"`"R"6H)Rsqrt_def%Reals#Coq@()Notations$Init#Coq@%Logic$Init#Coq@*Logic_Type$Init#Coq@)Datatypes$Init#Coq@&Specif$Init#Coq@%Peano$Init#Coq@"Wf$Init#Coq@'Tactics$Init#Coq@%Tauto$Init#Coq@'Prelude$Init#Coq@)Notations$Init#Coq@0&v!D]hwnv %Logic$Init#Coq@0\͉!Ig)Datatypes$Init#Coq@0.i bYN Z*Logic_Type$Init#Coq@0 1jc6&Specif$Init#Coq@0;RWMi\N'Decimal$Init#Coq@0C涳N*ua#Nat$Init#Coq@0eʤģPSR蠠%Peano$Init#Coq@0 jha|ؠ"Wf$Init#Coq@0q+W,J+'Tactics$Init#Coq@0/9m+ a%Tauto$Init#Coq@0̂"&/rk0JqTttֱ'Sumbool$Bool#Coq@0sB ,$11.]m'BinNums'Numbers#Coq@0dmk(5Ju<*EqdepFacts%Logic#Coq@0FI$ͼՋ`)Eqdep_dec%Logic#Coq@0u wWIϰ߼&Basics'Program#Coq@0!bs߯? :VU$Init'Classes#Coq@0](p{yOh.'Tactics'Program#Coq@03u%+Equivalence'Classes#Coq@07;ꮹ-SetoidTactics'Classes#Coq@0S_`nOU$&Setoid'Setoids#Coq@0D9AsWE!>$Bool#Coq@0j 2cZ`FW*Equalities*Structures#Coq@0όe얟)H.Ƞ2Relation_Operators)Relations#Coq@0%s鯰s4Operators_Properties)Relations#Coq@0U3y#h&)Relations#Coq@0r砠*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ&NZSqrt&NatInt'Numbers#Coq@0` .%m%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|&NZBits&NatInt'Numbers#Coq@0MlIpKt'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$&NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ)NMulOrder(Abstract'Natural'Numbers#Coq@04> Aat/ j $NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ'NMaxMin(Abstract'Natural'Numbers#Coq@0]v|Qg̟ʠ'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NLog(Abstract'Natural'Numbers#Coq@0KI'BinList+setoid_ring#Coq@0Au,Ring_polynom+setoid_ring#Coq@0gaKw9`UW+ListTactics%Lists#Coq@0,Jcy{+InitialRing+setoid_ring#Coq@0k/T=cN(Ring_tac+setoid_ring#Coq@0x2]%762f)Ring_base+setoid_ring#Coq@0fbU(2cNe$Ring+setoid_ring#Coq@0Msᬠ)ArithRing+setoid_ring#Coq@0ṔCgt?}%Arith#Coq@0I|кX*o4#Max%Arith#Coq@04=;3$>aU堠#Min%Arith#Coq@0Ce-Fѕ(PreOmega%omega#Coq@0\|چBb~w4%Omega%omega#Coq@0t.J'6\ϨrK(Zpow_def&ZArith#Coq@0f蓜DX;V*ZArithRing+setoid_ring#Coq@0{#'[{nm!/,Zcomplements&ZArith#Coq@0ʾq %RIneq%Reals#Coq@0JUڻIu)$w&DiscrR%Reals#Coq@0z41pV.%Rbase%Reals#Coq@0Jܡ\ c6{%R_Ifp%Reals#Coq@0c4+ZŠ,Fourier_util'fourier#Coq@0ϳ> 4`*r0'Fourier'fourier#Coq@0wV9TN*Rbasic_fun%Reals#Coq@0hܒiclE>%R_sqr%Reals#Coq@0X%MԹ%M+SplitAbsolu%Reals#Coq@0M)&qYlݹ5*SplitRmult%Reals#Coq@0sD\rt/$Even%Arith#Coq@0YO%q}d߫%$Div2%Arith#Coq@0n*Áht!,)ArithProp%Reals#Coq@0B+L?>*e˃a j*Rfunctions%Reals#Coq@0d¹d‹@'Compare%Arith#Coq@0OM v먣5L:'Rseries%Reals#Coq@08]$u+?'SeqProp%Reals#Coq@0Lt2|9D }SSԻ)Rcomplete%Reals#Coq@0{ڸ4q 'PartSum%Reals#Coq@0j&2"(>S)AltSeries%Reals#Coq@0d US^(Binomial%Reals#Coq@0]JrHr#E&Rsigma%Reals#Coq@0䟄WCJҦ<%Rprod%Reals#Coq@0gȀn_}!W+Cauchy_prod%Reals#Coq@0K*ߞ4q(Alembert%Reals#Coq@0I͗Huz&)SeqSeries%Reals#Coq@0Npc$5|T ٠&Rlimit%Reals#Coq@0*r0ē([HAE&Rderiv%Reals#Coq@0?KQ;^WU;H*Ranalysis1%Reals#Coq@0 n;qm.L%77P"F 7f[3UlР)Rsqrt_def%Reals#Coq@A,Dichotomy_lb @CC@ ,Dichotomy_ub!x,Rdefinitions"!@@!RӀ!y !P@)Datatypes$Init@$boolZ'@!N@#nat@%()'(   @@A@A@@@@D2AD!nȐ$downGE C@Ȑ"upFBGȐ!zK@$Rdiv̀R@%Rplus+1&Y@#IZR/r'BinNums'Numbersc@!Z7@B@(positive*@BCyh@@@@@@@@A!bq>RFS|zxlj_YXLVmTRMKGE_K@,Rdefinitions%Reals#Coq@@!RӀ@)Datatypes$Init#Coq@@$boolZ'@@#nat@* ,kk(*()=E RP'>377     27!7!  = R''''''+k6'+k6'(*()=E RP'>377     4 7!7!  = R''''''+k6'+k6'+7Tk+7T'+ +7TT'+7T'6'6'+7Tk+7T'+ +7TT'+7T'6'6'$0h8lP(~z접AB@<d@@A@A@,Ġܠ@@AAAJ`D@@@@@AA@@>@,Field_theory+setoid_ring#Coq@@&FEeval>@@A@A"s @,Ring_polynom+setoid_ring#Coq@@&PEeval"s @@A@BA@A@ @!A @@} r ,kk(*()=E RP'>377     27!7!  = R''''''+k6'+k6'(*()=E RP'>377     4 7!7!  = R''''''+k6'+k6'+7Tk+7T'+ +7TT'+7T'6'6'+7Tk+7T'+ +7TT'+7T'6'6'$40h8lP(접-AB@<nA@,/ܠ)kAJ`D@@@@@h(dicho_lb @dbXcVTHFe@~$=p9.';@p܀gh@倛Ҁ`ǀ퀐 H+k() 7#'#p@@@@@(dicho_up @|z4@$>2@ @1p@@@@@̠*dicho_comp @@@Ț48@=*@,Rdefinitions%Reals#Coq@@#Rle=DC@1@h1H@@@@@ 0dicho_lb_growing @@ Arv@{h@:CB'Rseries%Reals#Coq@@*Un_growing?!:@@@@@<3dicho_up_decreasing @@RB8/0@@lCB'SeqProp%Reals#Coq@@-Un_decreasing"?‐f)@@@@@n.dicho_lb_maj_y @@Cjրaڀb@߀̀@CBHȀKUJWU@@@@@,dicho_lb_maj @@D@ @ʀCB^@&has_ubYÀun@@@@@Š.dicho_up_min_x @@E-1@6#@CB@@@@@,dicho_up_min @@F횠Y䚠]@bO@!CB@&has_lbXlŐ@@@@@+dicho_lb_cv @@2G@z@LCB&Specif$Init#Coq@@#sig#* @!l&@%Un_cvɀY  @@@@@[+dicho_up_cv @@qHWÀNǀO@̀@CB?ۀ43<F;H@@@@@1dicho_lb_dicho_up @@I󀶐~@逶^ހ@DC%Logic$Init#Coq@@"eq @@Ӏ@&Rminus&Hŀ~}vπz@v̀(Rpow_def%Reals#Coq@@#pow#׀٠@@/r@@7@B@@*@B @C@@@@@'pow_2_n @꩚? @:#׀@ܛ\,Rdefinitions%Reals#Coq@@!RӀ @+k77 7%'lAB@Xڐ`@@@@@F.pow_2_n_neq_R0 @@\J @#notШ9i@P7+HeA}A@@@@@m/pow_2_n_growing @@KM@k7+He@@@@@-pow_2_n_infty @@L-@(cv_infty?7@@@@@(cv_dicho @@M"l1"l2@ @ʀED@kmtl~@tĀv|+z@@@@@Р/cond_positivity @Р&Specif@'sumbool7̂K@BAAAA@@@@@Dܩ@=%Logic@#notШީ%RIneq@'Rle_dec3!rAB@r_ +kL7 7!= R'>G'>H''+k6'HAABAAAP+hŐ\@@@@@1.continuity_seq @@GN!f@"Un@@*Ranalysis1%Reals#Coq@@-continuity_pt?ZL@ !i:٩@@@@@o,dicho_lb_car @@Ok׀bۀc@̀B€@ހ BDB逰MS]RKB@@@@@,dicho_up_car @@P @x@ BCAЀ A@@@@@۠+cv_pow_half @@Q!a*)Datatypes$Init#Coq@@#nat@,B'é@@@@@ #IVT @@ Rٶ@su y}@@*continuity*C@C@#Rlt=ݶ@Rն@[ީ@#andЖw@%Logic$Init#Coq@@#andЖw@ *.€\H5@@@@@|'IVT_cor @@SK@倚瀶뀶v@rC@PI@@%Rmult׀^i``ǀJxbjfڀrހ}E逐l@@@@@֠,Rsqrt_exists @@TŚ>@AN O %Reals#Coq@@$Rsqr=MW̐@@@@@%Rsqrt @@*nonnegreal *@РE@#sig#* @BBB@@@@@!s"#?@#andЖw@MG@"eq @3D@&nonnegiK@$Rsqr=MW@@{? ĩX@+cond_nonneg?SnʐzP@. @Gb@*nonnegreal *@ƀ +k7 7 7!= R '>''+k6'Рb$t4h#XaABABX@@@@@0Rsqrt_positivity @@U,0@,qA@@@@@+Rsqrt_Rsqrt @@VIȠǠ@@ Ӏ%A*A%RIneq%Reals#Coq@@&nonnegiA@@@@@@@@ ӳ2@ ӳ2[)Datatypes$Init#Coq@@A@ Գq@ Գq\ @A@AB@cA٠ؠ@A.0TQ+Ring_theory+setoid_ring#Coq@@ABA.U>[J @B@@"O@(PeanoNat%Arith#Coq@#Nat@&of_int"O#Nat$Init#Coq@@ 6@A@A\@&BinInt&ZArith#Coq@!Z@'quotrem\)BinIntDef&ZArith#Coq@!Z@ /@A@\@@+pred_double\@/S@@A@As2@3@&shiftls2*@vY@A@BCs8@8@&shiftrs8/@vY@A@ѓ@>@&squareѓ5@y@A@@D@&to_intϑ;@@A@z@5@&doublez,@/!@A@ABCD/@O@)log2_iter/F@wd@A@NH/@B@&moduloNH/9@1,@A@A\d@G@&of_int\d>@1?A @A@bz@M@&of_natbzD@1?G!@A@#@S@&shiftl#J@1dV@A@#@Y@&shiftr#P@1d\@A@ABCD/x@&BinPos&PArith#Coq@#Pos@)pred_mask/x)BinPosDef&PArith#Coq@#Pos@ )X@A@6@x@&square6o@19@A@AV+L@}@&to_intV+Lt@2@A@V1b@@&to_natV1bz@2 @A@V5=@@&to_posV5=@2@A@ABCl@@)sqrt_iterl@!$:@A@@@6@(sub_mask@-@)@A@ADEF c@@'testbit c@!ć@A@7 B@D@'of_uint7 B;@*`]?@A@AG@I@)mask_rectG@@+ED@A@F˱@O@)add_carryF˱F@+p@A@AB^Ҷ@@'to_uint^Ҷ@#m@A@gL7@@'sqrtremgL7@40@A@Aq@@'testbitq@5)@A@ݎO@@+succ_doubleݎO@6r@A@A p@l@0double_pred_mask pc@0-+m@A@BCD T@&BinNat&NArith#Coq@!N@!t T)BinNatDef&NArith#Coq@!N@ 2@A@ @@#add @3 @A@A l@@#div l@3@A@ Y@%@#eqb Y@3@A@AB #@*@#gcd #!@3n@A@ T@0@#leb T'@3@A@ACEG "@5@#lor ",@3m@A@ q@?@#ltb q6@3@A@A @D@#max ;@3@A@ @J@#min A@3`@A@AB @O@#mul F@3B@A@ ~@U@#odd ~L@3@A@AC =@Z@#one =Q@3@A@ @b@#pow ˑY@3@A@A c@g@#sub c^@3@A@ @m@#two d@3J@A@AB hx@r@$div2 hxi@>@A@ @x@$even o@>4@A@ACD @}@$ggcd Бt@>U@A@ @@$iter }@>:@A@A 3"@@$land 3"@>m@A@ F)@@$log2 F)@>t@A@AB S@@$lxor S@>@A@ @@$pred @?U@A@AC @@$size ܑ@?'@A@ !@@$sqrt !@?@A@A ! @@$succ ! @?\@A@ !7@@$zero !7@@P@A@ *@@%ldiff *@@A@AB g_@1@+pred_double g_(@25\@A@CD m@6@÷ m-@2j@A@S@=@&of_intS㫑4@4}5@A@AS@B@&of_natS9@4};@A@BEFGH\R@G@(mask_ind\R>@4@A@\^@Q@(mask_rec\^H@4@A@A!,@V@&pred_N!,M@4s)@A@B@[@&shiftlR@5X@A@@b@&shiftrY@5X@A@A&@g@&square&ّ^@5,x@A@BC"@l@&to_int"c@5L@A@"@t@&to_nat"k@5L @A@AnTq@y@+testbit_natnTqp@6n@A@B@@(succ_posB@@A@I@@'abs_natI@?n@A@AB.@@'of_uint.@MS@A@3~@@'sqrtrem3~@7]%{@A@ACD,@ @'bitwise,@/v@A@>4'@@'testbit>4'@8g$@A@A{U@@,sqrtrem_step{U@8R@A@u^@9@(div_euclu^0@ @A@Afz@@'to_uintfz@9w@A@Bl@'@'comparel@3R@A@CDEFs8@,@+of_uint_accs8#@5+@A@}@R@,pos_div_eucl}I@&`@A@3x@(@'compare3x@]=@A@A@^@&doubleU@'޺_@A@BCq@@+of_succ_natq@$@A@w@i@&modulowɑ`@)1@A@ADK@n@&of_intKe@)j,I@A@K@v@&of_natKm@)j2_@A@AI@{@&shiftlIr@*O@A@O@@&shiftrOx@*O@A@AB,@@&square,}@*ow@A@Z@@&to_intZ@*81@A@ACE`@@&to_nat`@*9G@A@e@@+testbit_nateđ@+@A@A+{@@'sqrtrem+{ё@,J@A@5z@@'testbit5z@-T|@A@A @@'to_uint ͑@.@A@ @@+succ_double @.^4@A@A#@'@'compare#ݑ@ )Q@A@BCD%t2@,@(size_nat%t2#@ @A@%9@3@+of_uint_acc%9*@ ΋@A@A%V@8@+double_mask%V/@ S@A@%%@>@'div2_up%%5@ "@A@ABEF'ş@C@'Ndouble'ş:@ @A@(b0@K@*shiftl_nat(b0B@9-@A@A(nՖ@P@*shiftr_nat(nՖG@'@A@(@V@0succ_double_mask(M@@A@*W$@\@,compare_cont*W$S@!@A@.0@b@.sub_mask_carry.0Y@΂@A@ABCD.@@!t.@ ;@A@.먩@@#add.먩@ `@A@A.U@@#div.U@ @A@.B@@#eqb.B@ @A@A. @@#gcd. @ @A@.=@@#leb.=@ @A@ABCEGHI. @@#lor. @ @A@.Z@ @#ltb.Z@ @A@A.p@@#max.p@ '@A@B.@@#min. @ @A@.@@#mul.@ @A@AC.g@@#odd.g@ @A@.&@&@#one.&@ @A@A.뾴@+@#pow.뾴"@ k@A@.L@1@#sub.L(@ @A@.@7@#two..@ @A@ABCD.,a@<@$div2.,a3@ @A@.Xz@D@$even.Xz;@ ?1@A@A.@I@$iter.ؑ@@ @A@B. @N@$land. E@ @A@. @T@$log2. K@ @A@ACE.@Y@$lxor.P@ R@A@.y@`@$pred.yW@ `<@A@A.Ʉ@e@$sqrt.Ʉ\@ ;@A@.@l@$succ.c@ @A@.t @r@$zero.t i@ Z@A@AB/@w@.to_little_uint/n@ @A@CDF/@|@%ldiff/s@ H@A@00@@'compare00@?H{@A@A1P%@w@!t1P%n@  @A@B1P@|@#abs1Ps@ @A@1P&@@#add1P&z@ @A@A1P@@#div1Pґ@ y@A@BC1P@@#eqb1P@ f@A@1P@@#gcd1P@ 0@A@A1P@@#geb1P@ T@A@B1P@@#gtb1Pʑ@ q@A@1Pĺ@@#leb1Pĺ@ a@A@A1Pň@@#lor1Pň@ /@A@BCD1P@@#ltb1Pב@ ~@A@1P@@#max1P@ @A@A1P{@@#min1P{@ "@A@B1P]@@#mul1P]@ @A@1P@@#odd1P@ @A@A1Pɣ@@#one1Pɣ@ J@A@BC1P@@#opp1Pԑ@ {@A@1P1@@#pow1P1@ @A@A1P;@@#rem1P;@ @A@B1P@@#sgn1Pˑ@ r@A@1P@@#sub1Pɑ@ p@A@A1Pe@@#two1Pe@  @A@BCDE1[8@@$div21[8ޑ@ @A@1[d@@$even1[d@ I@A@A1[6@@$ggcd1[6@ i@A@B1[U@ @$iter1[U@ @A@1\@@$land1\@ /@A@A1\@@$log21\ @ 6@A@BC1\$@@$lxor1\$@ @A@1\Y@$@$of_N1\YÑ@ >j@A@A1\@)@$pred1\ @ j@A@B1\@.@$quot1\֑%@ }@A@1\@5@$sqrt1\,@ @A@A1\w@:@$succ1\w1@ @A@BC1\k@?@$to_N1\k6@ @A@1]@G@$zero1]>@ eD@A@A2:@L@%abs_N2:C@ @A@21@R@%ldiff21I@ ߵ@A@2=*@X@%quot22=*O@ @A@ABC2kF@@(size_nat2kF@{@A@3@x@(tail_add3o@^q@A@ADEFGH3@}@(tail_mul3t@^@A@5Z@@*shiftl_nat5Z@y/@A@5f}@@*shiftr_nat5f}@4@A@AB5a@@'iter_op5a@ @A@C6w~@@'of_uint6w~@^5@A@8j@@'of_uint8j@'"h@A@9E@@(div_eucl9Eđ@(*k@A@AB:x@6@,Nsucc_double:x-@ ʭ@A@CD@[@&divmod>R@C@A@>@b@&double>Y@NĴ@A@?2@S@,pos_div_eucl?2J@-u@A@AB?;@m@&modulo?;d@"i@A@CEFGIJ@(Alembert%Reals#Coq@0I͗Huz&)AltSeries%Reals#Coq@0d US^%Arith#Coq@0I|кX*o4)ArithProp%Reals#Coq@0B+L?>*e˃a j)ArithRing+setoid_ring#Coq@0ṔCgt?}*Arith_base%Arith#Coq@0Ĕ}CS&Basics'Program#Coq@0!bs߯? :VU'Between%Arith#Coq@06v*0ur`C0&BinInt&ZArith#Coq@0BpHޞun^)BinIntDef&ZArith#Coq@0ådR4Tuy'BinList+setoid_ring#Coq@0Au&BinNat&NArith#Coq@0K11ڤs+Π)BinNatDef&NArith#Coq@03@1O,[{ 'BinNums'Numbers#Coq@0dmk(5Ju<&BinPos&PArith#Coq@0vyػ0= u)BinPosDef&PArith#Coq@0}H d.%,b(Binomial%Reals#Coq@0]JrHr#E$Bool#Coq@0j 2cZ`FW*CMorphisms'Classes#Coq@0qیZBeϠ0CRelationClasses'Classes#Coq@0TL;0RUfw1+Cauchy_prod%Reals#Coq@0K*ߞ4q'Compare%Arith#Coq@0OM v먣5L:+Compare_dec%Arith#Coq@0jXF 8jih@0.i bYN Z)Decidable%Logic#Coq@0ND걸풬/Oߠ'Decimal$Init#Coq@0C涳N*ua&DiscrR%Reals#Coq@0z41pV.$Div2%Arith#Coq@0n*Áht!,%EqNat%Arith#Coq@0AIgՋXRV *EqdepFacts%Logic#Coq@0FI$ͼՋ`)Eqdep_dec%Logic#Coq@0u wWIϰ߼*Equalities*Structures#Coq@0όe얟)H.Ƞ+Equivalence'Classes#Coq@07;ꮹ$Even%Arith#Coq@0YO%q}d߫%)Factorial%Arith#Coq@0@oehJd%Field+setoid_ring#Coq@0J _ȫ)Field_tac+setoid_ring#Coq@0d vDZl^۹H 0B~uYٮ٠'Fourier'fourier#Coq@0wV9TN,Fourier_util'fourier#Coq@0ϳ> 4`*r0-GenericMinMax*Structures#Coq@0måj$"Gt%Arith#Coq@0䙛#c:D $Init'Classes#Coq@0](p{yOh.+InitialRing+setoid_ring#Coq@0k/T=cN"Le%Arith#Coq@0d}Omq+$List%Lists#Coq@0>I+ListTactics%Lists#Coq@0,Jcy{ c0\͉!Ig*Logic_Type$Init#Coq@0 1jc6"Lt%Arith#Coq@0KZ-eJkP܏#Max%Arith#Coq@04=;3$>aU堠#Min%Arith#Coq@0Ce-Fѕ%Minus%Arith#Coq@0LFtR")Morphisms'Classes#Coq@0Imӽ%\$PD.Morphisms_Prop'Classes#Coq@0% :B'.>u%$Mult%Arith#Coq@0햖Qyb0$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI%NBits(Abstract'Natural'Numbers#Coq@0qteo_hɅ $NDiv(Abstract'Natural'Numbers#Coq@0bz$?[p(5$NGcd(Abstract'Natural'Numbers#Coq@08E-S ;j_Ҡ$NLcm(Abstract'Natural'Numbers#Coq@0 ~xZ9L{:$NLog(Abstract'Natural'Numbers#Coq@0K Aat/ j &NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf+NProperties(Abstract'Natural'Numbers#Coq@0unt"kwpYC%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ%NZAdd&NatInt'Numbers#Coq@00h`ZK4*NZAddOrder&NatInt'Numbers#Coq@0e~1>r砠(NZAxioms&NatInt'Numbers#Coq@0] ρ5r&NZBase&NatInt'Numbers#Coq@0^&8yUL&NZBits&NatInt'Numbers#Coq@0MlIpKt%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZMul&NatInt'Numbers#Coq@0ctR~6[Ƞ*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R'NZOrder&NatInt'Numbers#Coq@0 q;Ve7R W,(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x&NZSqrt&NatInt'Numbers#Coq@0` .%m#Nat$Init#Coq@0eʤģPSR蠠$Nnat&NArith#Coq@0$W;s #%M)Notations$Init#Coq@0&v!D]hwnv *NumPrelude'Numbers#Coq@05WUVŦ]xVXԠ%Omega%omega#Coq@0t.J'6\ϨrK+OmegaLemmas%omega#Coq@0TJ#Jes4Operators_Properties)Relations#Coq@0U3y#h&&Orders*Structures#Coq@0$Znl0\͗+OrdersFacts*Structures#Coq@05Mܿ獐ζΖLB)OrdersTac*Structures#Coq@05'4Ԗ+9%'PartSum%Reals#Coq@0j&2"(>S%Peano$Init#Coq@0 jha|ؠ(PeanoNat%Arith#Coq@0O~2$k[#lZ)Peano_dec%Arith#Coq@0Kݢ*k$Plus%Arith#Coq@04tmG$Pnat&PArith#Coq@0,?pr.gZ(PreOmega%omega#Coq@0\|چBb~w4'Prelude$Init#Coq@0JqTttֱ%Quote%quote#Coq@0J@ŹVz-,3% 0JUڻIu)$w%R_Ifp%Reals#Coq@0c4+ZŠ%R_sqr%Reals#Coq@0X%MԹ%M*Ranalysis1%Reals#Coq@0 n;qm.L%'Raxioms%Reals#Coq@0S]jnj][L%Rbase%Reals#Coq@0Jܡ\ c6{*Rbasic_fun%Reals#Coq@0hܒiclE>)Rcomplete%Reals#Coq@0{ڸ4q 0(2{Ze$ќ8&Rderiv%Reals#Coq@0?KQ;^WU;H)RealField+setoid_ring#Coq@0 >ʾq /RelationClasses'Classes#Coq@0Gz rA6ՠ4Relation_Definitions)Relations#Coq@0]4Ѐd{n^2Relation_Operators)Relations#Coq@0%s鯰s)Relations#Coq@0-SetoidTactics'Classes#Coq@0S_`nOU$H0;RWMi\N+SplitAbsolu%Reals#Coq@0M)&qYlݹ5*SplitRmult%Reals#Coq@0sD\rt/'Sumbool$Bool#Coq@0sB ,$11.]m'Tactics$Init#Coq@0/9m+ a'Tactics'Program#Coq@03k2 Q@@E@#_11z@v$=p@A@@@@@@@@#_122M접DD@A#_13'`o@D'R_scope.function_scope)nat_scope@𠐑A@2 Q@@E@#_14@$>65@#_152M접 DD@A#_16'`o@D3521@ #A@c2 Q@@@@#_17ed@#_182M접 DD@A#_19'`o@Dbda`@ORA3@^2 Q@@@@#_20@#_212M접 DD@A#_22'`o@D@~Ab@]2 Q@@A@#_23>@h%H@A@@@@@#_242M접 #_25'`o@EàŠ @@Au@U2 Q@@A@#_26t@` @A@@@@@#_272M접 #_28'`o@D@@堐蠐A@T2 Q@@A@#_29@_0hP@A@@@@+@#_302M접 #_31'`o@D*,)@@A@S2 Q@@A@#_32@^*@A@@@@\@#_332M접 #_34'`o@E[]Z@Z@ILA 0@]2 Q@@A@#_35 @h6@A@@@@@#_362M접 #_37'`o@D@@}A>@c2 Q@@A@#_38=@n#@A@@@@@#_392M접 #_40'`o@E Ġ@@Aq@m2 Q@@A@#_41s@x2@A@@@@@#_422M접 #_43'`o@D@@䠐砐A@s2 Q@@A@#_44@~$-@A@@@@*@#_452M접 #_46'`o@D)+(@@A@e2 Q@@A@#_47@p$A@A@@@@[@#_482M접 #_49'`o@DZ\Y@@FIA@f2 Q@@A@#_50@q;-@A@@@@@#_512M접 #_52'`o@E@@y|A]=@2 Q@@@@#_535@#_542M접 AA@A#_55'`o@A@@2 Q@@A@#_56]@ 9@A@@@@@#_572M접 #_58'`o@A@@2 Q@@A@#_59@ $j-@A@@@@@#_602M접 #_61'`o@@@@ 2 Q@@A@#_62@@A@@@@&@#_632M접 #_64'`o@@@@2 Q@@A@#_65@%  @A@@@@E@#_662M접 #_67'`o@HDFHJG@@@@69<?A@2 Q@@@@#_68@( 0jFC@#_692M접 <@'Rle_dec3#_70'`o@A@p@2 Q@@A@#_71(@#@A@@@@@#_722M접 #_73'`o@E@@@AA@ؠ2 Q@@A@#_74\@$@A@@@@@#_752M접 #_76'`o@E᠐㠐ࠐߠ@@ϠҠA@ؠ2 Q@@A@#_77@2m@A@@@@@#_782M접 #_79'`o@E@@A預@ؠ2 Q@@A@#_80@6Q@A@@@@N@#_812M접 #_82'`o@AM@@͠2 Q@@A@#_83@+Q@A@@@@r@#_842M접 #_85'`o@Glsu@@@@@Abe砐᠐䠐@2 Q@@A@#_86)@ؼ@A@@@@@#_872M접 #_88'`o@F@@@@A#`c@w2 Q@@A@#_89b@? @A@@@@@#_902M접 #_91'`o@B@@Ϡ@f2 Q@@@@#_92'@#_932M접 &#_94'`o@A@@1@2 Q@@A@#_95@)\@A@@@@/@#_962M접 #_97'`o@A@@T@2 Q@@A@#_98@!3]=@A@@@@R@#_992M접 $_100'`o@A@@w@@@eA~%&Y?@!B~v/40@3"N,MYaᄕ@m=,d"+ӄ\5[ \!x,Rdefinitions%Reals#Coq@@!RӀ!y!P@)Datatypes$Init@$boolZ'@!n@#nat@!H+@#Rle=DC @'nat_indJ)Rsqrt_def>@(dicho_lb1FEA @(dicho_up1H C' $#5A;9%Hrecn"K@@@@@@@@D!bT=V@  @@@A [n%2@,Dichotomy_lb$=pHG1Fy@$Rdiv̀@%Rplus+1I@,Dichotomy_ub$>@#IZR/r'BinNums'Numbers@!Z7@B@(positive*@BCDAe7)h94F@poB2-%RIneq@.Rmult_le_reg_l΀9@%Rmult׀@$Rinv8G@1Rplus_lt_0_compat-P@"R1Ȁ#@'Rlt_0_14C%Logic@(eq_ind_r!2#*,e!rʠ1l5I72r @&eq_ind Jyt_ ߠFĩ(\*^^"[@1Rplus_le_compat_l?hheԩXjd@&double {qau#m@)Rmult_1_r+1|3t@*Rinv_l_sym9`g~{@'IZR_neq%A"H0`@"eq @Ȑ"H1S!e @@AA@AA@@@@@@D!zA@%Falsee@@Ȁ@$Truey@@ A:.@)False_induُ5C@#notШA'Raxioms@+Rmult_assoc&ʠ̩ @*Rmult_comm8Cm| Co굩˩wZޠ 17r<77 v :@*Rplus_commq;D:8CCXBطٷȷ&}ϩ/}zyqlg bxspk@"or @B@#Rlt=Ű AV N#IB1S)X;֩:!\1' %% 4& c?E,:G.((?1HA-?+8B:FE==YM?@*dicho_comp%H]D-F^K(`V#:ͰbȩCC-C/SkC1U .-C'Rseriesb@*Un_growing?!.<;rpdqb`KVTeN2?mFjY<Jhbf ZZkmUa_\p/]V W`aah-ed:9i15up zxFvu>~ "ww6vtrpnCΰǠCsC'SeqProp@-Un_decreasing"?‐p߷Ϸ©ũ2C˷ݩƠ{C9j1# Ϡ6qؠ S!XO@/Rplus_le_compatz9\YȵѩΩѰҩȷ,IکR@/decreasing_prop5nȀЩ멚@3dicho_up_decreasing0hPc (PeanoNat%Arith9#Nat@&le_0_l?C*%#O\C!C#TRFSDB-z@.dicho_lb_maj_y*,+?=4X/ DB}@"ex @An!mq@.is_upper_bound:o$@#EUn.B :989"x07 ?@&ex_ind 5{n!iqNbWt Ml!"x1z"H2 cJ-!z]_v^^C61nfe|eC(@%bound1 C@&has_ubYZ|CqpniZ#!H]ةPf۷ ة2hrr֩t6t3x{ٷ̠ة(@%tech9 SЩ@0dicho_lb_growing թCX ~CCbCA̐  @ک@.dicho_up_min_x#ƶ멷 d,-`@'opp_seqjB\𩚠:@$Ropp΀Aʠ%&I+#۷1 nU$ 7Z0#K@1Ropp_le_contravar>=aC>1;##C?(:CƐC@&has_lbXl ~rpnY@*growing_cv}|-L@,dicho_lb_maj63m@-decreasing_cv8oA`@,dicho_up_min2Gwi@&Rminus&Hly> rs(Rpow_def@#pow#׀8{÷ɩȐ(hyp_list@$list]@A@$prodt@,Ring_polynom+setoid_ring@%PExprk@ Ȑ'fv_list$B+C@2RField_ring_lemma1!7𚠐(Ring_tac"@0ring_subst_niter!V-FƩ2Dmx9G>CA@Ȑ#lmpL@.mk_monpol_list(.&BinInt&ZArith6@#add1P&)BinIntDef@ ̀@#mul1P] @ @#sub1P@ p@#opp1P@ {%Zbool!@(Zeq_bool0߀*@'quotrem\$@/ŀw@#Monf@@#Polj@@#Peqj*3(@*norm_subst7:d0:IQA;5/'=y0<KSC=71)?ob@&Rinv_1 ;9ۀCKbKCQAF! H}DB=^=.34 "|o5>,uCuKL5F|֩԰Dְ]ذѩEũHũʠ=A9˰ Ӱz@zu0&w0CMIJtQ=NMG@*double_var?Cİ [GWS˰ȩLdIR_굩7xt/!ݰ#^YA(c^^;-/jl gip$jhJGE;ũG=I? sBA<(*8i3/=1pص)@ <$"0M O 0 O! Q 0@/Rinv_mult_distr)*Rfunctions`@+pow_nonzero73C%kOC+q *C/uƠ©ʠ4à> Dϩ۠CHGI|KM%v@Vqo8%SH 0Udl\VPJBX{C]"Cbif7Cn0>mCr BC2c8{3xeRCKCKͩ@'pow_2_n7+HesG M@!N7@ 5ͩ)ArithRing @0natr_ring_lemma1 ,MB'Sߠ&BinNat&NArith#@&of_natK)BinNatDef)@)j2_BA3@Ұ(9:A>By"@ @3 '@  @3B /K䚠-@#eqb Y'@33@(div_euclu^-@ Kbd]ԩ_`0b)&""?K0d+($$A3 C' 4@ `? R1 C64+t[Nn`6eebvh>!@1Rmult_le_compat_lڀn{Aw6|@&pow_lt!Eۀ]@ eH{ S@)Rplus_0_rH€Cuܠ{CzI)~+C~-O ZM@'pow_add2'CfoCW쐑?@#INRrjX̠ʩC9 Cҷé"0m*Ơ8hϠ|9uؠ ?K@)Rle_trans"!aHc%"S,(@$poly#I4E68:g**Y;-j33B4 eS: &k˰?oDqȰs':C>C!an@@%S_INR=sC0>9!MeȐ!s@-total_order_T=ҖX&&Specif]@%sumor$|@ @'sumbool7̂K@?<@#Rgt=<BAAAA@@@@@D.%V7@%Peano@"le UxT@fjhM8BAAAA@@@@@DVB|%@#ƠR#Hlt@"upʠ@&le_IZR̀Z@(archimed ŀ@#andЖw@id$ɠF񩚠@'and_ind14ۀЩxs3ؠU۠4 mߠ\A AHǩӰ F@)Rlt_transCM iCO2CQũ@}1P,⩷x   @/bz@01?G!ک    @>"N0 # & ' * (@IL / -  @,Rlt_le_trans9[s Zΐ(tl ^] bbAȐ"H3 砩␩ Go~Щ쐩00 Rz~5 "H4"H5 ]ڠM GC4 7 a@+INR_IZR_INZ#]K絩RC t@&Rge_le 6/R F@,growing_prop } p@/pow_2_n_growing$j- j@#IZN=D{iYf Z      @ _     @%Ƞ v  ) z TC  #Hgt7n 4     $  C@(cv_infty?7&    㷐"l1 淐"l2   ط é   @%Un_cvɀ    @ Ʒ      a,@(CV_minus   cd^̩ʠ֩Š7 ;ݩ ةϠƠA  F ( ) , *@@"ge Uw  R*Rbasic_fun V@$Rabs; w &QP    *mN - s֠ T U X V@,w%͠Ϡ CR ̩ 9b ; @.Rplus_lt_reg_l5=ӀO!     M 2 4  ; Z Ѱ Y 1@ b }{D1 _T,0 a p xhb\VN d.0 c r zjd^XP f  k A 2%$  '  S o " o 9,!./#Hyp,@ @1Rmult_lt_0_compat= W  kl Z @0Rinv_0_lt_compatD  Cנ b f Yݠ  h3b\ ŷ) ƶ  Ƕ@蠩> #< ydDUVZ ط< ٶ  ڶ@QS  O 4xJ 緐"H6$ P   @ĩ eg XWT f K g  "H7֠  Ȑ"H8ZX:75 +  9 / 532-  {%% '   µ@  & թ 0   7 9    @ )NS  u J J! [ M L R R  e W V  t [.2 x _ 砩HI  f  B  n  } o n  *B @.Rmult_lt_reg_l>eЩ         &    A Š ߠvY+      %   .t j V  Um -~@ ^ yw@- [P(0 ] l td^XRJ `  e   ~޷   e  ꐩ *ZV   Y3   m  >    A :   d I@)Rmult_1_l9kP v  z  P  ]   ޠ j  (@*Rlt_irreflnQ{C k &qp hs@*Rabs_right |T ;@&Rle_ge @ H* B@.Rplus_le_reg_l -<1     ݠ  {}?=  q ΰ     '  a  ҩ Jʐ \@)Rabs_mult)C (֐ҩ @1dicho_lb_dicho_up;- ਗ਼ y@1Ropp_minus_distr'%~ީ橚@)Rabs_Ropp&#p  Π ͠    ٩ e( Lܷ O M & $ ¶ c  Ƕ h  (̶m = #   Ƞ F G J H@ i 5 ~0  * N L 7 >1  / 6 eנ K A @ܠ' ( n o r p@F ?砩頩 ]  R H  }S X L  i& v  `{ g  rL  g     lK  h   ©  {T  Ʃ"  ʩ R"    ҩ Ѡ  h  "    @'Rabs_R00  *@)Rmult_0_l+€ l j@+Rplus_opp_r {GC /j3y  <5=>OJ- r  ^   0   J@,Rle_lt_trans*GӀ}  C @q S   @ǩ @&R_distm  ~ i N C3  u     ߩ Vĩ=       ` c@+UL_sequenceiހз       ! p    Er `@&eq_sym X L *  @4Rminus_diag_uniq_sym  1   󐑵!f@ ` `"Un@ C d!l g @T i@R͠ l#alp oY t r@&Rderiv v@#D_x> H*Ranalysis1 @'no_cond' ? > 4ܠ D E ֩ :⠩    K M T @ y z } {@Q J , [  V  ;    @Ơ91 9 g ]  m ?  c     n v!    @w  p  (   ` ͷ 2&ЩK   Ӷ@aY b  נ -  h  ݠ 3     J ȷ, ɶ  ʶ@ 렩 A  ~&u  @~    R   ҩ  X 7   O   @é  d C y [   @ϩ Ȑ p g k  @ߩ *ؐ ̐ aϐ  / >BAAAA@@@@@D@ H G u ʐ I 됩   @'Req_dec3{ˠ< w^ m_ ^    j yk j! o ~p o)&  @ ;BC v$ ̠II +4^68.A5 4 ܠ; k #  N$B  @*not_eq_sym6ԀI+RCk &m UnCCA@>=@@; @Ơ9 %  "l@@@p w@$@z ŠCmkjhg̶@ζ@2ѷeҩש&Rlimit@$Base /h @%R_met Րs@r 栩Р@,Metric_SpaceC@@FF@@@@@@@@@ @) @+ ."'QB/@@$dist@Ŷ@X(dist_pos\⩚@#Rge=-nI(dist_sym" ݰ#ҷ)dist_refl*ᩚD@#iffС) 2` ~췐(dist_tri;- ĩ b A[CH@5J@3MNh8S|@lߩ S@O 3^} [Cc@@(limit_in=9$$< C  q@@)limit1_in8G 0C|@@+continue_in R;C(&%#"@ @-continuity_pt?ZL>@  rMN 6O S~|vZBqcyn bRI'Sumbool$Bool@/sumbool_of_bool& Ay { ]IQ *WfcZZU  J 6#Heq y˩ͩkyvu D pnid_J#MCݩ%Q;׷ѩE  ֩ީѐ XLTFŰ>=  Ơ8L, аР40 JѷBR6 | MCٰ ؐM j!a& [ Y ; 8 6,u 1 / . )w  @   Ω  ީ 00       2  02       4 ;v# i>>ynN@R$"~y  v@'CV_mult . /  }=R"ep= 67:8@YG ux_ n`B@@éa2FD$_tmp6S99 @)R_dist_eq>x܀C$W )CVT  }{o|U@*continuity* ?B7A   F' MLKai/X@+dicho_lb_cv$-%U>`@/cond_positivity 0jF E\6@#sig#* @Is<;T VmBBB@@@@DY]©Ԡ Phǩ* lj%̷nͩ砩頩 1ҩ   ?ط"p0v@+dicho_up_cv$AȀ A GB  LRc<O  _ZܠyŰ   8  !p@(cv_dicho   a|өذgF!!ڷ "4';.A67QS? l[שI a w  F*YRǩWɩLYC/ @,growing_ineq `>1 `>B ^5@/decreasing_ineq5ɬڀЩ$J>B >xq0vkxȐ"Vn][? ␩"9dbȐ"Wnhf=$#+퐩I-D   ^CKdywn |_@.continuity_seq#틀["cJ F D ۩ D @ 7p  1  , S J A  c|  =K } b   d Pˠ    CE   M @٠ /\ک"x2ǷȐ"H9 JAC<< Ȑ#H10ɠ Q]w    ^^ .$ϩ_ҩ @)Rabs_left)a퀠 v TB)8*)  Ȑ#H11 k i K H F<$ H> C A @ ;  n 5 5 \ϵ @3      0D       F  %M zΠ*BQQ ~`RQ  `=N@4Rplus_lt_le_0_compatL+6署@6Ropp_0_ge_le_contravar-l=w? &Co DF)O  ېQu]e{c|{E Ѡ),99l  nOWGa K@`@CC d c <Q X Ȑ#H127}b  Ȑ#H13xzcuN۩@6Ropp_0_gt_lt_contravar    @/Ropp_involutive"2Š ɠ dsYeG     c ~~ ̩  ޠ  * y+, @ҩɠ $͠ ' w xC h | ۠ 4tmiST ~ga  SX   K I EFϠ P g  ۰! NO Pj۠ [ '+ X .. [=/ K  ` yT2 be8 h " @A9'68! z[j/gZfa\_[T C uF%*bb  xji#3%  z  s 2x @4Rplus_le_lt_0_compat&_G,%  ͵Ϸ 7@'Rle_dec3  ~˩| I   hڠ T   MŠpp @ʠ#Hle@ְ { K@$feqt %ȷߠũ* Z M _- a a}뷐$Hnle6@) @, @*Rnot_le_lt.J r &5;5C9L 5O 131 .@,dicho_lb_car$ @ ?[@NDQfɐ - R˩ m -s  }ж@2eې ٩y/A"䐩$R @At @H{UFڷ68g␩i ж@[ÐW ֶ@  ٩h {@oqsC\C Kb   iȵ d  fΩҩR@@ $ ܩ]@A @ ũF}vs  x;CɠǶ  թ@,dicho_up_car2m q ϶@ߩ Q { ж@ʰs B5 _Ѷ@I ذ  7*@߰%Jݷ, y =ж@%8j.@n0@ 74' ܰPU  ũ%FC- @<: =?=4 ѐ ?FD; ԩ?Ht)"@+Rle_antisym>`K+zxlyR9-R  =   E    (  KQ <  u+Xw^[ @  B .٩7i S ̠ Πoܩur$Hltx Z X T K E  @ g ^ UР P1طz٩  ; } 0  kF   ɠ$$Hlty` 6  .<i4B {  |&@)False_recu唀m / 1 ҩ ٰL <\   SƷ$Heqy@+> G5Ab?8<1>@mL$Hgtyn @H)M+Lנ WZZ ][Z_\U  ~@ JBB4 +@#IVT+QրЩ@'opp_fct*'  )@.continuity_opp򆀠 3@| =@  9)  b Ed ̩K"V  s]uũǷT kͩ [#ѩ & C; < + # #iCD ' & 5J U K 7O [Zy o÷eĩ ޠ ࠩ H gΩ_ l-Էvթ    Zީo  ;     l BBB@@@@D@Ӡ HՠJ  N2`"$ ũ ̰ @ʐ  Ұ $G79 ک /' UD 8 ;2 J`|55H:<i@0Ropp_eq_0_compat8!  ䷐$HeqxIөe#٩%ک S2 ^W [P] _ $Hgtx ѩh&l ة  &  *| ?2*/'3%:#8$  B m eW?(???=" @.CEZ,f\m iJjttR ũ #Y}} \ Zc ⠩p  Ʃs  Щ  k  @-Rmult_opp_opp;- $gZ ܩ xTkη sѩ"@$Rsqr=MWy ߩ2G.@6Ropp_0_le_ge_contravar,0p l@)Rplus_0_l 6ʀCΠK<(( @@&Rsqr_0 OgACנ '1ĩܠR ,64۩ɰ6 @)minus_fctB @'fct_cte€7EL ׷ Ié @0continuity_minus)o& ֵupvL |̠x۩ݷV9&ՠ( (k9{&YV@+Rplus_opp_l73:&(?$@+Rplus_assoc FC*396M0%R_sqr@&Rsqr_15JCN;*@c̩-F. ө֩}R~ p h #@)Rmult_0_r+ȀC"XĠ+Ȑ!X@'IVT_corؼ)A@&Rlt_le A0$^ "۩@'sig_rec5Ԁ. $rt6ڰ M!t#&'A+Xt5ЩG/z,3 `M57ҩde 1<j hA nYLmAo'p#E  穚h@(eq_rec_r!%0$TOHU.' ~W \]w0a:8 geb&g8k l?*pkk .to /vq-T/E!ܵ |Y̠ \^W:֠ j[ s ķnS!=y\:25heC3 C648:% ҩ9;?(A*C6AGD, CR /Xchѩ w ة۩>etkC!Wà*"!e} Om   ^ `"۩ư 9 YЩ,_Ұ E2ְ ڰ  M Kް$.OQ Ruu ΐ3v@*nonnegreal *@ҩ@,Rsqrt_exists? @&nonnegi婚@+cond_nonneg?Sn MNh! R  WXr+\3"@%Rsqrt,q!g Dx@l(n/8E)%t٩1w85RD?5:6 ۠$VAHz ҷ$ .`KRBNM B  ݰ@@@@@5 ?q\c Z @] @Ši xk;hrpwL?@(Rsqr_inj RGd©~={ǩO OCotƩwwu %wߩ` @|#yysQxt"0U& 8o*xaɈxق\