ)JP+ &)m̠  ()p@)d)sҠ  &)h)w"k)ZHH)\ܠ), (())))v)䠩 %4$:$2% % )[% )$+$)$($)z)?$=#$G$$@$$B##$D$$F #$Ե$@)$$$#$$L#$0$N)&0$ $$ $$#%)$0$P)&2$"$$$$#%)$C))k mm#<&<)Yb gn))ll#nnC)) " &I))';))r)C)ĩ))Ʃ|))w 'G)Է)M)Ω))/&_H)'R)ة7)Z)۩)ΰ)<&la)6b)/)p)c))װ)G)/)/I)ԩbMuu'l))r))))ݩTV<(3%$$%}q$$%k))m%c$f$%g$qq%<%5@)%2%'$$V$$$fh$0$)m&$$y$t$n$h$`%y)%1C**ѩnr&)pVC* *ѐ#&^*%$''* *&*)S**+)))X*!*0j)))]*&*5#)&ĩ*))'*<)))*?*2*A)**%+#:&թ*)'*L)*O*B*Q))*/*?)˩)*Z*;A),)*]6* !7()*S*b()Ʃ @(tan_plus&D))););*S**LRGE*W*t*v,E'*{)ݷ)*|*o*~*X*h6 )'*'***w**`))鵩*@)Rmult_0_l+€)=C***l)'!)2P ꚠ)@%sin_0C**K )**(**#*****^*((*d*.****)#* *2@9Ropp_mult_distr_l_reverse/Mv)jC***w7*驚!4@'cos_neg͟*4꩚!:@'sin_neg3H*:C*ð*ҩI**ط)*ٷ**N*1**Ѱ*#"*E)***ٰ*G*K(f**ƠMh#b#'**v*****ӠZ)t_'*(+|*+ *+ *堩l*$'**a+**++ +*!M#(++&M+ *43*@-Rmult_opp_opp;-<+ y C+"+1+ $''E!@'tan_neg5b)#ꐩ)pM)rO*(+C˷*+D*p*V#*(+JD*+K*w+@+O@**+R=*+S*+H+W*(+Yf+AD4.+C*+N+]**m(C+P+_$U}+<$XvA+](+k *+l+_+n͠+X+Q+; '&$&&/&&&+`+%&ܰ&#&%&&ð&& & &&@+q&&%%Ω&d&,%ީ&_0&.*(&%%%%%&+m &a0&0*(&%%%%%&+o & C+z+*++ +e) +$+s ^)+u c  )+*++++$ +~+ +)+++!+++$+ r+++  + 'T&Z&R','*+ x',+ &K&I&H'++_&]&&_&C&&@+&&&7&&&e&&0&g+(I&9&*&%&&&'*+ &0&i+ (K&;&,&'&!&&',+&U  B v9J9S+)A+ǩ++  U)G++/+M+Ω++Щ+ +4'|&&z'T'R+ &q&o&n'D++' &'"&&i'' @+а' &&]&-&&&=&0&+D(o&_&P&K&E&?&7'P+ &' f+Ǡy"X@&sin_2a2 )l+$栩+ՠ  +נ  )t++\+z+++$  (){,+ʷ+,+,$ ++G('&&'&&&'w++&'U& &'F'?@,'<'1&&`&&&p&0&+w(&&&~&x&r&j'+ &0&+y(&&&&z&t&l',&'=    5"@&cos_2a0jҀ <,,#),%,- ,   +,,,,.,{),0++,1,$,3,X ),9,+,:,-,<, +'&&'&۩&',,+'('|'u@,9'r'g&&',&&''0&+(&&&&&&',5 'q   ϩ ʩ%ɐ,5,R),T%H,7 %!,9 $^+,[,N,],E~),_++,`,S,b%V,E 0),h,1+,i,\,k%_,N+ ('''' ' ',[, c''' g'''":''''@,m''&&ʩ'`'(&ک'[0'*+) &&&&&&',i']0',+)&&&&&&',k'' M D P?%y,o"@)sin_minus<,,s,+n,,@'nat_indJ+v,,,W+,,,O,5Ȑ*to_rewrite(&, ,Y,,,A'K'I#Heq,'P,(5,,'V'k'cȐ-list_hyp_normp' Ȑ0list_hyp_norm_eqolȐ*ring_lemma,B@2RField_ring_lemma2!8(8,(J,+ (,{,"pe'|#npe'@,Ȱ''0',9)d'T'E'@':'4',(E+,,,̰,۩(p@&PEeval"s 8,,D)o@,%W',,Q,(`,+ ,)(y@(Pphi_powcH,,M)xI,%`',K)v'F,,Z,= ,$'C''A&,'=(''A,@,'C'0',^)'y'j'e'_'Y'Q(j+Ω(b''(H'(',,I,,,-,8- ,k)g,%~',-x,' %*- *,- ,-*(>-*q*h,C@-',,- -Րz+q (M'-C--"ސ,ө--  ,,L, -:%Hreck-%*-2,,)·,-6-)-8+-- %,,[+-$(''(ǩ(Ű-I+(ǰ-K  n''(-5,('(''ީ('('$'>((&@(('((((,((''`H((@-S((''(F('(A0(,)''''''(-O(C0(,)''''''(-Q(-+W,@%S_INR=s,-d-sҠԠ,G-X-Z `G ڠ,M-^-` f,-K---w-ȩ+-砩-k HTu-o"F-----|֩+-,-----| Y+ҩ-- -Q,D7-"^ -+%-*8-+--- --- -)3- -/*H---(V -([-)@-ĩ #-+*U)F- (e(z(r}( zw  )<-)N-ҩ  3,-- -%l)Y-ݩ" )\- %I(|)--ɶ((*@-װ- 8--J*u F-&](--W-)f-  K+-Ϡ-Ѡ ש-+)q-" )t- +(->H--]* Y-&p(-[*(V-. j-M-4(C@-(G(0(-b*(}(n(i(c(](U)n,ҩ)f()L((( --M---. 08. -o* k-'(-.|-% +. ː p+S-- -+-.. .. (u)B((6(iP,@.(m)0(-*(((((({),.>,[-...-R8./-* .'"(-.=.).1 퐩 &թ..!-+{˩).<" ).? &()\H.B-* ."'5(-*(. .P.-+ .%7*ө.'"9-.1C@5.=.L ./!  -.5.7!=.&*.:# -?C$@'cos_2PIwV}$@'sin_2PI3£!"0?0 Ƞ-.L.N!T.'.X.X.V.s-Q.-T..j.y#/"G)e)/)' 2( / ,(F,.,g...|.#A#A, ).#D,o}.wC@{..#HyvC..#Ks"-t.k!.i(-.c....#T",.'..·.&....",%.. .+...'. ",..+A.4...'..#*:.'.2+O.8.&*B. N)a)_.)d.*I.ͩ'.)+^*O.#)n)){ )"  *E.*W.*Y. *[.ߩ#&H){*..ȶ)))@.ְ. 8..I+t!E.' \).. V.*e.*g.*i.#,).3 H..R+}!N.' e).P+{)K.. _. B . ))8@.)<)0).W+)r)c)^)X)R)J*c-ǩ.y.?...."8..a+!].' t)./  n.,{/././.#)^)M4ߩ./ /8/ .n+!j.' )./ {.ީ*/ҩ*/ߩ*/#')/H/.w+!s.( ).u+)p./# . g .,U( .+. .}/C@//(/+/.#( @é#/// /),/+(/ ;#/5./2/%/4/#~,/6+÷./7/*/9(- /^#,/?../@/3/B(6/%+# #*))* ))*/2.:))O )**|@/@*y*n))*3))*.0).+))))))*/< *x 8 ` 3"(J  />/[,/]! ,/`+./a/T/c! ,/f.ȷ./g/Z/i! +*** ***/V/*Ұ***)s))**@/f**))é*Y*!)ө*T0*#.,))))))*/b * ^  Y$0&  /b/,/!V///v/#/m-/,///{/#ԩ!Q-/./ ///#ک!N+;*A*9+ )*,*++/}/B*"*K*͵*@/***)*}*E)*x0*G.,)** *)))+ / *3   }"Z ة v א-6.S" ܩ-נ"/&@1Rplus_lt_0_compat-P/,@'Rlt_0_14CC//J//'V/8@'Rle_dec3/Ʃ.@'sumbool7̂K@. . BAAAA@@@@@D'q.//.٠./.,o/ʠ#Hle',& / ',. ,/../ . ,/⠷$Hle''> /E/跐%Hnle'//@*Rnot_le_lt.J ,//t0/w,R-0,/0@/}/.PF/.٠/<.۠>,//,.[ //q0%/0&/g0),.cdy( /,/{0/""!.n~/06@/0!/6.0,..,̩-0A//0B@/0-"0/!.l/H/ >-0Q/0R@////$/-0Y//0Z/à0D!Ґ.0H!/ʠ-0e/Ƿ/0f@.0Q!ߐ!ᐩ./l/0{/2}--0w/0x@./ ..ɠ/.6/>////#/./0q06)P"1 1"0 橚0@4Ropp_lt_gt_contravarY8<0"Di"-*0@+Rplus_opp_l73ܩ#0n#-4u0r-6w0U@1Rplus_lt_compat_l ]߀0y-= 0Q-?0'I0-A'K0G0-E00"$Hnle0000'000+ 0.@0-S0F0Ƕ@/ 0/Ǡ//-]0Ʃ/ 1-`.O0-b0U0ֶ@0@0/ Щ/ؠ/ /-n0U0K-q/ 0Y.b00ǩ 0]0800l0@KGE76-} 0>'0T 0V- D0ܩ"jq/e 000b000I00}0//'/0-'s@)SIN_bound0ހ%'y@)sin_shift=j0y011 01 10z%F1 1=0~0T00s11 60/h11$#/` /a-/o0w1+ 01,11.#/j J-100v1$13#/o -/}019{01:1-1<#-1&00111@#-/01E01F191HO-1001;1J#0-/01N1601B1Q0-ީ/ 0/ .1W-01?0100/1BC0H1B1_Ȑ!o0@'Req_dec3{+-CE+0BAAAA@@@@@D@  :00_1e1t+EB  "H'j'@)cos_sin_0\0_(11011 01B1}C1 Y+\1'A110߷10\1L2Ȑ"Un&111{0z,{0O131X1P&111&&1é1'ԩ1e1"'1ǩ1'ة110q#̷'1η1&Ѡ1#е,1Ʃ1111/,1d1U1z1rC1Ű1ԩ1111'1ʰ1٩0'#0à%#1+1ߩ0Ǡ')11à(1*1O#1)1;011>---o-l-j11-g-e-d-\11-T-{-0-,-V-}-X-->-0-U---&@1-#--,,-,,0---- -- --,-j1,0--------,-l1-$C12,Ӡ)1,ՠ\11]12,۠/1,ݠB1/2,ᠩ,/p1102#1~11/21ǐ1111/,/Y11А1Ȑ/2*2 1/2/112112 21ᐩ1ِ- 1/2>22!011812I1232,-0+1@1Rmult_lt_compat_l`*121J1D@&pow_lt!Eۀ/Q1#12s-6/11R2v1Ѡ2K 1S!+\2QD1 2 2"1@(lt_0_INR %"Lt2!@(neq_0_lt/0Щ2,@*fact_neq_0)5122:20M222r1נ1ҩ2H(22#2@-q-W2)2C1ΐ12/32&2222K1[2[2S-/2<2+C2aI/FAE<G14H1됩22M2H0|222L222w(522R2o-+;2X2C10O2թ2 c2W2ة2A2©2-/i0X2ީ22rn 0^22Š2Ǡvt2h22R2̠22;2/|2o22Y2ӠЩ2ՠ20r20t22z22d2ޠ2%}Щ2թ2%)%2@'pos_INR030231Р2& 1=@+Rsqr_incr_170&0&1N2@.Rmult_le_reg_l΀& 3& ~2u3)3 Eݩ03- &,&21y3&-&202-&,-,,|3"2s,t,w.r23#2s,qC2g 3&$-%&&C2-220˩393H202-3=3L2&13-0/۩"+0C2#&H03aC2>3b2374&O=1//....ө..3F3 .°..ln..@3T....Z.G..h.B0..}.z.v.p.v.k.j.d.3P j.C3[3x22]23}22K2]32ܠ3V3#&p^03332i32 ީ033_2p32343 333w1 33r3?&3A333%3133}3J/{333 -33P32333233a&:51-2䐩333A1u333E"223p).33K3h.,R3Q3C21H3Ω&-20]3P3ѩ3:&ʩ333I1R3ة&730h3[3ܩ3E&թ3&?3ɩ1]3&B31"3f33P&3ʠ&J 0z 1i33Р&5L3q33[&3ՠ&U&W&Y3"003X32E/../../o33/g./i./O./Qf./R./k.0. .$A/Y./w./y./{.©/a.ĩ/ ..../S/L@4/I/>..m/..}.0.30......w/4 !/0.30......y/4/J44(&&4 4''4443&4$4&&&44&00034@&&4%4''?334)3$34K33@.Rplus_lt_reg_l5=Ӏ%ɐ'L'L14W334X34B& &&4A4C'[334E43$20////4k3////4U4/Ѱ/j%>/Ӱ/[/3p//@4g//..ĩ/Z/".ԩ/U0/$31....../4c/W0/&31....../4e/4p4&ޠ?'f&0C34&)'l3˩4@4Rplus_le_lt_0_compat&_0's2թ23O33ש2詚4@4Rplus_le_le_0_compat 94|4~'3Q3Q4o3S4@,Rmult_le_posN85 3Z'3\ "".r44"444" 443f#'# " .~4#4444 ##3# # &DiscrR4@)Rlt_R0_R2Al444$4,'$r4'+{'ũ1{4'0'2'44 841f1f1f4C4B'ҩ4'<'>'@4Ġ')4#1r1r4b@(mult_INR>24h@(plus_INR S_K.E4ՠcZ.ܰeZcu44z3@*fact_simpl;tLݩ4q4441$41$'.30.=.4_.4é é3 54ܩ/C444Ω424@'pow_add22454C44w3N45A44 5D44 34 25<4 4÷45>44'''5.5' 34ѩ5*5,5 405/5154'a25U545V44'''445@5I5B5D+5E5G513100005m%00005W5R002/00@5e00//©0X0 /0S00"42//////05a 05l5{&4N55_5I45&<5544'栩'蠩'꠩355v5o5q5[5[30ܩ5t5v5`3'31C0I0A115 0806051 55L0,00J 0.0ص0@5000"/00P0000R5 240$000 0/15 0ͩ55^5`455/555(((4y5?'/4|5D55)4'41j0p0h1B1@50_0]0\1255s10q10s 0W10@5000K000y0+T000{522]0M0>09030-0%1>5 05Ű5ԩ'J?C5$5ة'N5Z5۩5D5?(<(>(@3i5j'Z3l5o3m1154/1001k1i5 1k5 1m5 1o53y(0001b551Z00ک1^01`01b00001912@51/1$00S000c0005j200v0q0k0e0]1v50005l200x0s0m0g0_1x51056(m/ZW/41^W(t(vcA5g6(z/<9/:.5ex@5E36(B56)56(35(35'365(VQ5685 6"36<([(\Z 36B556C5(6/36If(h5ӐjiYmlj(lq(o5qC55; h5(v'Ӑl36an56b5ˠ6L(à3(u(Ơ41'36n(͠}56q5ڠ 6[36u(Ԡ(֠ 36{5ݷ56|5(ݠ6h365(5 ),(0(51C55r(66{6{6{6t6^M6}!&M6w3%\0^C655+66,7(6 5+66,é66{4(6C6655(C66)x5(C66-%@&sin_lb26,d666356oS-3@)sin_bound 66%9%26y7-%~67.7!70!a0$)7% 0)"%11%%2_7$![$1'1'1$%1'1!Y% '1'1'!](1"'1"22m1@($(߶@![$(@7G(($263111117@@$@g7M7\ǩ(@7^63)7>0Q(776 27&7l(70"()1(!$$'!S('!P!k$ũ(2!J(422(622(8'($ɵ()@d%7S7^7m!:0aLP67q!>$!87Y7Y6Ct &Coq_Reals_Rtrigo1_PI4_RLT_PI2_subproof7m©6ᠩ7T.{7rǵ!7Z&y%é!|66! 7i%7k% #i7m%!%ĩ!ٰ7z%yG6)7w #u)7{-% 77%%67%7"777!֩0*7%+* 7%%2_2W%%37!ҩ%p2^(m2`(h2b%o(Z2d!%h(l2f(n2h(T!ҩ(w2j(r2l%y(t2n#s222@)q%n)V@!Ҷ%h)X@7)[)Q$2x7/4Z2J2;26202*7@%f@ީ7İ7>)3@7774b*370)J762~77)D7"))2#(%G%F(0!)f(!!%<)2̰23&2 f(3(2" 3`2"3b2"3d2(")v%H(@&7ҩ7ݰ7!0VZ7<7!%3!777(CCx %Coq_Reals_Rtrigo1_PI2_Rlt_PI_subproof7A7`7E"l&@"a7u7v"\ }#"U&;"P7&27r*j*l&&77&!&7a8&f788 8"I1 *yo*{&22&&3E8 "A%߰2ͩ(ܰ2e(ް2"73_3G2v@)Զ%)@"5%)@8!))$274222228@%ɶ@A8'86)@8874*81+)86288F)8 [)q)2(%%("-)(i"*"E%)s2/2 ǩ322)))%)@>&w8-888G"1;<>78K"%"83837CT818N8D77é7,7*7G6@7Š78S8b767̠77@,Rtotal_order%w6*7ѩ6.@+sin_lb_gt_01l S67)2=768n8}68e7·6 8p@&or_ind" 6 #6> 688m8776857m7N8v6F 78+M1&7U7٩6*8*66)&3L3D&&~4 8s)X3K"&y3Mw3۶32@*P&M*5@8*8*.$3U8 573'333 38&K*;@8*>*4$3[85=3-3333 8@&I@88*@885E+81*-87e3a88*'8*@885G+81*/87g3c88*)8)*l3)}&,&+))3h3L)}*M()@&$)3m4(3o")*T&&)@88]+)]ͩ88a8N8϶@89+1e*J0=88>89+1͠l66i8E+=q*V0Yt6a7106a88I8g8@8R8ө+J~*c6o8W8R+162F8^8Y+V*o6ک-(Щ7I16+7 58o8j"H8+7ˠ>"H98|8w`2 6Y+8}f23թ+98e 8h/7ש/@#SIN ,/ð8.9/Ű0#28w/@*PI2_Rlt_PI.߀+VC9$76u9'ө*1$D9+8@4Ropp_gt_lt_contravar!Y8 93/@(sin_PI_xh7c99,8/889/89?9=9Z9P8Ġ^9E8ѩ869aD869c8ŷ89d@8Π9O38Р8˩,%88Ԡ8f89o89p@8ڠ9[8ܠ8ש,1+֠ 778H /@(sin_gt_0kUD909k8U92+897-W/@'cos_sin8֐9v98"7թ99988ߩ8Y7S9>998q28`9773j99 3999 5.8^9Y97@7)9@998o&299999/!99;8k99f7q"999 =9'9",999$./,909&/899q99Ƿ98m8-L959999894-7U9>8j9ʰ98l89=f7o39G9Bh9Ӱ99Dj0R@(cos_gt_0=7|7e9~9989P.o9Y9T999V/^99X8997)9E97u99{9".:8999:9X8 ~8K8Ġ9!9@&Rge_le 6/R9p$9\: 9:$s99a:++Z9:${ :9@4Ropp_le_ge_contravar(IJk9 9p:$,+:54455:,8O4ũ45:9۩5485x4۩5z4+454F5k5d@:(5a5V44544504964444445:$504964444445:&P5bC:1:@,36:$:&-,( 9:I,3? 9:M7:O- V0@(sin_ge_0k@ :N65 55۩5ٰ:]9445:G: ag55@:S55445F545A05964444445:Oi5C05964444445:Qq5:\:k,ʠ9="9:o,Π9#v7:s,Ҡ9'z:k6 5&55555:b:'$_$j55@:n5544˩5a5)4۩5\05+97 4444445:j$g5:u:,99:::9H:s,9M: @1Rplus_le_compat_l?%89F9:|%%39I(::8:,9l::::: 6I5O5G6!6:46!:9W5@5>5=6::T6 ީ5+55@:555*455X5 505Z:7<5,5555 56: 505\:7>5.555556: 5H:HK::G:6:9v284:G:6f5l5d6>5W5V6,::m6$5k$5O55@:555C555q5#505s:*7U5E56515+5%566: '5::̩-+_:::P:ѩ9H:F 99f:C9dhhCB:-1I@*sin_period6ۀ:g:ɩ1P@'neg_sin%H:, b):I h:::@9#939::S.:?: :s:%V: :D:,n ߰:^ :J:/:©:N;:;8;/ 1v@(cos_ge_0;(55((6~5:+ʰ5%)r6K635b@,(,@; ,,$5:|75555}5w ;(,@;,,$5:755555}; @(@1;;&,@;(:7-;4,;95:;6,:K,@;*:7-; 4,;95:;8,:M,c,5x+((+,c5ة65ک6y5%,5,,+a+@(,l5%,,(+@3;-;<-?:;@:;A:;+479vֵ8;Hշ:;I:;39:C: P;78;R:;S:;J);65)9)76|;A,6%p, 6,1166}5@- ),@;U,,$6:755555 ;N),@@(@w;];l,@;n:7-;N4a,;G:6;6;|,;@,- 5,1((+ɩ,66װ6D,D3-+,5@(-(r;l;{-ڠ :;:;:?-9;l:8:;nC:E=0>1@*cos_periodc؀/;w!":/]! !#:!;w;::9ݩ;:; :;;;;:;;;; ; B ;:;:;i:;`;); 9&;]:0c;VF:;B:9-;@:;>2;;2;6;; . &;;J%$;;"Q;;M;<;;&89:;M;;;;D;ũ;. X;C;0Y43;h; ;*!I;;˷;;5;;B;8/;'7|66z7T6m6l7B;;6c7:6%77@;̰766Y6)6669 ;606;@8k6[6L6G6A6;637L; 7;Ӱ;s.A/;2;w;f;@;Q;ҩ.I:;U0;P;D;X.P :;I;B; ;v;b;ߩ.V: ;c:D;g._:3.a;f:K;S<.f#:ɷ;< ;s; ;.k:( ;x:X9<;<;~.v93<<.x;}5 ;.}9::g;o<# ;<$;.:B<<B =D;E;y<-.鐩.:&۵97667X6Ω67<; 7667p7i@<-7f7[667 66706;86666667<)706;86666667<+ 7g<6707 =l:0h=6//z8=>/y=ܩ9> <9>;8+>>/p@>=t:0p=7/=<8=> /=9>;!)"/t@>=x:0t=7 /=<8=>$/=()/O/8d.++.q/O8ĩ98%/./.K.@+!/+!!<  +}-\+|-U-S-P>-V>/8>+=:0> 7//8=>9/=;-[/8>0=:0>7#//8=>>/>9>2;9>4<8-T9lC/<>7=:0>7*//8=>E/> .=>@+>*>90>"1">h1$==>A0>79<1+> a1-=>I><>K032>.>0163>-s1:3 >11>=>[=>\>O>^030 >L>Z,K99 ,I,G9թ9>k=; >S,(y,C9v998@0,/@>e0/$9=;88888 >^,0@>k0/$9%=;88888>d@,@/<>=; 0>`7s//9)>H>/>Rn,>s>/@>=;0>d7w/>]=19->L>/>VT/@>=;0>f7y/>_=39/>N>/>XV/088/I++./94#{p/[%0./L@+/9:8/U0+/Q@=T <=G=e=>B>}+-ΰ+--ŷ-©>->m<-˩08>>;-0>7009I>h>0>r:><$9?-ĵ9C0!<>> ;41>7009P>o>0>y/k>T>@+>>7h#=>7J>->>>13h1>7=l=1>113s>>13w 3y ǩ7>zv>1|1y>O>Щ>ð>ҩ11>37"٩18>Z>۩>ΰ>ݩ1<7Ӡ> " >Ġ1$1#>*:99:i:g>*:i>*:k> :m> 999:_>>:W9###٩:>:.:'@>:$:9x9H999X909>_;9z9k9f9`9Z9R:k> 909>a;9|9m9h9b9\9T:m> :%3W#)>3OA>V>K>C>?1g#ũ>꠩>13Ðԩ3ŐԐ6x?$?? )>e?ط>?? ?8ѩ>?2TS>o?#{>?$??&8 ?>v?*~>?+??-8!}??2 ML<?4m>?5?(?78+e <?:a>?;?.?=81`:99:W9٩9:?*>$2O:9:9 $0$,:~:w@?;:t:i99:.99:)09>;999999:?7 :+09>;999999:?9:uPNM?93L>?9C?D?S8G$?5?72F2K2J6?]$?^?U<?c1 ??">?g?Z?i(?Q;::::?n>:?p?:?r: : : :?\?!:ذ:::! $a::ݰ:$:ð:&: $f::@?q::99Ω:d:,9ީ:_0:.><:99999:?m:a0:0><:99999:?o:C?z?P&?6>CSS>?K? ???1$$?rDŵ?=?5????8FJ?;H:N:F; ;?>r; ?>4:=:<;??S$:Q02; :S:::@?:::,9::Z: :0:\?<>:.:::::;? :0:^?<@:0:!::::;!? :C??8svV?f0C???h? ?"?=???22~$ǩ?ߩ=A?ǩ2&?v?|?M?Ω??Щ2/?28Ƞ =R?ة8̠???^?ߩ?Ұ?2@2B?Ơ$?Ƞ(?&;::;k;i?;k?,;m?0::;_??;W:$ة$:;?:$$:|;A:$;2;+@?;(;:|:L:::\:0:?c<:~:o:j:d:^:V;o?:0:?e<::q:l:f:`:X;q? ;)2ll2?O?C?@ 2k2ʐ%1??24ʐө2Ґ?]@C@ @2y$թ?Đ7@ %@!@5?q@%?@&@@(9@ @ 3`@$.::..;@-:<A=;l;T:@1-1ƶ@@,1ɩ1$:?<::::: @%-1̶@@21ϩ1$:?<:::::K@+@-ڶ@ǩ@8@G1@@I?<2@)9<1@">:@@W1@1@@K?<2@+9>1@$>:@@Y1@S11:1--01:%@:d Z1!101@-1;::X11-1@?@[?@\@O@^9R@@@B3H~=@e?@f@Y@h9\ =@k?@l@_@n9b<;;;; ; ;@[@ %c;;#;;;@@j;;::ǩ;];%:ש;X0;'?= ::::::;@f ;Z0;)?= ::::::;@h ;{yxw?@hC@s@9vv@d@f3l5=q3Dt?@qC@|@9%F@m@o3u8@v@?a@@?T @D@ ͷ??Xͷ>?ZƷ>T@(>2>X@ 9@>\?@9##+S@@@35c@3>8?s33o@937(@%form4!]# @'@"@@$S@B@ö@?3%?}>^@@13@9 >?3@2Ȑ#Hyp*)>g?$g>R@ة@39 6@[@ܶ@?@ǩ@<$r@J3@9۠>>i3@K>e@ Ʒ@k@@?@Р3P>s>N@>? ѩ>.;;.ܩ.e>©@3㐩A:;>m4@>?{3I>:ĠA(A7A4A@A=A34%@AA@@A%A.@4A$:@5_943@>/5;;/3/1<vA;2;/<1+l<4m @AmiAAkJ#H40  @ Aq34AA ##H50 ?A A6YA4654?%AA A+A@AAA46gA466r4A 4uA:664A!?>A)A$A46zA4'6649g A74A:4A7,7@@)Rcase_abs7 ;0AǷ;1 ;3@AF+ݩ@AJAɠAˠ4ѩ6AȠ4OW64ة4AϠ:4ݩA;A9Ae4Aڠ:YX4AhA84AkA꠩A46ÐA頩4p!44ϐA; 4AzB: x1(8A3AbBgABr:4{5A_@B BBAӷ?ߩ?B*AB+AB{4됩B ;'k5A@ 5BABB5>4B;25$A?ABBFABCAB&wAB/%IAB*B,52%A@ABP%ABQAB4"AB=A 9AB8A@AB\AB]AƠB@BInABIAAAʠBDA@ABgBHAv-BQA˩xAAA֠\AAB@(ABsBTзABvAߠBYƩ56B]@AA3YBfA砩BaBc5i7:a5BBi A o&"@CAB BBABr`5OBvABDABBBz5WB~lB@WABB"BB BB5cBB BB BBBB@gABBB -^BB,AAB!BA@vBB}B9 9VB#@5AuBBBA@/Rplus_le_compatz9 @K @A@P<\B)<_9,&b9hB5.A B  @l&i@[&iAA-&&BBB5B;}5BB@uBK1BFx@~BQBĠ;@@s5BPBBBTA@ B\-  @'O NBHBBݠBߠ52[BC@BkBVBm@C9@C BkBC @Bt<B @BxCBsB@)Rminus_lt$Yπ@@Cj5L6AA$A$ArC3C6F><CiCCSCԩ6K8Cg(tCWj6O8C?C'CsC@B6V8 8 CCb69267A~B'=UCmm' =CD ',CYD 'CD@CxCn^CC|6ѐ86Ӑ9@ =TwDDXC{XCnD"oCD#@C66ACx'AD-'CD.@.D5C61C.'̩5"CB 'ѩB.5 DBC H5Aȩ(ѠZ5ÐKDBDQ=EO6 CDW=K[CD[@CŠDF65֐  Cˠ7 ]7#\ADlCηCDm@Cנ=d DZACܠCשADwCٷCDx@C⠩D\ة=qDgC蠩7=^ =֩>DzDDc7pDlCDDi7vDD@/<C7Q_BD C=CD!DD@C`D7`6D7ea7h >Cn!76)2 gHDD D8D@CyDD=bD*7c7 >Z="((DDϩD7D.D!DթD7DWDض@ DB7d>0C  а B_DDƠDȠ7Ω9DŠ7L*/7ԩ7Dˠ=7/ D_DZ DcD^Dݠ79Dڠ7a'?7Dt(( թDp"T  Dv7ːD렩>gf7Dy#H11CiD7ېD>h8 DE E 89E7 8D~E2E7E>,i8 DDE<CE&E7E>8j 8,E(8.9E%7 83E6D=bCDE3 E58;: E27"8@BE]0EEE>>D@8Rmult_lt_gt_compat_neg_lID@EPD8;@,sin_lt_0_var I_7"saEZD$D'DܐC8ZwE] :B>lEb6Eb<_"ȩ>q<DܩC8hEkhEk6"D9 EoEhD=<DC8t:Ew77GG7=E~LM:T UE )2:Ԑ )5qE :9EEV)8Cנ8D^E8!)=EYE##Ω>N)A>N)AC.C.B@gBCGxEmEc"éC8DE85#8CCEDECCCCCCDDCEEEķDEŷE ٷE:D EDE[DD C1CCKE)EQEҩE;E) E C E= E)CCSE)EYEکEC8>Ҡ)qCvEE O EI8>ؠ)wCk UE4E87`EkE@D;Eש7eEZDCҩEAE87mExE@DH87t>)DEC*C#QEF>C)8i#WCEZF?D)EF@DѠ ة8s#aD˶@D֠8x#fC @D۠ Ec@DޠD @Dp87 8㐩7 ECC4@@44A#SF  AgAO@~@7ܶ37@ 37ö@ @3Ͷ@#EF+F:  7s7@6336 76k  3 73  (#9F3FBC EFDEEFE@EF0/@E8#C Ҷ@E E?DC)@E?IA ) ܶ@D97Ґ?R)?<Eɠ?:sC*E#FXFgYSEFi?]DJ)EFl@ @E-F @E0t@E3?j?*  @DǠ977?s*:'E::vD4jA4A,4h4fA#Fp#[ /AA@ֶ@84418@ 4+8@ ,@4%@#FF  &78D@7U446 8#6  3 &8%3 " 6#FF*- EF*/FF@E]?D?*3@EbUFR@Ee2@Eh?:*>E}@D9l8(?*G:;F:;DLBcAiAaB;B9FC#AVAUB+FFlǩ0Aj AA@FAAABAAApA" `A0ArF)CTADA5A0A*A$AB5F AFF+8A ۩FF~FNF϶@E@E*h@E-@E?Ϡ:*n*p@E,!k0FI<;Dv*F1FFeF@v@Et*}@E@E?<'**@EA9?;*!Fb;<"D,D*D|(@P& EN99+$S<=;éDG 9iP@0sin_increasing_1 { <FG,FFFjGjGϩ9]ʩ# G pGG GЩC%9FFG֩ a%;+F!G c%=F#G7 e%?+FFĩ g%AFF+8F)+,GGFGGQF+GFEFGFEF+GIEFĠF!GUH < GH @Gv! Gw]G]H˷GH@G|<ː~G GeH<ϐ:z  ڷGH@GH GoH#<ِ:5 GH(@G<ᐩ: H!H&6BB66CCH7+ȩCH9FBH!5B%5B E 8B ө8B8B882VCzCbB@959Զ@H:9ש9$BGDBBBBBH359ڶ@H@9ݩ9$BGDBBBBBH9@5@9<HUGD:H5AH99BHHc9H'CӰHW+)5٩HJHY9@H[GD:H;AN9H4GCH#Hi9H-CٰH]+)$9@H_GD:H?AR9H8G CH'Hm9H1"9:B9"5589C -TCB-VCCCB9999989*@%%5ϩ9CCӰCq'DBr9595ѵ91@&&G4 FG'GEGH"H]5ϩ7"5η777Hl7Hc98H}GE :H]Ap99C&HEH9HO"E798HGE:HbAu99C+HJH9HTDH,DHA&C!7CC:<HGE:HiA|99C2HQH9H[9MH6Hq@5کH|HA, AF:  LGHA,(AGW'HH@H=Q=Q: ZHHpGHH#H@H=]A,>AFC==cF)H;kAF8CH3H@HH=mA,N ȩF7H;y*H?H@H*;HҷFSH/ HDtCzCrDLDJHFd#CgCfD<HH}-C{C_DC}*/C_D8CDCD7CH;CfChDD @HϰDCC\C,CCC<C0CHCEnC^COCJCDC>C6DOHC0CHEEpC`CQCLCFC@C8DQHD HذH6;FHʠH,FrH;HDHoH@GH۩;R @G;W,H@G;\F @G ;aFDHDCCDDI F#C;HI AG;l&GĩH]IBFHI@GԠ$@Gנ"BF@GܠHd,@Gߠ*GHI7 CC77D&KI%9Cө9۰Cթ9T&-DdDLC{@:ٶ6:@6:@I&:é:$CHECCCCCI@6ζ@&FI,I;:@I=HE;IB0:IGCIIK:I&`:v:C:669:9n6:xCDCDCpC :-:6:@&CI=IL,YHIN,HIO@H8I:@H]BIF@HBNDH@HgBSBIW7HDD 7F7DD&INĩ:D>3{DDC@;7:@N7 :@Ia::$DHECCCCC IZ@7 @&IgIvN:@IxHF;IXBk:IQH%D!I@I:IJ&:;*C:;669E; 9C^6ߩ:D(DD*;@:P-?;6:A@&|IvIHIII@HH6-@HKI;BF @HP4-&@HSHfB=(IHHY-/GH\JGWH_H-5G6HbFY=BGIERDXDPE*E(I=$eDEީII< =HIB=DI4III<=III I<II&B>|QIB>UI HHwGGIIII<$GI<&G_I=GQH?-_GSHAGfHC-cGhH>A@D@)cos_shiftpM#+>I>IC@IEIG#|VIhةX Ij$k>,HIIHII>H0GGGzII;,IڷIoI@IZ ŐHBI_JIJ@$@ @@@IHL>ѐ0IkJIJ @0@,@*@(@&I>ݐ<H\J"EDDEEJ1G$DcJ$J3@IJ5IJ6@IJ!R@HuI@HG2@HIO@IMHI><;G?< JF$ IJSIJT@ILJ?@IJg@IeI@I m@I kթI̠?<Ơ;E!%#J` IJmnIJn@Iؠ`f@]@I2I[@I5@I8I-!I䠩?3<ޠ;C#=Jx_9IJ.JJ@Iox@IIrJ9@@IM6I`@I?I<< >TI+HIZ.0HUI]H4I`.6H1IcLJ8EWEO88FF)J.>-JtpEED@@j8P<@@f@8J@<1<JJGD=JC<,<'E`JJ<&JF5J.JF7JEV8=JJ<@JJ!GL=JC<4JIlEhJJ<.JF=J.RF?JE^<#@JJ'GR=#JC<:JIrEnJJ<4J;IJf/:"]/<IHH멚B@0cos_increasing_0P+'JJKK_Jd4")ϩ>*)<)ѩ(/HIM/HJi*/JKIOI,/LJp/LJ{./NKJrIB& %Ir%Iѩ.?@ KKKķJKŷK)6K:)3K8JI&@?ЩKKKNKϩK8KKKRKөK<}IPK֩>5CKWKةKA@IVKܩ>;K]KީKGx@I\(K/sKbK@Jh@JK@n@JJjKV@L@pKAK KuK@J#K@J/@JKD@lKKk.(KxJĠ1 !K]JOJȠ %IxB|@0cos_increasing_1PnKKKXJJŐk/JJGKdcb/JI/Kũ/K|JKK_/J/J/KJJ˩0ة0&ocbLL#JL$L%K%鵩IL)E'KL+LL-E!#RBL LL&1:FF::GGL9&ĩGL;&éGL='-GL?1FL'9F<K<F6W1-6X1*<F:F<F6_<FV <FX GGoF@=9=@LG==$GKHFFFFFL@9=@LM==$GKHFFFFFLF@9@=<LbKH>LBEU==G L*Lp=L4GLdVGLf۩GLhWGLjG9L]Ll=@LnKH>LNEa=LGKGL6L|=L@GLpxGLrGLtfGLvG7=@LxKI>LXEk=LQK%G!L@L=LJ 2=>*F=;99<ө=G&1mG(GǰG*G1fGɰG,1lGG˰G.G1jHG2GHG41n=M><=I@779=G71~G9  HG==V> 9=R@::KU JKHKfKLCL~9;ϰ69;;Ʒ;éL;L>8LLI+>L~E>>GGLfL> Lp0J;Ω>8LLI0?LE>>GLLkL>LuH!LܩH#LA]IH&L;;ةLH+GZ1H-G\G<=uCKLLLK䐩LLLJJ8<LL IK?LE>3>.GgLL>-LLkL@:?z!ީ 8CCLL©E&m"LL2S@LL˷KL̷L©K>EWL~LEKLZL*KLKKK`JLD#JqfJmK.㩷#HP1LOLJ@é#HP2JlLLLdLTFELLE젩&J&J}L֠? LwJLmE&JJLkJLXM F&G7LL頩?͐ LnL©L~LyKDXL?ڐ L7L?ߐ L O  M KL  LLKA 7Ȑ#H12FAAA DJJũM3MBKM% M'K K LMNKM1B ;LMT@LL@ bL!LàL#H13LLĩMC@  LMIB  ULLLѩ?LөMRL!MVB- QLM`JL-DLMeM^L-/9MiK<:M1MlKSKgLMrn{kKMMM@7Mz? L ˷ 7 LX !7? ѩLaթ?gn;HWHO;;I*M*~>cHV>NHX78HHG@?[;X?@@ ;R?B@M?E?;$HbMJDH4H%H HHM@;P@*ȩMM?@MM!JL@MF?4MLlHhMM?.M*>?qH >;1;0>?P=;&>Ho"L8IDHs88?V;(>@*éMM1_@+TTMM1cMPMѶ@L@3  M@L@8  @:  MF ;HH;é;IO+MA>H;H:IIH5@?;?x@Ͷ;?z@M?}?s$HMQJ|HlH]HXHRHLMٶ@;@+MMͩ?U@MMYJ@UMF?lMLHMN?fM+?0?HE>;i;h>R?>(;^?2H 88?;^>@*MN)MPNMN@LŠ-1@LȠM@j Mu թL͠<1LР8@MM{ ȩNNM ̩Lk#H14 #H15MM@ ԩMjM M`M8M@ MNL N@ 11M~!N/N>M LM 41KND  L#MN, 4 MMM  M{%  9  N4N4sN4N4 C. CM C0 C N9KN<:CI QNB?А3BBpKMɐ9ZhK琩D@(tan_diff&Ct΀LKNNR=NmMߩ=ӰMLP@tLRMCK@LT2M5M'=NxM=ްML[@L]ML@L_2LMPL@LN2LAL 2M9M̐L AL"NtMLA L$2!LN;2$NyE@+PI4_RLT_PI2o;N}NMhNNϷN˷MɷLǷLW  #%L7,L3Ʃ©ĩL*GL*N9Z 9NNMb- H7MNNNMkNMoMqNNǩMuNǷNKN̶@NN6NA TNC>N8ΩN@N; ©9=\ ƩMJN1NNeN@MNѩAHDGNTNǠNQߩMAQCULN_ $NZNONQMJ,IMFNiA NfLONhNO@MVNN렩AȐ MNC C ƩN}NNC  N}LMjNNAܐ MАOC OO NG=   N OLÐ Ű A,}3 ONNw22O9߰D`CI`O! vmDqmCMO$6pO'%GL©O#M 4O.MNO1Mz _NTO2OONOPOFN,NMM N(@N(OPO_22M(N(L I*XOYOhLN(PLN*MNN:NORLO`Oo22ML@ ֩ OjOyMLM N9 LߩID OsON7MOjMM HNO}OMkNAOtHN!"NO"OON"OO"NgO""NؠNZNNUMN`MM6M%OOM.2NࠩNb N֠2ƩB$222NOOOONyOOO!,OMMhNp&F@LةNOONzMN)XNzW)ZMRIO*UZMWF`N MUb\@bO522fOðO23N N!2p MV IOCOΰO!2OŷM\`N. I3c /OװO""OηI8 O8OMlOOOVOMNOW 5O.N!"O%WO޷M1O6N-O,MBzMMMOCOO搑OPNPOOw =OZ <NL :M@NȠNMMIӰOxPPNMF@0sin_decreasing_0 ;ҀMM@NݠMNMO3F"FOuP)#OP*O#PP"LOqO"N"NOmNNMOdF@0sin_decreasing_1 ;ӀNMMNNlNP#Mǩ I PP4PCNN"EPEN$NP-IJ  WP0P0MکOO P4P2POOPPPFdO O N N @O33M}J!OPQP`33,M M@O&CMcONeOPpNOPTPqO2PZO'OO OO4#f#iO2g@MIPsP"#qEP#s"PlIJKPoPoN©OǠOI33PtPrPO]PPPONNLOT*"*@0P)3PPDDN*@;*N6 Ji?=N: )PPDDN(LN:A<32N.;22-8,J.P!")PP"/P:PP$"2PP"/OP&"1"1O&O%PNRP$ODCGDDDPPPPPηOPϷPԷPDҷP'зOηN#h@"O(NlJPD(3tNq(`z Nn{u@{PNDEPܰPDEO9O"Dɩ No JP\PP"DP޷NuyOG JL|Pf"q" PQ"s""PJS  PDO^kPNEPJO(PPQOQQ.P.PjO\ַN@yNJ G@0cos_decreasing_02N}{N~ N#PE "O&P}Q1"PQ2P"QQ"UPyP"W"WPuPjG@0cos_decreasing_12NP|Q+Q)QFPQGQ=.P.PO O@P ETENtKPQHQWE[EN N@{P2qN|Z[PP%""L0NytJzQcQr""FQt""Q\J|K;Q_Q_OPP9EEWQdQbQPMQQvPPOO<PD( @ P& #QQ&(O&0+&O& KY /H@0tan_increasing_0l2O/QQ+OI&O&CO1 83*)O%2))$/#J%Q+]I+^OPQQ3QQQQPQ  PPH,@0tan_increasing_1l#QOP"Q"P+vI@DF*QQQQQͷPQηQQCQ&PO" g@!P4OkKQC9=sOp'_y Omz t@ zQMF ~Q۰Q#JP8P?& On KQ[QQG.QݷOtxPF KK {QeOPQRQRQKR  QCPsjQODQIP(QQRROLPLRRQéQQQ5P*LķPLũRRQc!GLȷQ,ZcomplementsL@*Zcase_sign$ŀQ QRLQQQQ|LQuGLکR$R3PdQQRR&R5PRQ5ȩOR9RR:!$OR<QQR=!'''0ZPoR&QL@"gt1P,QQPQ@&le_IZR̀QQLQQRQRFRUQBFQQPL@)gt_lt_iff;ôMQHM!mM RS@#iffС))O󩚠L@"lt1P-PmFж@3QDQԩ QQ(@QQI:Q-QP3 P@ ?PQR.QRjL@G1P,QQͩPЩPR/RRM9PDQRR5QH(RPLR QMAQXHMBRRQPP̩EQRRRP4RRi63RPRRnEQR(RRRPR.&R%lAjQRRQdR%q6BP-RR%6F|PRŷJRƩ!PRRQnQ_RRQpRJQcRRE}R%"x2RԷPZIRRPRaRRPRYReRRЩERRQ6fR7Pc PRRP4HmRR̰R۩ER&<6pRAP[RR E'%RcRRװRE=RJR7REJRORΠRР>P%6PmR(_8}(^EETRY%g 7  CRRERߠ6RbRP^P]QRP8PSM-PSEf O&PS *RS RSEʐR26RtPSEt*RO6ݩPS6RSSSEڐESS>%6SRPS(ES E40SG708PS2RRS3S&S5ESE1SGS&RPS@RRSAS4SCES-RRSG\RSHS;SJE'%RRPSN(RSOSBSQES4S=1RRPSWR ONMN'MMNSCSNN&=M=MNN@SQNNMMNDN MN?0NROMMMMMMNSM 'N((rnxmSF8RɩK{:16.F%Eʠ6-DWL1SPEРP7*ذP7CShSwF3SZEڠP 7R}|S)NF&PR?SgSg)ArithPropS@,even_odd_coriKR&QgSpS@#IZN=D{RASwRR'LQ SStC7&\QܩRSFTES}EN71S SSSSF_SSpRF79Q$SE S,SSS8 Q+SS1SSS8NSFr E-95)'E1Fy#($SS SSéE9FSE?$7\9URS.N0RmSL@.Rplus_le_reg_l -</S8S QTS3SZS۩RSũF<SLOSNDLRQ_SSeSR FG SҩQfSSNSlSRJISRCRSRSFQM+8+Sr@-Ropp_Ropp_IZRǀRFZVS_14|S`2RHSd"SRTSϐNjR;ST ST E(SpRTTTNNuR&TTEFԐS7S~IT+Q QNMbNʩTT#EFSSuT)& R:T9KT:"ĠT!T>SuRөT#T@SwtT%T4EFT'7SwTIQT1TNSS֩T3TPSuT5TDESQ QTWQITXT=TLEsSQTPoGSTShSTTTGTV9\SQTX)9ݩQTZS9PO OONNNOTFT >HO >P>POO@TTOONNOGONOB0OSPNNNNNNOTP (O))uq{pCT[TjEpSlkSTTQ-QT}O6&QTqjhQTsSTtTgTvEjSڵQT{f(QT}8ST~TqTEdSQT\: RTSTTTzTEVSRTST TTTFOSSTTTTTF OSRT*TTTTFOTRTTPLOROJP$(O=O<PTTS>OQM>OߵO@TOOO)NOOWO O0OYTQ;O+OOOO OPT (O**KI2}02GCBA=CTTF(=T76SfTT5TCsTOLT/TF/TRRT'TSoTjTTT"Hx#NE@2euclidian_division7JTx8\K:@'PI_neq0 mRO{SO|RTշTUT֩SӠT˰TSG9TTT/8pTǩSܠ=ܩTJT˩S3RBBB@@@@D@RˠOSORΠTTrTSTTSRՠOSOTTST䐷:OT@RߠUTUTTUS9GgwT+ROSOUUSTTUUG@TU USةGwuTǩT2TT;ROɷSOʩUU#R U "EQUT% TTqIGٷ@T+8TTOSOݷTOީU(U7S!U"Hr8#Hr'TS]ROT OU6UER/RʩTUGGU*UM-8TTUMU@UORU7RUQG SU7UT$?UHUWUGU:U$L8TUPU_HTé.UDU.L8T&TTUiH%Gʠ T-:UUG̠UPH-IwUTJ+8/M UjUy TUoK@*sin_eq_0_15 (S6P,TaP-UwUUgUQSi9sT>PU2U~UHI6TϩTUHNUUUUGUzU&U|JSUUjS#93'UUOUUUUHUUJ_8U TUUU&зU/UUUHUUJlUUSY9L(UUU+3%rUUHU"%U"UUéH"U';OU9ڐUUU+$jUG@.Rmult_integralqJUUS9g(U$nU˰U U<UͰU(U>$p@$vUӰUJUŠUP9xUIUڰU'UKUܰUS+UMUӠ$g U,SkUUSUqU@UUHT6ZT1JUܠU f9RU6SzVUbUV@UVHc6\6iRU>SVUjUV @$UBSV UnUV @:UFU$U@)R1_neq_R0iwKVUzRV$Ω:-6n6o6mJϐUUN9VHTP:x$:UpV$AUV%UPVS9P9O5u4c4`U$@$ƠUUPV%V4UPV'V6NUTUwSV<UUV=@UUvUp6(UðNV)UUSVDNUVEV8VGJXV/QvVINUV1T(UT3ѐV1VNSVP&UVQ@;۩T0PU2PVHVWU'HC9VMV\&UOL@*sin_eq_0_05 1cTAQUCQVYVh1aR@THQUJQV`Vo1;YTMQUOQVeVtU&V\USQ"Hk T.Q$UYQ%VoV~T'PV-S UVOvSVVVxVTH:VKV1 VuVV1"VVHJRQCR5AQFQFQ*Q;|QKQCHPRP PP QLQS.QCV\V^QA(QXQ8)QZ)Ve)HbPHaH_H\HZHXR!UR3VVTʩR6V:KR8V:O9UViVHZHXHNHL@HE@H<<VV$SOI VOH7H2QkVVH1VR@ViRBV:WRDV:[82H1VVʩH*@VV.SYI*VOHAVUyQuVVH;VRJVFRLV:aRNV:e86UH+PVV6SaI2VOHIVQ}V4S_Q/VVHCVH&HHH H Q;PGHeGG@V̰HiH_$QV=ShQXQIQDQ>Q8 VG^V$ VVȶ@!V԰VHC@VVGSrICVOHZVUQVVHTV GgTcVVàQSxVVV߰VV֩IMVѠO:S::GMH+QR[QRAQRCQ;(QGQG:HG,G@VHH$QVdSQQpQkQeQ_GQGQD:GQGV G!UͰ VV@H<WVsSIoVPHHQVWHVRW>RW:RW:9HW WHy@WV}SIyVPHVUQVW)HVRW7RW:RW!:9HzPW#VSIWPHVQVSQ~VW1HVHuG-G+G:TW'WII4xWJ:©WJVW1W$W3W KSWEQQEERRW<K4_W$G:GGްQGQGQשGQG<;'GR|RdQ@HDHֶ@W<H٩H$QVSQQQQQW5DHܶ@WBHߩH$QVSQQQQQW;@D@H<WWVSIW7PJHHRWWeHW)RհWY4|D۩WLW[H@W]VSIW=PPHW6V RW%WkHW/R۰W_4#H@WaVSIWAPTHW:VR W)WoHW3$HIQH$DDGHRQQgRRQiH,HGH(@!!DͩHRRѰRRӰR!qQ6DH@ HDѵH1@$$V4 UV'VEVW"W]DϩF DηFFFWlFWcH8W}VT IW]PpHHR&WEWHWO TFH8WVTIWbPuHHR+WJWHWTSW4FRCI<WVTIWgPzHHR0WOWHWYHKW4Wo@DCWzWWcLTdI꠩WnPtT;";$WyW{FͰ{HRAFFƷFéWFWI8WWT+IW~PIIRGWfWI WpSWSW;3S W;7:OU!FԩI#8WW T6JWPIIRRWqWIW{S'WS)W;>S+W;BS-WLlRLFѵRCI.<WWTAJWPI)I$R]W|WI#W HxWaW@WbFRaF"H|RnWWFI&RhFFFWFWI?8WW'TRJ#WPI:I5RnWWI4WSCW&SEW;ZSGW;^8UHFIJ8WW2T]J.WPIEI@RyWWI?WSNWSPW;eSRW;iRFSCIS<WW;TfJ7WPINIIRWWIHW HWW@WFRF HWGCWаWVJ>W a;t;vWgWb@)Z_R_minus#,lLaWVWWUkW(SWqW@UѠRVRWWW=WWWW\WU٠RVRWXW@WX2WfW쐷VRWUX Jh/;WX XERREES}SX56WH˰RHHΰRHаRSQS9Rh@IƶEI@XII$RWTRRRRR}X EI@XII$RWTRRRRRX@E@I<X,WTJX QIIRWX:IWSX.5QEX!X0I@X2WTJXQ%IX VRWX@IXSX45W!I@X6WTJXQ)IXVRWXDIX IoIRHEEHIoRSRR=IIHjH@  EIuRSRRΩSRSRRIRI IEI@%%W  V|VWWWX3EG!EG}G{GxXBG~X9I8XSWTJX3QFIIRXXaIX%!UGI8XXWTJX8QKIISX XfIX*SְXZ5}GzSCI<X]WTJX=QPIISX%XkIX/I!X XE@EXPX_J;J;ZWXeJĠ;+UXiIߐ=WXm( WXnXaXpIXZW@.Ropp_eq_compatuW۩V0S&W[S'XqXjWũSXW>K>کJ<J<XqWYXqM?XoX"LoA"Hi'uQ73U@VuSBWwSCi'2XXVX'6XXV<3XXV,XWSO0v'H C 'AX 'DXXYY]W+Y}XYYL|YYYPLY$YE--YYYY7YIY)-Y"@YYYY%YYTܠY*YYYVLY^,YY=D=DYYWIXXsYY(H@(NYY=KWPXܩ(SYYXtY!(WYYXx=TYYXz-Y(H  S O5Y=^XY SWL YYYӶGB϶X#٩YɰYYY:LXY=X*=oY%=qYY԰YYEY1YYeYYٰYYY  YYޠWQ.YYYY[VLkYYXYDY)YxY۩ Y@#IPR.YYc*QYc?70=Ye88WZYgYZXXʩI=V8>WZ =YZ YuYYSZTWYpZZTXYtZYxZZWYYTZYWY|ZYZZYZZZ"YYCZ%Z(Z'ZZ :Z-Z/ZwZZZ3Z4ZYYZ5Z5 ==WYYYZXYWZZZ8LC4%_tmp0 7Z2(ՠi(נZ4ZCY=p(׷@(ݠZ:ZIYY( Z>ZMY.gZ@ZO4YZ7ZF W ZSYZ7ZTLCP Q)8LYYY@WZ\Y?UZ^Y//YZFY.YZT(@(ZVZeY=ZXZgY.ZZZi=YZQZ`W Zm=M Y-96Y/>.WZtY?8A5XZ\Y&YDZjW Zw.$M?Y8..WZ}Y@!.,XZeY/YMZcZC| }@)$"YV/)Y)!Z~ZY]/X )"@)(YYF/$),ZZYJ/(X)1" ZZX/-Z"LTYZN@.Y!/!XשZZ!2Z Ȑ#Lo'&>?YlQCZ>AXߩYmZM>EYrȐ#Hi'QLM>LX>.ZHUjUbHHV*7ZKvUi7e>UUU@LlHiLQ@ZLTLJ$UqZ(WSUCU4U/U)U# ZHgLW@ZLZLP$UwZ.WYUIU:U5U/U)>Z@He@7ݩZðZҩL2@ZZ6WaM2ZSLIZYU}ZZLCZ7L4@ZZ8WcM4ZSLKZYUZZLEZ7>LLU$KHHHGK1LUV?UUj/bK#vLkK K@HBLU9TKLpHBK@7ݩZװZME>{/x/Z6ZZjZZTML>YZש*F>X/Y/ Z٩Y</ )Qd@.sin_eq_O_2PI_0$ 'MZ>XZZZB)Z[Zc)Z[ >Z[ /!)@)Z[  Zo)[[$>[[&/-)[[X>[ [X/[[ZZ  >ZXYթYߠM>ZM>YZu[)Z[*Y[M>X[>8>éY>ĩM>XZ[6 Z[7 L[ZZ|YZjZMZ>Z[$Z0)ѷ@)נ[4[C>ԩ[6[E!/_)ݠ[:[IX>ܩ[<[KX/[3[B U[E4$S!>[:[E[TM$W%M$Y>Ȑ$goal[N[]X>T.Vݰ[aM$dM >XV[gVV.[]V[TV[nM͠$qMϠ?V( IXV"V.M%U.M"M..VZV[z? V[|P8V[)[d.V(.UŶ@.[r[.8[ZXM[cTvLV,[K[L[UW[?W[Pf8Z̩.H[ZXM[iT|LV2ZXU[Q[L[[L[6L©-mV5[@.ULN.@[UשVl0V;ZXV UUUUUVZbVV=Ew6[|LZ۰[D[[[.8[ZX(M[{TMVD[c[M [m Y[[[[[[[KY!K.VM.LH[YUKӵ.@[UV0VT[ X6V&VVV VUWZkWVVE@[KéY[][[[.8[[XAN[TM)V][|[M#[W2[?IW4[8 .H[[XGN[TM/Vc[XEV[[M)[M [g[.[[qgY:[j[[[[[?VIVsVkIIW38[LVr#'E8WVV@MuIrMZ@[M]MS$Vz[1X\VLV=V8V2V, [IpM`@#+@Ij@8[Ȱ[שM7@[[;XfN7[TMN[ZV[[MH[8##MMV'LIKIJL4MVWBVE#L?MnLL@ k[CY"NA$NC?y[C@.Ҷ[ݩ[۰[NI$NK?TZ.[>[*p[5>$0[ܩ[[NU$0[[Y0U:/WW{[W}\ VV/Q[V[W\ IVV/MMVW/KMM/IMEVTLLzxY\[\\\\[YLn/*Vt[̩-V[Ω/.Vũ/+L[/(VdLK/'@\VhV0V[XVVVVV~VvWZWVF.\ L;ZX[\\\*/O8\,[XN\ UMV[\:M[x t[\ \/9Y\2<\\3\&\5\0JVVJJW9\\!LV#@ WrWZV@MIM̶@\2MϩM$V[XVVVVV \+IMҶ@\8MթM$V[XVVVVV \1@I@9X\>\MM@\O[XN\/UBM\(ZV\\]M\!9rM@\Q[XN\1UDM\*ZV\\_M\#9t MNVMIILMVWWF;M'@MLM@IMW0M,@MIM@9X\GCY}\GC@/K\V\T\cym[3/F[\Y*@*ͩZ۩+\^\m[-@\`\o[/0\WL֩*\["GT[UũR@*cos_eq_0_0FV퀠[@[PZ^W+[`W,\v\Z .@ZeW2[gW3\}\Z"5[\t[kW7Z  \\u\Ķ Z![ͷ[U0%Z1+\@<_IZR%̀[sOL@7O:۩O O @=0ĩ%lemma\\O \ )Morphisms'Classes\@0reflexive_properm+(@\@\U@*respectful%WO?\N7\VN9&Basics'Program\@$flip$VVV @$impl7o(@:reflexive_eq_dom_reflexive=[\"\V"/RelationClasses1@.flip_Reflexive-V, @.impl_ReflexiveJ\ZOQ\V@(symmetry0xj\Nk@,eq_Symmetric9^W&\O`(@Q@/eq_proper_proxy)f]  : h,c i\p@\C\w iO [OȐ#GT'yY[ɵM@Y ;;OZ]@\]\]A]KWWKKX:G] MܰW9G9!X]XEWt@NҶJN@]NN$W\YWWWWW ]JN@@JǶ@:?]%]4N@]6\YO]V)N][W\]DN]:YNoNWMJJMNoWXWW$N @NMkM@]2]AO%J1ϩZ]E1շ\]F[O]+@@]4\ ]4[Or@ݩ\]S \]T[]>]>O@A[)@@]F\Ǡ@]H I C\ɠY  Y\+OmegaLemmas%omega]r@7fast_Zopp_eq_mult_neg_1=Ҁ[]TX@ \ԩWZ]^\@/fast_Zplus_comm11ZW[]A]cX)@ \]k\&Omega1 \X Z&@8fast_Zplus_assoc_reverse '\Q]S]S-@1fast_Zred_factor0#\X]|XB@ \X]P\ַ&Omega0 ]XX\gZ2PC@,fast_OMEGA13K[3PZ9]b/]\ݐ]MMC\\]XM C@\됩]MX?@'compare3xX:@]=]+]]C@ J]i@&OMEGA2.$DXPXC[]ZcPĩXTXG[a]Zg]])auxiliaryXW@(Zlt_left,ڀZq\] \P]\][m\]]_F]#],]]]7A]]]92,@,$!m]]8]\]⠷]$%[x ]A]]sFq#Cu\.Mt\àA2 [^]jCA;\]\]M]~[ ^ 2 \ˠ]p2\Π22+[^]uCR T@(cos_3PI2_\^\]^-pBNC