"` 6+'Rseries%Reals#Coq@()Notations$Init#Coq@%Logic$Init#Coq@*Logic_Type$Init#Coq@)Datatypes$Init#Coq@&Specif$Init#Coq@%Peano$Init#Coq@"Wf$Init#Coq@'Tactics$Init#Coq@%Tauto$Init#Coq@'Prelude$Init#Coq@)Notations$Init#Coq@0&v!D]hwnv %Logic$Init#Coq@0\͉!Ig)Datatypes$Init#Coq@0.i bYN Z*Logic_Type$Init#Coq@0 1jc6&Specif$Init#Coq@0;RWMi\N'Decimal$Init#Coq@0C涳N*ua#Nat$Init#Coq@0eʤģPSR蠠%Peano$Init#Coq@0 jha|ؠ"Wf$Init#Coq@0q+W,J+'Tactics$Init#Coq@0/9m+ a%Tauto$Init#Coq@0̂"&/rk0JqTttֱ'BinNums'Numbers#Coq@0dmk(5Ju<*EqdepFacts%Logic#Coq@0FI$ͼՋ`)Eqdep_dec%Logic#Coq@0u wWIϰ߼&Basics'Program#Coq@0!bs߯? :VU$Init'Classes#Coq@0](p{yOh.'Tactics'Program#Coq@03u%+Equivalence'Classes#Coq@07;ꮹ-SetoidTactics'Classes#Coq@0S_`nOU$&Setoid'Setoids#Coq@0D9AsWE!>$Bool#Coq@0j 2cZ`FW*Equalities*Structures#Coq@0όe얟)H.Ƞ2Relation_Operators)Relations#Coq@0%s鯰s4Operators_Properties)Relations#Coq@0U3y#h&)Relations#Coq@0r砠*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ&NZSqrt&NatInt'Numbers#Coq@0` .%m%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|&NZBits&NatInt'Numbers#Coq@0MlIpKt'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$&NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ)NMulOrder(Abstract'Natural'Numbers#Coq@04> Aat/ j $NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ'NMaxMin(Abstract'Natural'Numbers#Coq@0]v|Qg̟ʠ'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NLog(Abstract'Natural'Numbers#Coq@0KI'BinList+setoid_ring#Coq@0Au,Ring_polynom+setoid_ring#Coq@0gaKw9`UW+ListTactics%Lists#Coq@0,Jcy{+InitialRing+setoid_ring#Coq@0k/T=cN(Ring_tac+setoid_ring#Coq@0x2]%762f)Ring_base+setoid_ring#Coq@0fbU(2cNe$Ring+setoid_ring#Coq@0Msᬠ)ArithRing+setoid_ring#Coq@0ṔCgt?}%Arith#Coq@0I|кX*o4#Max%Arith#Coq@04=;3$>aU堠#Min%Arith#Coq@0Ce-Fѕ(PreOmega%omega#Coq@0\|چBb~w4%Omega%omega#Coq@0t.J'6\ϨrK(Zpow_def&ZArith#Coq@0f蓜DX;V*ZArithRing+setoid_ring#Coq@0{#'[{nm!/,Zcomplements&ZArith#Coq@0ʾq %RIneq%Reals#Coq@0JUڻIu)$w&DiscrR%Reals#Coq@0z41pV.%Rbase%Reals#Coq@0Jܡ\ c6{%R_Ifp%Reals#Coq@0c4+ZŠ,Fourier_util'fourier#Coq@0ϳ> 4`*r0'Fourier'fourier#Coq@0wV9TN*Rbasic_fun%Reals#Coq@0hܒiclE>%R_sqr%Reals#Coq@0X%MԹ%M+SplitAbsolu%Reals#Coq@0M)&qYlݹ5*SplitRmult%Reals#Coq@0sD\rt/$Even%Arith#Coq@0YO%q}d߫%$Div2%Arith#Coq@0n*Áht!,)ArithProp%Reals#Coq@0B+L?>*e˃a j*Rfunctions%Reals#Coq@0d¹d‹@'Compare%Arith#Coq@0OM v먣5L:Y6CE2")oZrtXj("F;AР'Rseries%Reals#Coq@A&Rmax_N @"Un@)Datatypes$Init@@#nat@,Rdefinitions% @!RӀ@@%!N ""@@A@A@@@@D *AC0A!n5*Rbasic_fun*@$Rmax; UDDB@LJ, (+k,6'*(= R'>3 9 7%'G$''+k6'+7Tk6'G𠑑W :@@AAACd@@@@@AA@@>@,Field_theory+setoid_ring#Coq@@&FEeval>@@A@A"s @,Ring_polynom+setoid_ring#Coq@@&PEeval"s @@A@BA@A@#EUn @!r~%Logic@"ex @!i@"eq @BZ@A +k() + 77%' 77&'d%|tl@@@@@Z%Un_cv @Ʒ!l#eps@@#Rgt=<@#IZR/r'BinNums'Numbers@!Z7@A\@%Peano@"ge UwU@#Rlt=*Rfunctions@&R_distGiFE@ Gj d+k() +7T'+ L7 7!T'+ 77%' +7T' +  7!T' 7!7%' tJt(P"(D<Wd@@@@@͠+Cauchy_crit @;9p-@n<= >!mA@W@ZRMH#I@TR +k+7T'+ L7 7!T'+ 77%' +7T' +7T'+ 7!T'+ 7!T'  7!7%' Ld`Ԑlflp0P@@@@@*Un_growing @}J}r@#Rle=?E@6 l+k+7T'9  7%'Xd@@@@@3+EUn_noempty @@@@'. @@@@@I)Un_in_EUn @@A3@@@@@W,Un_bound_imp @@Bö!x@ǩJ)'Raxioms@.is_upper_bound:o$24@@@@@t,growing_prop @@C@A@q?!@J@#Rge=-@@@@@.Un_cv_crit_lub @@D@;@9@&is_lub -jl6ߩh@Oɀo@@@@@*Un_cv_crit @@-E@@S@%bound1a@@@@@ɠ.finite_greater @@GF755+!M.;@R@"le UxT@Ǡ=?@@@@@砠,cauchy_bound @@eGUS@@& ܀<@@@@@$Pser @"AnfZ[k@,infinite_sum(䀠<od@%Rmult׀71(Rpow_defl@#pow#׀TWW@ww +k() +7%'7!  7%'"xX p@@@@@2+GP_infinite @@Hښ,Rdefinitions%Reals#Coq@@!RӀ@,Rdefinitions%Reals#Coq@@=%Reals#Coq@@$Rabs; wAߠ@@/rB@(positive*@C@)Datatypes$Init#Coq@@#nat@+%UJ@$Rinv8Q@&Rminus&H=7g@@@@@(CV_shift @@%I!fR)Datatypes$Init#Coq@@#nat@!ka@;@oɀ1D#Nat$Init#Coq@@#add `ACA @@@@@頠)CV_shift' @@gJBV2AM@1CA72f]4B,̐@@@@@ 0Un_growing_shift @@KSb"un|@@ ?!AU]WeO@@@@@/@@@ ӳ2@ ӳ2[)Datatypes$Init#Coq@@A@ Գq@ Գq\ @A@AB@cA0/.@A.0TQ+Ring_theory+setoid_ring#Coq@@ABA.U>[J @B@@"O@(PeanoNat%Arith#Coq@#Nat@&of_int"O#Nat$Init#Coq@@ 6@A@A\@&BinInt&ZArith#Coq@!Z@'quotrem\)BinIntDef&ZArith#Coq@!Z@ /@A@\@@+pred_double\@/S@@A@As2@3@&shiftls2*@vY@A@BCs8@8@&shiftrs8/@vY@A@ѓ@>@&squareѓ5@y@A@@D@&to_intϑ;@@A@z@5@&doublez,@/!@A@ABCD/@O@)log2_iter/F@wd@A@NH/@B@&moduloNH/9@1,@A@A\d@G@&of_int\d>@1?A @A@bz@M@&of_natbzD@1?G!@A@#@S@&shiftl#J@1dV@A@#@Y@&shiftr#P@1d\@A@ABCD/x@&BinPos&PArith#Coq@#Pos@)pred_mask/x)BinPosDef&PArith#Coq@#Pos@ )X@A@6@x@&square6o@19@A@AV+L@}@&to_intV+Lt@2@A@V1b@@&to_natV1bz@2 @A@V5=@@&to_posV5=@2@A@ABCl@@)sqrt_iterl@!$:@A@@@6@(sub_mask@-@)@A@ADEF c@@'testbit c@!ć@A@7 B@D@'of_uint7 B;@*`]?@A@AG@I@)mask_rectG@@+ED@A@F˱@O@)add_carryF˱F@+p@A@AB^Ҷ@@'to_uint^Ҷ@#m@A@gL7@@'sqrtremgL7@40@A@Aq@@'testbitq@5)@A@ݎO@@+succ_doubleݎO@6r@A@A p@l@0double_pred_mask pc@0-+m@A@BCD T@&BinNat&NArith#Coq@!N@!t T)BinNatDef&NArith#Coq@!N@ 2@A@ @@#add @3 @A@A l@@#div l@3@A@ Y@%@#eqb Y@3@A@AB #@*@#gcd #!@3n@A@ T@0@#leb T'@3@A@ACEG "@5@#lor ",@3m@A@ q@?@#ltb q6@3@A@A @D@#max ;@3@A@ @J@#min A@3`@A@AB @O@#mul F@3B@A@ ~@U@#odd ~L@3@A@AC =@Z@#one =Q@3@A@ @b@#pow ˑY@3@A@A c@g@#sub c^@3@A@ @m@#two d@3J@A@AB hx@r@$div2 hxi@>@A@ @x@$even o@>4@A@ACD @}@$ggcd Бt@>U@A@ @@$iter }@>:@A@A 3"@@$land 3"@>m@A@ F)@@$log2 F)@>t@A@AB S@@$lxor S@>@A@ @@$pred @?U@A@AC @@$size ܑ@?'@A@ !@@$sqrt !@?@A@A ! @@$succ ! @?\@A@ !7@@$zero !7@@P@A@ *@@%ldiff *@@A@AB g_@1@+pred_double g_(@25\@A@CD m@6@÷ m-@2j@A@S@=@&of_intS㫑4@4}5@A@AS@B@&of_natS9@4};@A@BEFGH\R@G@(mask_ind\R>@4@A@\^@Q@(mask_rec\^H@4@A@A!,@V@&pred_N!,M@4s)@A@B@[@&shiftlR@5X@A@@b@&shiftrY@5X@A@A&@g@&square&ّ^@5,x@A@BC"@l@&to_int"c@5L@A@"@t@&to_nat"k@5L @A@AnTq@y@+testbit_natnTqp@6n@A@B@@(succ_posB@@A@I@@'abs_natI@?n@A@AB.@@'of_uint.@MS@A@3~@@'sqrtrem3~@7]%{@A@ACD,@ @'bitwise,@/v@A@>4'@@'testbit>4'@8g$@A@A{U@@,sqrtrem_step{U@8R@A@u^@9@(div_euclu^0@ @A@Afz@@'to_uintfz@9w@A@Bl@'@'comparel@3R@A@CDEFs8@,@+of_uint_accs8#@5+@A@}@R@,pos_div_eucl}I@&`@A@3x@(@'compare3x@]=@A@A@^@&doubleU@'޺_@A@BCq@@+of_succ_natq@$@A@w@i@&modulowɑ`@)1@A@ADK@n@&of_intKe@)j,I@A@K@v@&of_natKm@)j2_@A@AI@{@&shiftlIr@*O@A@O@@&shiftrOx@*O@A@AB,@@&square,}@*ow@A@Z@@&to_intZ@*81@A@ACE`@@&to_nat`@*9G@A@e@@+testbit_nateđ@+@A@A+{@@'sqrtrem+{ё@,J@A@5z@@'testbit5z@-T|@A@A @@'to_uint ͑@.@A@ @@+succ_double @.^4@A@A#@'@'compare#ݑ@ )Q@A@BCD%t2@,@(size_nat%t2#@ @A@%9@3@+of_uint_acc%9*@ ΋@A@A%V@8@+double_mask%V/@ S@A@%%@>@'div2_up%%5@ "@A@ABEF'ş@C@'Ndouble'ş:@ @A@(b0@K@*shiftl_nat(b0B@9-@A@A(nՖ@P@*shiftr_nat(nՖG@'@A@(@V@0succ_double_mask(M@@A@*W$@\@,compare_cont*W$S@!@A@.0@b@.sub_mask_carry.0Y@΂@A@ABCD.@@!t.@ ;@A@.먩@@#add.먩@ `@A@A.U@@#div.U@ @A@.B@@#eqb.B@ @A@A. @@#gcd. @ @A@.=@@#leb.=@ @A@ABCEGHI. @@#lor. @ @A@.Z@ @#ltb.Z@ @A@A.p@@#max.p@ '@A@B.@@#min. @ @A@.@@#mul.@ @A@AC.g@@#odd.g@ @A@.&@&@#one.&@ @A@A.뾴@+@#pow.뾴"@ k@A@.L@1@#sub.L(@ @A@.@7@#two..@ @A@ABCD.,a@<@$div2.,a3@ @A@.Xz@D@$even.Xz;@ ?1@A@A.@I@$iter.ؑ@@ @A@B. @N@$land. E@ @A@. @T@$log2. K@ @A@ACE.@Y@$lxor.P@ R@A@.y@`@$pred.yW@ `<@A@A.Ʉ@e@$sqrt.Ʉ\@ ;@A@.@l@$succ.c@ @A@.t @r@$zero.t i@ Z@A@AB/@w@.to_little_uint/n@ @A@CDF/@|@%ldiff/s@ H@A@00@@'compare00@?H{@A@A1P%@w@!t1P%n@  @A@B1P@|@#abs1Ps@ @A@1P&@@#add1P&z@ @A@A1P@@#div1Pґ@ y@A@BC1P@@#eqb1P@ f@A@1P@@#gcd1P@ 0@A@A1P@@#geb1P@ T@A@B1P@@#gtb1Pʑ@ q@A@1Pĺ@@#leb1Pĺ@ a@A@A1Pň@@#lor1Pň@ /@A@BCD1P@@#ltb1Pב@ ~@A@1P@@#max1P@ @A@A1P{@@#min1P{@ "@A@B1P]@@#mul1P]@ @A@1P@@#odd1P@ @A@A1Pɣ@@#one1Pɣ@ J@A@BC1P@@#opp1Pԑ@ {@A@1P1@@#pow1P1@ @A@A1P;@@#rem1P;@ @A@B1P@@#sgn1Pˑ@ r@A@1P@@#sub1Pɑ@ p@A@A1Pe@@#two1Pe@  @A@BCDE1[8@@$div21[8ޑ@ @A@1[d@@$even1[d@ I@A@A1[6@@$ggcd1[6@ i@A@B1[U@ @$iter1[U@ @A@1\@@$land1\@ /@A@A1\@@$log21\ @ 6@A@BC1\$@@$lxor1\$@ @A@1\Y@$@$of_N1\YÑ@ >j@A@A1\@)@$pred1\ @ j@A@B1\@.@$quot1\֑%@ }@A@1\@5@$sqrt1\,@ @A@A1\w@:@$succ1\w1@ @A@BC1\k@?@$to_N1\k6@ @A@1]@G@$zero1]>@ eD@A@A2:@L@%abs_N2:C@ @A@21@R@%ldiff21I@ ߵ@A@2=*@X@%quot22=*O@ @A@ABC2kF@@(size_nat2kF@{@A@3@x@(tail_add3o@^q@A@ADEFGH3@}@(tail_mul3t@^@A@5Z@@*shiftl_nat5Z@y/@A@5f}@@*shiftr_nat5f}@4@A@AB5a@@'iter_op5a@ @A@C6w~@@'of_uint6w~@^5@A@8j@@'of_uint8j@'"h@A@9E@@(div_eucl9Eđ@(*k@A@AB:x@6@,Nsucc_double:x-@ ʭ@A@CD@[@&divmod>R@C@A@>@b@&double>Y@NĴ@A@?2@S@,pos_div_eucl?2J@-u@A@AB?;@m@&modulo?;d@"i@A@CEFGIJ@%Arith#Coq@0I|кX*o4)ArithProp%Reals#Coq@0B+L?>*e˃a j)ArithRing+setoid_ring#Coq@0ṔCgt?}*Arith_base%Arith#Coq@0Ĕ}CS&Basics'Program#Coq@0!bs߯? :VU'Between%Arith#Coq@06v*0ur`C0&BinInt&ZArith#Coq@0BpHޞun^)BinIntDef&ZArith#Coq@0ådR4Tuy'BinList+setoid_ring#Coq@0Au&BinNat&NArith#Coq@0K11ڤs+Π)BinNatDef&NArith#Coq@03@1O,[{ 'BinNums'Numbers#Coq@0dmk(5Ju<&BinPos&PArith#Coq@0vyػ0= u)BinPosDef&PArith#Coq@0}H d.%,b$Bool#Coq@0j 2cZ`FW*CMorphisms'Classes#Coq@0qیZBeϠ0CRelationClasses'Classes#Coq@0TL;0RUfw1'Compare%Arith#Coq@0OM v먣5L:+Compare_dec%Arith#Coq@0jXF 8FED@0.i bYN Z)Decidable%Logic#Coq@0ND걸풬/Oߠ'Decimal$Init#Coq@0C涳N*ua&DiscrR%Reals#Coq@0z41pV.$Div2%Arith#Coq@0n*Áht!,%EqNat%Arith#Coq@0AIgՋXRV *EqdepFacts%Logic#Coq@0FI$ͼՋ`)Eqdep_dec%Logic#Coq@0u wWIϰ߼*Equalities*Structures#Coq@0όe얟)H.Ƞ+Equivalence'Classes#Coq@07;ꮹ$Even%Arith#Coq@0YO%q}d߫%)Factorial%Arith#Coq@0@oehJd%Field+setoid_ring#Coq@0J _ȫ)Field_tac+setoid_ring#Coq@0d vDZl^۹H 0B~uYٮ٠'Fourier'fourier#Coq@0wV9TN,Fourier_util'fourier#Coq@0ϳ> 4`*r0-GenericMinMax*Structures#Coq@0måj$"Gt%Arith#Coq@0䙛#c:D $Init'Classes#Coq@0](p{yOh.+InitialRing+setoid_ring#Coq@0k/T=cN"Le%Arith#Coq@0d}Omq+$List%Lists#Coq@0>I+ListTactics%Lists#Coq@0,Jcy{%Logic$Init#Coq@0\͉!Ig*Logic_Type$Init#Coq@0 1jc6"Lt%Arith#Coq@0KZ-eJkP܏#Max%Arith#Coq@04=;3$>aU堠#Min%Arith#Coq@0Ce-Fѕ%Minus%Arith#Coq@0LFtR")Morphisms'Classes#Coq@0Imӽ%\$PD.Morphisms_Prop'Classes#Coq@0% :B'.>u%$Mult%Arith#Coq@0햖Qyb0$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI%NBits(Abstract'Natural'Numbers#Coq@0qteo_hɅ $NDiv(Abstract'Natural'Numbers#Coq@0bz$?[p(5$NGcd(Abstract'Natural'Numbers#Coq@08E-S ;j_Ҡ$NLcm(Abstract'Natural'Numbers#Coq@0 ~xZ9L{:$NLog(Abstract'Natural'Numbers#Coq@0K Aat/ j &NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf+NProperties(Abstract'Natural'Numbers#Coq@0unt"kwpYC%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ%NZAdd&NatInt'Numbers#Coq@00h`ZK4*NZAddOrder&NatInt'Numbers#Coq@0e~1>r砠(NZAxioms&NatInt'Numbers#Coq@0] ρ5r&NZBase&NatInt'Numbers#Coq@0^&8yUL&NZBits&NatInt'Numbers#Coq@0MlIpKt%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZMul&NatInt'Numbers#Coq@0ctR~6[Ƞ*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R'NZOrder&NatInt'Numbers#Coq@0 q;Ve7R W,(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x&NZSqrt&NatInt'Numbers#Coq@0` .%m#Nat$Init#Coq@0eʤģPSR蠠$Nnat&NArith#Coq@0$W;s #%M)Notations$Init#Coq@0&v!D]hwnv *NumPrelude'Numbers#Coq@05WUVŦ]xVXԠ%Omega%omega#Coq@0t.J'6\ϨrK+OmegaLemmas%omega#Coq@0TJ#Jes4Operators_Properties)Relations#Coq@0U3y#h&&Orders*Structures#Coq@0$Znl0\͗+OrdersFacts*Structures#Coq@05Mܿ獐ζΖLB)OrdersTac*Structures#Coq@05'4Ԗ+9%%Peano$Init#Coq@0 jha|ؠ(PeanoNat%Arith#Coq@0O~2$k[#lZ)Peano_dec%Arith#Coq@0Kݢ*k$Plus%Arith#Coq@04tmG$Pnat&PArith#Coq@0,?pr.gZ(PreOmega%omega#Coq@0\|چBb~w4'Prelude$Init#Coq@0JqTttֱ%Quote%quote#Coq@0J@ŹVz-,3%%RIneq%Reals#Coq@0JUڻIu)$w%R_Ifp%Reals#Coq@0c4+ZŠ%R_sqr%Reals#Coq@0X%MԹ%M'Raxioms%Reals#Coq@0S]jnj][L%Rbase%Reals#Coq@0Jܡ\ c6{*Rbasic_fun%Reals#Coq@0hܒiclE> 0(2{Ze$ќ8)RealField+setoid_ring#Coq@0 >ʾq /RelationClasses'Classes#Coq@0Gz rA6ՠ4Relation_Definitions)Relations#Coq@0]4Ѐd{n^2Relation_Operators)Relations#Coq@0%s鯰s)Relations#Coq@0-SetoidTactics'Classes#Coq@0S_`nOU$&Specif$Init#Coq@0;RWMi\N+SplitAbsolu%Reals#Coq@0M)&qYlݹ5*SplitRmult%Reals#Coq@0sD\rt/'Sumbool$Bool#Coq@0sB ,$11.]m'Tactics$Init#Coq@0/9m+ a'Tactics'Program#Coq@032 Q@@E@#_13@+3U@A@@@@@@@@@#_142M접@+3UBB@A#_15'`o@@+3UB.function_scope)nat_scope@A@e2 Q@@@@#_16@p.0@@@@@#_172M접 @~.@#_18'`o@@.B/'R_scope@A@U2 Q@@@@#_19,@`^@@@@@#_202M접:@n.#_21'`o@B@vB\-@A0@2 Q@@@@#_22X@ @@@@@#_232M접f@' Z#_24'`o@n@/ A@A@2 Q@@@@#_25@?!@@@@@#_262M접@ ?!#_27'`o@@?!A@A@2 Q@@A@#_28@G@A@@@@@@@@@#_292M접@G#_30'`o@@GA@A@ 2 Q@@A@#_31@;;@A@@@@@@@@@#_322M접@$;;#_33'`o@@.;;B@A@+2 Q@@A@#_34@6@A@@@@@@@@@#_352M접@E#_36'`o@@OC26@AA@A2 Q@@A@#_372@L@A@@@@@@@@@#_382M접A@[#_39'`o@K@eEedf@@@AILlf@^2 Q@@A@#_40n@iE@A@@@@@@@@@#_412M접}@xE֐#_42'`o@@ED@s@@Az@y2 Q@@A@#_43@4_}$@A@@@@@@@@@#_442M접@4_}$#_45'`o@@4_}$Cؠ@@@Aՠ@2 Q@@A@#_46@>7`@A@@@@@@@@@#_472M접@>7`ʐ#_48'`o@@>7`B  @A@2 Q@@A@#_49@9t@A@@@@@@@@@#_502M접@9t#_51'`o@@9tB9@@A@2 Q@@@@#_554@@A@@@@@@@@@#_562M접C@@#_57'`o@L@Cf79@A<?@2 Q@@A@#_58g@.z@A@@@@@@@@#_592M접#_60'`o@Bd@@Ԡ@m2 Q@@A@#_61@x @A@@@@*@#_622M접 #_63'`o@D@@A|@\2 Q@@A@#_64@g!]@A@@@@[@#_652M접 #_66'`o@D@@AȠ@j2 Q@@A@#_67@u0p@A@@@@@#_682M접 #_69'`o@C!@@蠐A@@"_9HƠl@8]$u+?@sxޚ@ߗ skΜʞӄ@2PC6A[,rꄕoqML0"Un@)Datatypes$Init#Coq@@#nat@,Rdefinitions%Reals @!RӀ%Logic@"ex @A!r+!i.@"eq @)BCA>A(BC8  A?C%A*B'RseriesC@#EUn.#_]!n_Hb7c5X.10- \#C5%qo!xd!Hui@#Rle=EF"x0s"H04DLl@&ex_ind 5{b`XFY^"x1 "H1'G:@(eq_ind_r!2#Hs7ttEy:wMyC'Raxioms@.is_upper_bound:o$n·e©@'nat_indJmʶ!mͶ@@*Un_growing?!P@%Peano@"ge Uw@#Rge=-WX?("@ @c 'Lv!@"or @B@#Rgt=<]ݰƠC/"n0'Gi~BݩBt@)False_induُEW"H2@#notШa@"le UxT@ِ(PeanoNat%ArithA#Nat@*nle_succ_0$y=NPSCTV@@zJ@ @Iީ = QWhj@ζ@Iɷ ۩]:Kj{C@IAFC"n1Y RBOVRCt)R  TfŐ8"H3  ]%RIneq@)Rge_trans7ЩL<=n@&Rle_ge @ H  F"(|zDc47@K@ݠK) &Specif@)sumor_ind>+Pਜ਼ @'sumbool7̂K@@"lt Uxc[O]Q S_!s!@%sumor$|@ M-O!y%/@+sumbool_ind=S$NаRa 0#Myzᐩ9k6Ntbߐ"Lt@)le_not_lt _"Le@&le_S_n8ދ?556V  !B;665887:Cd  Rdh5HHEDKHΰ6@'lt_le_S0?n!+Compare_dec@,lt_eq_lt_dec*&*,.*jh#Hug2!la@&is_lub -jl<#epsm$HepszEs@#IZR/r'BinNums'Numbers@!Z7@AȐ%Hi2pn:*Rfunctions@&pow_lt!Eۀ@$Rinv8)%B*@(positive*@BC!@0Rinv_0_lt_compatD(@&IZR_ltNC@*comparison;f@Bxթ@#Rlt=](Rpow_def@#pow#׀EȐ$testBAAAA@@@@@D"O@&Rminus&H) @$boolZ'@l@*Rle_lt_dec8?qBAȐ#sumȐ#aux@@$&&@@A@A@@@@D.!"n'2&@%Rplus+19@@@@@@@@A!bB5 h# #Ȑ%Hsum'JKN5@#andЖw@ᠩՐZ@#add ` m53S@&eq_ind Jt>u'!79Ȑ*to_rewrite@$list]@B|Y(II A#Heql b97Ȑ(list_hyp@$prodt@,Ring_polynom+setoid_ring@%PExprk@3*Ȑ-list_hyp_norm3 @#Monf@@#Polj@AȐ0list_hyp_norm_eq@ .@.mk_monpol_list()]9-&BinInt&ZArith]@1P&)BinIntDefb@ ̀@#mul1P] @ @#sub1P@ p@#opp1P@ {%Zbool @(Zeq_bool0߀)@'quotrem\$@/ŀ9Ȑ*ring_lemma|@2RField_ring_lemma2!8(Ring_tacn@0ring_subst_niter!N@$Truey@A"pe#npem@ p@*norm_subst7:d0`_PJD>6&  8@&PEeval"s 8?ͩ͐kA@%Rmult׀ZF@$Ropp΀X&BinNat&NArithX!N@&to_nat`)BinNatDef @*9G^ةa8@(Pphi_powcHj+D)~$rw+InitialRing@)get_signZ#7IȐ#resCͩAԩȐ&res_eqKZ@fʩZ0{F㩜E詜DoȐ#thmuxtk83fd_2ZIBiDHrAO,@(Rle_refl ՠ2C@Dc-f堩B^T@(plus_n_O0G؀﷐#IHnڐs·mnpР(eX*H1٠`ЩĠr7t :@)Rle_trans"F*BBB@@@@D@㠩[(*?Z&Ġ>@@͠ LDj (@)Rplus_0_rH€B@1Rplus_le_compat_l?IHV@@@@D[$$R@&Rlt_le AXːwTd=d`Z"feb5uhi@.Rplus_le_reg_r -B/ kwRyTwd|QY0=2od]^ ej@%proj2Orpk @&Req_le 3vu  Ȑ+field_lemma@3RField_field_lemma1(Mk79;w0,Field_theory@%FExprs@F ED,+&A"!# G(%I-*C2B/H7Ŷ#lmp!@$nfe1:@&linear@F@Ұ C@%Fnormw$O&% L϶$nfe2@߰ $W.- 8׶@f@#Peqj*a0c:9*$qGhc@#num:uoj@%denum0v0xON?93-%z $@x@%PCondS<1 E?b46gŰ:kK@#appʀ@)condition.#-P@&FEeval>@W1kW@$Rdiv̀i^Sgbkfԩq@l-F+&y!@N({sHFȐ$res0AΩCȐ'res_eq0N]@Ȑ$res1H(* Ȑ'res_eq1@ !-z|xl@@-RField_lemma55v}qlm$lock36A(lock_def 8P|Owf/8UT|TɩOYΩ<ĩ]ҩ@>V#!WC<j/i Z@,@$Fapp{F83@&Fcons2w$?sNCl?nwJ@+Rplus_opp_r {GѠR@+Rplus_assoc C6c69v#C@)plus_n_Smw;(U !ӠЩ2PȐ$Hsum3*+@렩ƠةɠHϠǩҠQ˩٠۠Zx" @)Rplus_0_l 6ʀC@렩+', *-q9 2 #88}+3Cz.@,completeness$v\)X{RPq~٠ h5d^ZH'}BBB@@@@D@yF.mYkJ <6sa:c<4>@SBk@.Rplus_lt_reg_l5=ӀƠ|tKtCAPE }<74<NéڠkTɩK86ȩ2@֩8f+eyuHh-ag p{h\ZX@ 04h  iQ6X8PgZ:iR K ɰ8|A{ Z~)ƩΠ 9tu@ٰ=0Q(' lnSȐ$thm0ة8 \9  H !`7=yAH婐UI+J/Xݩ1ZC@XW8Q:SSC -"<=24ߩ{@#sig#* @<= BBB@@@@DoIJ蠷M3\]/R)'&9b1c`M-n-\>B@dJstFi@@7j@Š nT}!~PsJHG [SPPP#Hm1 #Hm2R@࠷'o<ke?cb'hȐ!o@)Rle_or_lt"R#)7ؠ0*BAAAA@@@@@D@E=?S͠QI@$?QASԷթҠT᠐RT"Hm H@*Rlt_not_lejJ<lqL4%Ȑ#Hs0nj Ѱɩ^m@+Rle_antisym>`K   jܩ@%proj1O` ! 3Ȑ#Hub '   @ "\͠àWDz 3  4@  7  ; 䠩pͷ ( @@  C mL5 ]ry렩Vl@ ; ^2-868r 8 O<f Pc) X D [   S v M _"H' Y | k@*Rgt_not_eq3ڀEl [C@ h P8fRDTd he XC@ q A [  H L}@Y \n @ bP y >     $_tmp N @  u  Qe   ̷ ͩʠU T6@*Rle_not_lt8Ҁ  m Ϸ \ d H@       Z  s q    U  N 䩐[     } Z s C E6CD; Рȩ Ԡ {vs ݰ{ ө ݠ; wu\[YFEC@   :  uW@  8 /n (K 8 ] H "6uL* /R d@ h0|SRC=71) ~       38 5I Be   7ŷ  8p Q_@ !0po`ZTNF6  H ư "  * M8 O)c  \ܰ Q^߰ T`H W1k_ d  .  YJ4pa 19u\x 8C@CY>@[IBCC_   v _ w٩ z, d |@1Rinv_lt_contravark!E  wѩFI @)Rmult_1_l9ٰQ @&Rinv_1 ;9ۀ*Rbasic_fun @$Rabs; w  @+Rabs_pos_equQ6kȐ!e#@-pow_lt_1_zero="   "   ÷ Ķ h Ŷ@   ( o5@  з Ѷ u Ҷ@     ׷ ة ՠx w  ݷ"H4  +  H@*Rnot_le_lt.J"H5  /M   @'le_refl-u O X     Y ĩ V   i ܠ    ذ  ҩB r@       ة6 ة  ۩7t  ې  "H6  y Y     D yȐ"Hs cз (>  6  ! E A ;Y  + 9#IHNR Ƞ HP ,+Щ  /Qd @&Rge_le 6/R   @,growing_prop ? !- @.le_succ_diag_r  %   V ? W 6 Y4 ./*5 Ti  b61 M e$ n, M     $ o Y |PK   ' Hg [ r  sL   a#Hlei#Hlt  v   ' n pC z ; +x -=V?t  xC  Oj 3     I 6 v@+le_gt_cases(HC      @  W C  E Y Uj _ "Hn  0 өx xz@  - ~  ܩ g$ Щ~꠩ Sy  H{K v  x  O  s   ~Š (  Z =( n ?. ^       5Ȑ!k6  < 1<V  5@@    I    + - pomZYWT  &  ( Y    m@  /8 1   E  > a 3 d  ѩ° 7 h  H ;   O eC  H k  }  @8 B   V  O r   D ҷ - E }  " ^ | : O / R8 T  . h  a   V  X  H \  6 p d  i  3  ^Oe ; w  8 9 A }      AC@  L     R T 2 R ܩ%Minus I@-le_plus_minus,3 7  Zͩ|)   > թƠ @ ׷l  )f    H    K   5J  9   ؠ $Plus v@,plus_Snm_nSm+5z & d7  f  "  F   Qϩe J[O 6  E C  ^  dީ! fm R h  (C t  ַ ש Ԡz  [  ޷ ߩ  I@    g  J ;      @(  Y@&R_dist S   O   e     @: + D  η  ( 0  е h     :   p   ^ " p p @,Rlt_le_trans9Щ   ~ O  | Ȑ(hyp_list  mȐ'fv_list  ! n  #   % -    @2RField_ring_lemma1!7       @  CR h q0  A 0   e d U O I C ; +  0   g f W Q K E = -  8  ? T  .  C X   . F ~  = M ѩ $ `(  b * " 7  5 ߰ T/  V   ѩ0 H + / 9@ 8 hw  U  f /0     z t n h ` P 3˩ 10     | v p j b R 5 ] A dzN  fA O g ! <+F s c' u C   E I%  Cr @0Ropp_minus_distrx@*Rabs_left1 !~ @)Rle_minus"ހ 5~Щ ᠩ G : X @ 栩 L0 b '  h -   u  s q m \ C lC V@%Un_cvɀ   G E$Heub @%bound1 j T   Q  : @)proj1_sigY    W y  N   |@+EUn_noemptyG '     ˷  ̩ j   7 0  ӷ  ԩ r      z ٷ u @.Un_cv_crit_lubEր ] @0  &     A         ; ٠ !M  @   z  ө   @    a  η   t   uߩ ՠ ᩚ @)le_n_0_eq ̷%%HrecN( ( ,@       &1' 5@     , "/:0 >@  9 ̠   @$Rmax; U  # M ͩ  6@'and_ind14ۀж@ 㠩    W ٩       @      *   E@  1  m   BA@B@B@@@@@@D&@ N L@YS o   !I  w  !Z f  j  ~ am  C+=^    J : M5GhI Q  U@ @  `SC ]E y : @M88O: UQ A[ -E7 ׷>T C MR G NF@'f_equal=0 ·= Fi IV°D Űd ܩT _ 9< <, n Π F/ 2 Q3   uM@   Z֠ ] ~䐩ؠ! @(Rmax_Rle Z., !@ 123i4@_@b dKjABCyD@@ qXw %ABC@ΩSնW@""@# mJ ȶc /9[f\ j@53,Fbcd@#:#hI ^kl m@, C,9I M y 6v5L][~S SXJ  ^6; G"x2% c>eeg@  ͠+^ r   [ ) ՠ| b. ޷ ޠŠ L~ l~' 㠩ʠ  , qmЩ ꠩ ɠ $ w  sjQ)Y  L4   ؠK*ж@ag   6k=m   @@u{,w}yM]@7  Ǡ8 ÐB D  F  3   C [ T z@)Rminus_lt$Yπv 頩FD  ~ e b "     r  t   v  @  @ 4 C Y b ! } 2 0   V U F @ : 4 ,  0   X W H B < 6 .   ) 0 E3 G$ I(ĩ: O= Q'E SG + ީ E ZH \?4L  " bC * $  &'@)Rlt_minus u\V0G@)Rabs_def2(S %7< ;۩Hp̷Yq oEG m0ж@۠* W ?@䠩ȩP9 зk@é`аe|.gR@.finite_greater>7`ʀĐ'Compareg@&le_dec?^5ˀty h@'Rlt_0_14CC HC@o@+Cauchy_crit ܀XV ( VNR@&or_ind"SYܷ ݶ޶@ 񠩚L@(sum_f_R0Yc  {M  SDY @2#   %}̩a  ]uɷg6, Š ȩ8ݩt x ϷG.=# ֠ ٩I  ݷU<m2'Q&7   }          @A P f o .  ? 0  c b S M G A 9 )   0  e d U O I C ; + 6C=g =ND -E$G"   ۩~$ 6  4 ްS  Ω- E(, Ű  ٩ G  ۩ I      = @<l {   Y  j 30    ~ x r l d T7+_==9Ct@CGjC -CKn  /OrKI 5v 7_w ީ| e} A A@)R_dist_eq>x܀ 7_[\ K@*Rminus_0_r-  Aer@1Rmult_lt_0_compat=n Y `  y @+Rabs_pos_lt@0Rminus_eq_contrawŀ s%@6Rlt_dichotomy_converse,#d z̰1@,Rle_lt_trans*GӀ$0 1@(RRle_absTC(-A@1Rinv_neq_0_compat1j\ d ?j f K `ORn @3$Y!d W `  dgu    @H9 / Ƞ ˩;Yxq %  @[L3B( ۠ ީN&6 1T,Hq6+U*;X->C4^3D  jJ d9J ;LbBlARv;0H'J% DF'-~Sd ,. @>] _Saܩ;S6: Ӱ Щ U  W   ٰ L @K{  hyB0{scFD0}ueH pt8;5QMC+@S[~ >YaP]L_iac`eP}͠l^@.Rmult_lt_reg_l>eЩiŠprİ # Zz ["C[(é2.04ʩߠ(<*&ѩ ?&c̩eک;\W ΰ3 F J5 Ұ7J ŵ ?@İ " =0?s0AuͰ$b װa"&énƠ2< " EзH})֠- ܠ!6T [נ)aB23kLPn ĩ%Ȑ"H7+)ӰH é":!  k Щ 1 @0` o M^'0rlf`XH+)0tnhbZJ- U9\q?!?"Cf{/)#-l' "K[s5␩<  }gT Ȑ"H8lꐛ@<7@  v 1)ArithRing@0natr_ring_lemma1 ,Muy (^@&of_natKW@)j2_ &  @ ѩ(,-A1Bt@n l@o3 y@ q@3B h>@#eqb Yx@3@(div_euclu^~@ Q@BP#R S0U)&""?0W+($$3C°ueưܩWq& [# )ǩ a  / ,g j k3 M= ɠ ˠ S͠ z& \ ~֠  ^r@1Rmult_lt_compat_l` { j WoȐ"H9 x * - _/91 &  &(* /1$ @#Sbx@Q0ute_YSK;0wvga[UM= H,OFT@ Fթ6Y1 i.!92# og')  ͩ א Щ/  ܐ6 b^vK8 吩? (  됩B qmG\I Nv&P Uq|z$ Ω&!upt!  t @ߩx00| z02~ mp@o@ ux.?#y &Ҡ  X /۠ Z rܰCi  A  A@'Rabs_R10ZO@&Rinv_r ;:  )z N@)Rabs_mult)f 6~é Z <C, a) C~Щ g i@)Rabs_Ropp&#ީʠ!Dz4gJbL)P # ]S NߩXOCߠK1@)GP_finiteUa!%n@3Rmult_minus_distr_l Io wUyCqi  f @'Req_dec3{ C@,infinite_sum(䀠 fȐs!7C@$Pseru)? "f' {n u|p$cvfk۠&*L{"ep ԩU5f^4@ ̩;<?5@vnD@ ܩ͠JMt9{Q@ ڠ By"Pnϩ_`"nNgSȐ#tmp&mʩ@q.먩t@.L =|@'sub_addwD@(le_trans:d 2@)le_plus_rx&Ӏ XS #::&  ?{ @/le_add_le_sub_r9/-ZHCc   #cvfk^ ]@ TE ,p@"#$@ _P 7,-.@ iZ At8!; <=@ xi PG B @-le_plus_transk1C|CW,$ V]"una!Pe0C i2s` 1[uDr