"`&B&&Ⱐ&Rpower%Reals#Coq@()Notations$Init#Coq@%Logic$Init#Coq@*Logic_Type$Init#Coq@)Datatypes$Init#Coq@&Specif$Init#Coq@%Peano$Init#Coq@"Wf$Init#Coq@'Tactics$Init#Coq@%Tauto$Init#Coq@'Prelude$Init#Coq@4)Notations$Init#Coq@0&v!D]hwnv %Logic$Init#Coq@0\͉!Ig)Datatypes$Init#Coq@0.i bYN Z*Logic_Type$Init#Coq@0 1jc6&Specif$Init#Coq@0;RWMi\N'Decimal$Init#Coq@0C涳N*ua#Nat$Init#Coq@0eʤģPSR蠠%Peano$Init#Coq@0 jha|ؠ"Wf$Init#Coq@0q+W,J+'Tactics$Init#Coq@0/9m+ a%Tauto$Init#Coq@0̂"&/rk0JqTttֱ'BinNums'Numbers#Coq@0dmk(5Ju<*EqdepFacts%Logic#Coq@0FI$ͼՋ`)Eqdep_dec%Logic#Coq@0u wWIϰ߼&Basics'Program#Coq@0!bs߯? :VU$Init'Classes#Coq@0](p{yOh.'Tactics'Program#Coq@03u%+Equivalence'Classes#Coq@07;ꮹ-SetoidTactics'Classes#Coq@0S_`nOU$&Setoid'Setoids#Coq@0D9AsWE!>$Bool#Coq@0j 2cZ`FW*Equalities*Structures#Coq@0όe얟)H.Ƞ2Relation_Operators)Relations#Coq@0%s鯰s4Operators_Properties)Relations#Coq@0U3y#h&)Relations#Coq@0r砠*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ&NZSqrt&NatInt'Numbers#Coq@0` .%m%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|&NZBits&NatInt'Numbers#Coq@0MlIpKt'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$&NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ)NMulOrder(Abstract'Natural'Numbers#Coq@04> Aat/ j $NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ'NMaxMin(Abstract'Natural'Numbers#Coq@0]v|Qg̟ʠ'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NLog(Abstract'Natural'Numbers#Coq@0KI'BinList+setoid_ring#Coq@0Au,Ring_polynom+setoid_ring#Coq@0gaKw9`UW+ListTactics%Lists#Coq@0,Jcy{+InitialRing+setoid_ring#Coq@0k/T=cN(Ring_tac+setoid_ring#Coq@0x2]%762f)Ring_base+setoid_ring#Coq@0fbU(2cNe$Ring+setoid_ring#Coq@0Msᬠ)ArithRing+setoid_ring#Coq@0ṔCgt?}%Arith#Coq@0I|кX*o4#Max%Arith#Coq@04=;3$>aU堠#Min%Arith#Coq@0Ce-Fѕ(PreOmega%omega#Coq@0\|چBb~w4%Omega%omega#Coq@0t.J'6\ϨrK(Zpow_def&ZArith#Coq@0f蓜DX;V*ZArithRing+setoid_ring#Coq@0{#'[{nm!/,Zcomplements&ZArith#Coq@0ʾq %RIneq%Reals#Coq@0JUڻIu)$w&DiscrR%Reals#Coq@0z41pV.%Rbase%Reals#Coq@0Jܡ\ c6{%R_Ifp%Reals#Coq@0c4+ZŠ,Fourier_util'fourier#Coq@0ϳ> 4`*r0'Fourier'fourier#Coq@0wV9TN*Rbasic_fun%Reals#Coq@0hܒiclE>%R_sqr%Reals#Coq@0X%MԹ%M+SplitAbsolu%Reals#Coq@0M)&qYlݹ5*SplitRmult%Reals#Coq@0sD\rt/$Even%Arith#Coq@0YO%q}d߫%$Div2%Arith#Coq@0n*Áht!,)ArithProp%Reals#Coq@0B+L?>*e˃a j*Rfunctions%Reals#Coq@0d¹d‹@'Compare%Arith#Coq@0OM v먣5L:'Rseries%Reals#Coq@08]$u+?'SeqProp%Reals#Coq@0Lt2|9D }SSԻ)Rcomplete%Reals#Coq@0{ڸ4q 'PartSum%Reals#Coq@0j&2"(>S)AltSeries%Reals#Coq@0d US^(Binomial%Reals#Coq@0]JrHr#E&Rsigma%Reals#Coq@0䟄WCJҦ<%Rprod%Reals#Coq@0gȀn_}!W+Cauchy_prod%Reals#Coq@0K*ߞ4q(Alembert%Reals#Coq@0I͗Huz&)SeqSeries%Reals#Coq@0Npc$5|T ٠*Rtrigo_fun%Reals#Coq@0T+ɧK/۠*Rtrigo_def%Reals#Coq@0$xR`VcxIaƶ"x*Rtrigo_alt%Reals#Coq@0zsC^,%+OmegaTactic%omega#Coq@0@{4-EܭEUBW'Cos_rel%Reals#Coq@0%}ֺ|3J-tWK(Cos_plus%Reals#Coq@0IWEGն&Rlimit%Reals#Coq@0*r0ē([HAE&Rderiv%Reals#Coq@0?KQ;^WU;H*Ranalysis1%Reals#Coq@0 n;qm.L%)Rsqrt_def%Reals#Coq@0eA~%&Y?%RList%Reals#Coq@05g2NaA:7PropExtensionalityFacts%Logic#Coq@0 +_.ɓoFؘ'Hurkens%Logic#Coq@05[gNk2up.ClassicalFacts%Logic#Coq@0$RzqIF\(4.Classical_Prop%Logic#Coq@0Yh޿JdI1ƽ3Classical_Pred_Type%Logic#Coq@0m[6BZ5)Rtopology%Reals#Coq@0;Wo G#MVT%Reals#Coq@0cq통 gZ+PSeries_reg%Reals#Coq@0䝠|%n͠'Rtrigo1%Reals#Coq@0x'ml^(Exp_prop%Reals#Coq@0D:L-&R_sqrt%Reals#Coq@0 @#DŽe(Sqrt_reg%Reals#Coq@0?N~K0,o^}*Ranalysis2%Reals#Coq@02N헛W*Ranalysis3%Reals#Coq@0Gz魸NJ,:7*Ranalysis4%Reals#Coq@0kp+PA4!o%iР&Rpower%Reals#Coq@A&P_Rmin @@@!P@,Rdefinitions%Reals#Coq@@!RӀA!x!y@CB@DBE*Rbasic_fun%Reals#Coq@@$Rmin; 〠C@@@@@AA@@>@,Field_theory+setoid_ring#Coq@@&FEeval>@@A@A"s @,Ring_polynom+setoid_ring#Coq@@&PEeval"s @@A@BA@A@(exp_le_3 @@nA,Rdefinitions%Reals#Coq@@#Rle=*Rtrigo_def%Reals#Coq@@#exp3,Rdefinitions@@#IZR/r'BinNums'Numbers@@!Z7@B @@(positive*@C&B@AC@@@@@z.exp_increasing @@B@g@#Rlt=BA fj@@@@@*exp_lt_inv @@CҚ‶њ怶@(BA6ڐ@@@@@Ǡ)exp_ineq1 @@D@I+@@7@AA\@%Rplus+1BC̀@@@@@*ln_exists1 @@VE/D@퀠Հ>BB@*@CA&Specif$Init#Coq@@#sig#* @j!z%Logic$Init#Coq@@"eq @:KA@@@@@O)ln_exists @@Fz@р A@54t?)@@@@@w#Rln @%RIneq@'posreal̠@Р&Specif$Init@#sig#* @BBB@@@@@!sb @!RӀt %Logic"@"eq @6@#pos=D.ө*Rtrigo_def=@#exp3|%F@} 瀠 P@(cond_pos 1y!a8@0@]%Reals#Coq@@'posreal̠@ +k7 7 7!= R '>''+k6'Р*tSAh*XvABABX@@@@@"ln @6mР@'sumbool7̂K@BAAAA@@@@@D@#Rlt=@/rR⩚@#notШ@'Rlt_dec4du@5hꀐA]p!@q +kL7 7!= R'> :7$'>G7$''+k6'Р|ؠNAABAABP-h=\@@@@@j&exp_ln @@G@쀠;AG,Rdefinitions%Reals#Coq@@!RӀ^@5hPH@@@@@'exp_inv @@H̚܀˚@t-BAԐ@@@@@(exp_Ropp @@IM@$Ropp΀A@$Rinv8A@@@@@렠-ln_increasing @@=J+/@q(B@{ z)~@@@@@&ln_exp @@jKHX뀰۩AA@@@@@4$ln_1 @@L󩚠BC@A@@@@@Z)ln_lt_inv @@M@/B@ꀠ9@󀠩@@@@@&ln_inv @@NЀԀ@e͐B@ oȶ@{k$ө(é*ې@@@@@Ơ'ln_mult @@O @LB@V Y@%Rmult׀ hl@@@@@'ln_Rinv @@XP6F@׀?A〰өG=SE@@@@@2+ln_continue @@Q]r@kA&Rderiv%Reals#Coq@@+continue_in р8u@@@@@b @[Ƿȩ@%Rmult׀(@p5hPH@ T+k()7 7!7$'tdϐ@@@@@@+Rpower_plus @@RšҀրlڀm&@mrAƀCBƀACAB@@@@@ɠ+Rpower_mult @@S  ]7;CBABCBA@@@@@(Rpower_O @@KT)9@{ʀ2Aրi,׀?ۀ@@@@@!(Rpower_1 @@sUQa@ZAT*X@@@@@E*Rpower_pow @@V!n)Datatypes$Init#Coq@@#nat@@׀&AA5Ȁ'Raxioms%Reals#Coq@@#INRr(Rpow_def%Reals#Coq@@#pow#׀@@@@@)Rpower_lt @@WĚԀÚ؀n܀@mC@(̩,֩Ɛ@@@@@Š+Rpower_sqrt @@X@GA[5B@BC&R_sqrt%Reals#Coq@@$sqrt E؀@@@@@ +Rpower_Ropp @@[Y9I8MzU@kmr8@$Ropp΀b@L8@@@@@2.powerRZ_Rpower @@Zb@@oӀ'BinNums'Numbers#Coq@@!Z7@@ɀB$,Rdefinitions%Reals@!RӀ*Rfunctions%Reals#Coq@@'powerRZI|π@#IZR/r@@@@@*Rle_Rpower @@[!eǀFˀ!mЀ@yaC@ʩ @@@@@'ln_lt_2 @@ \6耐BB|CFBBC@@@@@*limit1_ext @@C]!f@35!g@;=!D@C9!lH<L@AQ@Dթ耰&G=F@@&Rlimit%Reals#Coq@@)limit1_in8Q=OQUA@@@@@@*limit1_imp @@^O@F@~"D1@K@@DC@BIuFPy@@@@@x)Rinv_Rdiv @@_@O@#notШWBU@ebʩmǹ@$Rdiv̀А@@@@@#Dln @@ `暠@=A@$D_inEOC@8W@@@@@蠠3derivable_pt_lim_ln @@:a(@j!A*Ranalysis1%Reals#Coq@@0derivable_pt_limw#1'@@@@@(D_in_imp @@fb#@UW"@\^!@cY۶@h^\l@aq@CUX@s[_]w&#cO@@@@@N(D_in_ext @@c]@\@!h@c@@=EADA@^b@@@@@&Dpower @@d̀cр@bʐBրӚ〩gۚ뀩ƀs@&Rminus&Hɩ~BtC KA@@@@@㠠6derivable_pt_lim_power @@ 5e  #  '@i B ),Rdefinitions%Reals#Coq@@!RӀe  " ,m \ 4߀ @@@@@ %1Rpower_mult_distr @@ wf U R@`C@ j I Y e U m Yi q u a@@@@@ `,Rlt_Rpower_l @@ g.!b1!c4@怠 5A@%Logic$Init#Coq@@#andЖw@ N         @@@@@ ,Rle_Rpower_l @@ hrD @ ӀG@  {A@F :  䩚   ԩ +  ܩ/  @@@@@ ߠ'arcsinh @EtH@%Rplus+1&R_sqrtp@$sqrt E؀(Rpow_def|@#pow#׀)Datatypes~@#nat@B  A @ Bϐ |+k67 7 7!7!7 7!7$'𠑤AA@h9L0thI\@A@T\@@@@@ A,arcsinh_sinh @@ i qǀ  @t l %@$sinhBAA@@@@@ b,sinh_arcsinh @@ j 0 3쀩%AA@@@@@ ~8derivable_pt_lim_arcsinh @@ k [J @B@@"O@(PeanoNat%Arith#Coq@#Nat@&of_int"O#Nat$Init#Coq@@ 6@A@A\@&BinInt&ZArith#Coq@!Z@'quotrem\)BinIntDef&ZArith#Coq@!Z@ /@A@\@@+pred_double\@/S@@A@As2@3@&shiftls2*@vY@A@BCs8@8@&shiftrs8/@vY@A@ѓ@>@&squareѓ5@y@A@@D@&to_intϑ;@@A@z@5@&doublez,@/!@A@ABCD/@O@)log2_iter/F@wd@A@NH/@B@&moduloNH/9@1,@A@A\d@G@&of_int\d>@1?A @A@bz@M@&of_natbzD@1?G!@A@#@S@&shiftl#J@1dV@A@#@Y@&shiftr#P@1d\@A@ABCD/x@&BinPos&PArith#Coq@#Pos@)pred_mask/x)BinPosDef&PArith#Coq@#Pos@ )X@A@6@x@&square6o@19@A@AV+L@}@&to_intV+Lt@2@A@V1b@@&to_natV1bz@2 @A@V5=@@&to_posV5=@2@A@ABCl@@)sqrt_iterl@!$:@A@@@6@(sub_mask@-@)@A@ADEF c@@'testbit c@!ć@A@7 B@D@'of_uint7 B;@*`]?@A@AG@I@)mask_rectG@@+ED@A@F˱@O@)add_carryF˱F@+p@A@AB^Ҷ@@'to_uint^Ҷ@#m@A@gL7@@'sqrtremgL7@40@A@Aq@@'testbitq@5)@A@ݎO@@+succ_doubleݎO@6r@A@A p@l@0double_pred_mask pc@0-+m@A@BCD T@&BinNat&NArith#Coq@!N@!t T)BinNatDef&NArith#Coq@!N@ 2@A@ @@#add @3 @A@A l@@#div l@3@A@ Y@%@#eqb Y@3@A@AB #@*@#gcd #!@3n@A@ T@0@#leb T'@3@A@ACEG "@5@#lor ",@3m@A@ q@?@#ltb q6@3@A@A @D@#max ;@3@A@ @J@#min A@3`@A@AB @O@#mul F@3B@A@ ~@U@#odd ~L@3@A@AC =@Z@#one =Q@3@A@ @b@#pow ˑY@3@A@A c@g@#sub c^@3@A@ @m@#two d@3J@A@AB hx@r@$div2 hxi@>@A@ @x@$even o@>4@A@ACD @}@$ggcd Бt@>U@A@ @@$iter }@>:@A@A 3"@@$land 3"@>m@A@ F)@@$log2 F)@>t@A@AB S@@$lxor S@>@A@ @@$pred @?U@A@AC @@$size ܑ@?'@A@ !@@$sqrt !@?@A@A ! @@$succ ! @?\@A@ !7@@$zero !7@@P@A@ *@@%ldiff *@@A@AB g_@1@+pred_double g_(@25\@A@CD m@6@÷ m-@2j@A@S@=@&of_intS㫑4@4}5@A@AS@B@&of_natS9@4};@A@BEFGH\R@G@(mask_ind\R>@4@A@\^@Q@(mask_rec\^H@4@A@A!,@V@&pred_N!,M@4s)@A@B@[@&shiftlR@5X@A@@b@&shiftrY@5X@A@A&@g@&square&ّ^@5,x@A@BC"@l@&to_int"c@5L@A@"@t@&to_nat"k@5L @A@AnTq@y@+testbit_natnTqp@6n@A@B@@(succ_posB@@A@I@@'abs_natI@?n@A@AB.@@'of_uint.@MS@A@3~@@'sqrtrem3~@7]%{@A@ACD,@ @'bitwise,@/v@A@>4'@@'testbit>4'@8g$@A@A{U@@,sqrtrem_step{U@8R@A@u^@9@(div_euclu^0@ @A@Afz@@'to_uintfz@9w@A@Bl@'@'comparel@3R@A@CDEFs8@,@+of_uint_accs8#@5+@A@}@R@,pos_div_eucl}I@&`@A@3x@(@'compare3x@]=@A@A@^@&doubleU@'޺_@A@BCq@@+of_succ_natq@$@A@w@i@&modulowɑ`@)1@A@ADK@n@&of_intKe@)j,I@A@K@v@&of_natKm@)j2_@A@AI@{@&shiftlIr@*O@A@O@@&shiftrOx@*O@A@AB,@@&square,}@*ow@A@Z@@&to_intZ@*81@A@ACE`@@&to_nat`@*9G@A@e@@+testbit_nateđ@+@A@A+{@@'sqrtrem+{ё@,J@A@5z@@'testbit5z@-T|@A@A @@'to_uint ͑@.@A@ @@+succ_double @.^4@A@A#@'@'compare#ݑ@ )Q@A@BCD%t2@,@(size_nat%t2#@ @A@%9@3@+of_uint_acc%9*@ ΋@A@A%V@8@+double_mask%V/@ S@A@%%@>@'div2_up%%5@ "@A@ABEF'ş@C@'Ndouble'ş:@ @A@(b0@K@*shiftl_nat(b0B@9-@A@A(nՖ@P@*shiftr_nat(nՖG@'@A@(@V@0succ_double_mask(M@@A@*W$@\@,compare_cont*W$S@!@A@.0@b@.sub_mask_carry.0Y@΂@A@ABCD.@@!t.@ ;@A@.먩@@#add.먩@ `@A@A.U@@#div.U@ @A@.B@@#eqb.B@ @A@A. @@#gcd. @ @A@.=@@#leb.=@ @A@ABCEGHI. @@#lor. @ @A@.Z@ @#ltb.Z@ @A@A.p@@#max.p@ '@A@B.@@#min. @ @A@.@@#mul.@ @A@AC.g@@#odd.g@ @A@.&@&@#one.&@ @A@A.뾴@+@#pow.뾴"@ k@A@.L@1@#sub.L(@ @A@.@7@#two..@ @A@ABCD.,a@<@$div2.,a3@ @A@.Xz@D@$even.Xz;@ ?1@A@A.@I@$iter.ؑ@@ @A@B. @N@$land. E@ @A@. @T@$log2. K@ @A@ACE.@Y@$lxor.P@ R@A@.y@`@$pred.yW@ `<@A@A.Ʉ@e@$sqrt.Ʉ\@ ;@A@.@l@$succ.c@ @A@.t @r@$zero.t i@ Z@A@AB/@w@.to_little_uint/n@ @A@CDF/@|@%ldiff/s@ H@A@00@@'compare00@?H{@A@A1P%@w@!t1P%n@  @A@B1P@|@#abs1Ps@ @A@1P&@@#add1P&z@ @A@A1P@@#div1Pґ@ y@A@BC1P@@#eqb1P@ f@A@1P@@#gcd1P@ 0@A@A1P@@#geb1P@ T@A@B1P@@#gtb1Pʑ@ q@A@1Pĺ@@#leb1Pĺ@ a@A@A1Pň@@#lor1Pň@ /@A@BCD1P@@#ltb1Pב@ ~@A@1P@@#max1P@ @A@A1P{@@#min1P{@ "@A@B1P]@@#mul1P]@ @A@1P@@#odd1P@ @A@A1Pɣ@@#one1Pɣ@ J@A@BC1P@@#opp1Pԑ@ {@A@1P1@@#pow1P1@ @A@A1P;@@#rem1P;@ @A@B1P@@#sgn1Pˑ@ r@A@1P@@#sub1Pɑ@ p@A@A1Pe@@#two1Pe@  @A@BCDE1[8@@$div21[8ޑ@ @A@1[d@@$even1[d@ I@A@A1[6@@$ggcd1[6@ i@A@B1[U@ @$iter1[U@ @A@1\@@$land1\@ /@A@A1\@@$log21\ @ 6@A@BC1\$@@$lxor1\$@ @A@1\Y@$@$of_N1\YÑ@ >j@A@A1\@)@$pred1\ @ j@A@B1\@.@$quot1\֑%@ }@A@1\@5@$sqrt1\,@ @A@A1\w@:@$succ1\w1@ @A@BC1\k@?@$to_N1\k6@ @A@1]@G@$zero1]>@ eD@A@A2:@L@%abs_N2:C@ @A@21@R@%ldiff21I@ ߵ@A@2=*@X@%quot22=*O@ @A@ABC2kF@@(size_nat2kF@{@A@3@x@(tail_add3o@^q@A@ADEFGH3@}@(tail_mul3t@^@A@5Z@@*shiftl_nat5Z@y/@A@5f}@@*shiftr_nat5f}@4@A@AB5a@@'iter_op5a@ @A@C6w~@@'of_uint6w~@^5@A@8j@@'of_uint8j@'"h@A@9E@@(div_eucl9Eđ@(*k@A@AB:x@6@,Nsucc_double:x-@ ʭ@A@CD@[@&divmod>R@C@A@>@b@&double>Y@NĴ@A@?2@S@,pos_div_eucl?2J@-u@A@AB?;@m@&modulo?;d@"i@A@CEFGIJ@4(Alembert%Reals#Coq@0I͗Huz&)AltSeries%Reals#Coq@0d US^%Arith#Coq@0I|кX*o4)ArithProp%Reals#Coq@0B+L?>*e˃a j)ArithRing+setoid_ring#Coq@0ṔCgt?}*Arith_base%Arith#Coq@0Ĕ}CS&Basics'Program#Coq@0!bs߯? :VU'Between%Arith#Coq@06v*0ur`C0&BinInt&ZArith#Coq@0BpHޞun^)BinIntDef&ZArith#Coq@0ådR4Tuy'BinList+setoid_ring#Coq@0Au&BinNat&NArith#Coq@0K11ڤs+Π)BinNatDef&NArith#Coq@03@1O,[{ 'BinNums'Numbers#Coq@0dmk(5Ju<&BinPos&PArith#Coq@0vyػ0= u)BinPosDef&PArith#Coq@0}H d.%,b(Binomial%Reals#Coq@0]JrHr#E$Bool#Coq@0j 2cZ`FW*CMorphisms'Classes#Coq@0qیZBeϠ0CRelationClasses'Classes#Coq@0TL;0RUfw1+Cauchy_prod%Reals#Coq@0K*ߞ4q.ClassicalFacts%Logic#Coq@0$RzqIF\(43Classical_Pred_Type%Logic#Coq@0m[6BZ5.Classical_Prop%Logic#Coq@0Yh޿JdI1ƽ'Compare%Arith#Coq@0OM v먣5L:+Compare_dec%Arith#Coq@0jXF 8(Cos_plus%Reals#Coq@0IWEGն'Cos_rel%Reals#Coq@0%}ֺ|3J-tWK@0.i bYN Z)Decidable%Logic#Coq@0ND걸풬/Oߠ'Decimal$Init#Coq@0C涳N*ua&DiscrR%Reals#Coq@0z41pV.$Div2%Arith#Coq@0n*Áht!,%EqNat%Arith#Coq@0AIgՋXRV *EqdepFacts%Logic#Coq@0FI$ͼՋ`)Eqdep_dec%Logic#Coq@0u wWIϰ߼*Equalities*Structures#Coq@0όe얟)H.Ƞ+Equivalence'Classes#Coq@07;ꮹ$Even%Arith#Coq@0YO%q}d߫%(Exp_prop%Reals#Coq@0D:L-)Factorial%Arith#Coq@0@oehJd%Field+setoid_ring#Coq@0J _ȫ)Field_tac+setoid_ring#Coq@0d vDZl^۹H$0B~uYٮ٠'Fourier'fourier#Coq@0wV9TN,Fourier_util'fourier#Coq@0ϳ> 4`*r0-GenericMinMax*Structures#Coq@0måj$"Gt%Arith#Coq@0䙛#c:D 'Hurkens%Logic#Coq@05[gNk2up$Init'Classes#Coq@0](p{yOh.+InitialRing+setoid_ring#Coq@0k/T=cN"Le%Arith#Coq@0d}Omq+$List%Lists#Coq@0>I+ListTactics%Lists#Coq@0,Jcy{J0\͉!Ig*Logic_Type$Init#Coq@0 1jc6"Lt%Arith#Coq@0KZ-eJkP܏#MVT%Reals#Coq@0cq통 gZ#Max%Arith#Coq@04=;3$>aU堠#Min%Arith#Coq@0Ce-Fѕ%Minus%Arith#Coq@0LFtR")Morphisms'Classes#Coq@0Imӽ%\$PD.Morphisms_Prop'Classes#Coq@0% :B'.>u%$Mult%Arith#Coq@0햖Qyb0$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI%NBits(Abstract'Natural'Numbers#Coq@0qteo_hɅ $NDiv(Abstract'Natural'Numbers#Coq@0bz$?[p(5$NGcd(Abstract'Natural'Numbers#Coq@08E-S ;j_Ҡ$NLcm(Abstract'Natural'Numbers#Coq@0 ~xZ9L{:$NLog(Abstract'Natural'Numbers#Coq@0K Aat/ j &NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf+NProperties(Abstract'Natural'Numbers#Coq@0unt"kwpYC%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ%NZAdd&NatInt'Numbers#Coq@00h`ZK4*NZAddOrder&NatInt'Numbers#Coq@0e~1>r砠(NZAxioms&NatInt'Numbers#Coq@0] ρ5r&NZBase&NatInt'Numbers#Coq@0^&8yUL&NZBits&NatInt'Numbers#Coq@0MlIpKt%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZMul&NatInt'Numbers#Coq@0ctR~6[Ƞ*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R'NZOrder&NatInt'Numbers#Coq@0 q;Ve7R W,(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x&NZSqrt&NatInt'Numbers#Coq@0` .%m#Nat$Init#Coq@0eʤģPSR蠠$Nnat&NArith#Coq@0$W;s #%M)Notations$Init#Coq@0&v!D]hwnv *NumPrelude'Numbers#Coq@05WUVŦ]xVXԠ%Omega%omega#Coq@0t.J'6\ϨrK+OmegaLemmas%omega#Coq@0TJ#Jes+OmegaTactic%omega#Coq@0@{4-EܭEUBW4Operators_Properties)Relations#Coq@0U3y#h&&Orders*Structures#Coq@0$Znl0\͗+OrdersFacts*Structures#Coq@05Mܿ獐ζΖLB)OrdersTac*Structures#Coq@05'4Ԗ+9%+PSeries_reg%Reals#Coq@0䝠|%n͠'PartSum%Reals#Coq@0j&2"(>S%Peano$Init#Coq@0 jha|ؠ(PeanoNat%Arith#Coq@0O~2$k[#lZ)Peano_dec%Arith#Coq@0Kݢ*k$Plus%Arith#Coq@04tmG$Pnat&PArith#Coq@0,?pr.gZ(PreOmega%omega#Coq@0\|چBb~w4'Prelude$Init#Coq@0JqTttֱ7PropExtensionalityFacts%Logic#Coq@0 +_.ɓoFؘ%Quote%quote#Coq@0J@ŹVz-,3%%RIneq%Reals#Coq@0JUڻIu)$w%RList%Reals#Coq@05g2NaA:%R_Ifp%Reals#Coq@0c4+ZŠ%R_sqr%Reals#Coq@0X%MԹ%M&R_sqrt%Reals#Coq@0 @#DŽe*Ranalysis1%Reals#Coq@0 n;qm.L%*Ranalysis2%Reals#Coq@02N헛W*Ranalysis3%Reals#Coq@0Gz魸NJ,:7*Ranalysis4%Reals#Coq@0kp+PA'Raxioms%Reals#Coq@0S]jnj][L%Rbase%Reals#Coq@0Jܡ\ c6{*Rbasic_fun%Reals#Coq@0hܒiclE>)Rcomplete%Reals#Coq@0{ڸ4q q0(2{Ze$ќ8&Rderiv%Reals#Coq@0?KQ;^WU;H)RealField+setoid_ring#Coq@0 >ʾq /RelationClasses'Classes#Coq@0Gz rA6ՠ4Relation_Definitions)Relations#Coq@0]4Ѐd{n^2Relation_Operators)Relations#Coq@0%s鯰s)Relations#Coq@0-SetoidTactics'Classes#Coq@0S_`nOU$\0;RWMi\N+SplitAbsolu%Reals#Coq@0M)&qYlݹ5*SplitRmult%Reals#Coq@0sD\rt/(Sqrt_reg%Reals#Coq@0?N~K0,o^}'Sumbool$Bool#Coq@0sB ,$11.]m'Tactics$Init#Coq@0/9m+ a'Tactics'Program#Coq@032 Q@@A@#_18@ @A@@@@@@@@#_192M접#_20'`o@E.function_scope'R_scope@@@AҠՠ@@@2 Q@@A@#_21@c@A@@@@5@#_222M접 #_23'`o@@@@G2 Q@@@@#_24@ROC@A@@@@T@#_252M접 #_26'`o@COQ@@ a@L2 Q@@@@#_27?@W.g@A@@@@@#_282M접 #_29'`o@C|~@@JM@T2 Q@@A@#_30l@_ i@A@@@@@#_312M접 #_32'`o@B@@u@?2 Q@@A@#_33@JJ@A@@@@@#_342M접 #_35'`o@BѠ@@E@2 Q@@A@#_36@' @A@@@@@#_372M접 #_38'`o@B@@Š@2 Q@@@@#_39@'5h(%@#_402M접 '#_41'`o@A@@@2 Q@@@@#_42(GD@#_432M접 @'Rlt_dec4#_44'`o@AC@@o2 Q@@A@#_45*@zK1v@A@@@@l@#_462M접 #_47'`o@Bg@@3t@e2 Q@@@@#_48R@p#?@A@@@@@#_492M접 #_50'`o@C@@]`@m2 Q@@@@#_51@xa @A@@@@@#_522M접 #_53'`o@A@@g2 Q@@@@#_54@r'R@A@@@@@#_552M접 #_56'`o@Dࠐ@@@󠐑@k2 Q@@@@#_57@v> @A@@@@@#_582M접 #_59'`o@A@@s2 Q@@@@#_60@~5t7@A@@@@:@#_612M접 #_62'`o@@@@l2 Q@@@@#_63@wy@A@@@@Y@#_642M접 #_65'`o@ETV@@@@$'hkn@k2 Q@@@@#_66L@v>n@A@@@@@#_672M접 #_68'`o@E@@@@Y\@j2 Q@@@@#_69@u5F@A@@@@@#_702M접 #_71'`o@D@@@Ѡ@[2 Q@@@@#_72@f5C@A@@@@@#_732M접 #_74'`o@B@@@W2 Q@@@@#_75@b='@A@@@@@#_762M접 #_77'`o@B@@㠐$@2 Q@@@@#_78'B@#_792M접 'Raxioms%Reals#Coq@@-total_order_T=ҖX#_80'`o@BGI@@P2 Q@@@@#_833@[N$@A@@@@u@#_842M접 #_85'`o@Cprt@?BE@G2 Q@@@@#_86a@R @A@@@@@#_872M접 #_88'`o@C@mps@E2 Q@@@@#_89@PzU@A@@@@@#_902M접 #_91'`o@B̠@@@E2 Q@@@@#_92@Pz7@A@@@@@#_932M접 #_94'`o@B@@@I2 Q@@@@#_95@T*@A@@@@!@#_962M접 #_97'`o@C)nat_scope@@e/@(2 Q@@@@#_98 @3 @A@@@@O@#_992M접 $_100'`o@EJLN@@@!be@-2 Q@@@@$_101C@8Z@A@@@@@$_1022M접 $_103'`o@B@@L@2 Q@@@@$_104k@.3@A@@@@@$_1052M접 $_106'`o@B@ux@2 Q@@A@$_107@@A@@@@@$_1082M접 $_109'`o@CѠ'Z_scope@@.'@2 Q@@@@$_110@,n1@A@@@@@$_1112M접 $_112'`o@E@@@РӠ֠~@2 Q@@@@$_113@5For@A@@@@:@$_1142M접 $_115'`o@@@@ՠ2 Q@@@@$_116@@Y@A@@@@Y@$_1172M접 $_118'`o@GWY[Z\a@@AAA03A@à2 Q@@@@$_119T@@]@A@@@@@$_1202M접 $_121'`o@G@@AAAmpA@Ƞ2 Q@@@@$_122@VU@A@@@@@$_1232M접 $_124'`o@DΠР@@@㠐@2 Q@@@@$_125@5h,@A@@@@@$_1262M접 $_127'`o@B@@ˠ @2 Q@@A@$_128@$o@A@@@@,@$_1292M접 $_130'`o@B'@@󠐑4@2 Q@@@@$_131@7(@A@@@@T@$_1322M접 $_133'`o@GRTVXW\@@AAAA-A*@2 Q@@@@$_134N@7(@A@@@@@$_1352M접 $_136'`o@G@@@AAAAhf@2 Q@@@@$_137@\~@A@@@@@$_1382M접 $_139'`o@CǠɠ@@@2 Q@@@@$_140@ @A@@@@@$_1412M접 $_142'`o@C@@ Š@n2 Q@@A@$_143@y*r'@A@@@@&@$_1442M접 $_145'`o@E!#%@@@9<@i2 Q@@A@$_152 @t)_@A@@@@\@$_1532M접 $_154'`o@EWY[@@@o@[2 Q@@A@$_164 P@f0Ue@A@@@@@$_1652M접 $_166'`o@E@@@점{~ @V2 Q@@@@$_1675@$_1682M접 $_169'`o@A@@2 Q@@A@$_170 @ 8/;@A@@@@@$_1712M접 $_172'`o@A@@2 Q@@A@$_188 @"we@A@@@@ @$_1892M접 $_190'`o@A@`@2 Q@@A@$_206 @*)D@A@@@@0@$_2072M접 $_208'`o@A+@@ 2 Q@@A@$_212!@0b7@A@@@@T@$_2132M접 $_214'`o@COQ@@ a@2 Q@@A@$_215!?@$0b(@A@@@@@$_2162M접 $_217'`o@C|~@@dg @#2 Q@@A@$_218!l@.'@A@@@@@$_2192M접 $_220'`o@@@@@@x9^XQDŽ@1~DW Y-1@ߑsa]AkՎ @!+$0%WɇL + !P@,Rdefinitions%Reals#Coq@@!RӀA!x!y"H1CB"H2DР&Specif$Init"@'sumbool7̂K@BAAAA@@@@@D!s:@#Rle=!(%Logic@#notШF,@E5VA!r !n  %RIneq_@'Rle_dec3(0Q*PC*Rbasic_funm@$Rmin; 6Ȑ%exp_1Ȑ"H0(Exp_prop~@'exp_posM򀐩@#IZR/r'BinNums'Numbers@!Z7@B @(positive*@C@#Rlt=#A*Rtrigo_def@#exp32!H}@"eq @J@&eq_ind Jtͩ*%y%y,''@)False_induُ@%Falsee@@*Rlt_irreflnQC*@.Rmult_le_reg_l΀Щ@$Rinv8EEmh]Aa@0Rinv_0_lt_compatDT>~͠ @%Rmult׀")Щ$ !@1Rplus_lt_0_compat-P@"R1Ȁ"@%IPR_2ū@'Rlt_0_14C&DiscrR,@)Rlt_R0_R2Al@(eq_ind_r!2#;*<6/8{B:PWE 6?8KCE>[bP S̷TENk$Zm @.Rmult_eq_reg_lAݐC}lo@%Rplus+1vx"pF|ҷ$}А+ M-ʰ2A/@*Rinv_r_sym9lU䀠>욠@%exp_0[x-@$Ropp΀'Raxioms@+Rplus_opp_r {G&L1@(exp_plus r5@^TɩVi @)exist_exp$Z#]@#sig#* @ȷ!l˩@&exp_in8Հn|BBB@@@@D̩@)proj1_sigY淐!e1)AltSeries@6alternated_series_ineq 3!i)Datatypes@#nat@`@#INRr)Factorial%Arith @$fact>B#A@'SeqProp@-Un_decreasing"?‐3@'Rseries*@%Un_cvɀ>@ !NA*Rfunctions:@(sum_f_R0YcX@&tg_alt d"* @#andЖw@@#Nat6@#mul LNN*,$tkmh_t%Rprodv@-INR_fact_lt_06cZxz/O{x} Df,DdIk#3KkPr>< 'Vv ]'W@&le_INR逰J@'fact_le+4/mO(PeanoNatn@.le_succ_diag_rMŠHq@)Rmult_1_r+1+w@*Rinv_l_sym9`g~l@.INR_fact_neq_0,oA?@+Rmult_assoc&{y{kH@*Rmult_comm8l$rgwC}@1cv_speed_pow_fact=xՠ @$Rdiv̀(Rpow_def @#pow#׀h#eps@#Rgt=<t@&ex_ind 5{-./@%Peano@"ge Uw@&R_dist:5%쩛@"ex @OPQ@"a"x0[8.Aa#bc@4GEh"H3;MȐ"H46lmogpk_Cy+!z|& ~0v2@)Rmult_1_l99JN@$pow1#ItCѰTA}"=󠩚,@$Rabs; w@&Rminus&HH7RC^_VC4{W@ékȷɶfʶ@ ҩ 'y|շzطٶvڶ@0Jz}wz'PartSum@&sum_eqcǀ+˷@"le UxT@ة6<-/>VǠKYXŠ7VCؠ̠Π Ԡ֠@'and_ind14ۀߠ Ƿʷ$_tmp Ȑ(list_hyp.@$list]@A6@$prodt@,Ring_polynom+setoid_ring7@%PExprk@Ȑ+field_lemma@3RField_field_lemma1(Mk(Ring_tac@0ring_subst_niter!5[,Field_theory'@%FExprs@E% ')G.C3穜I8 :<> @BDFB#N%PR9T;V=X?Z,,,,'\.^a@$Truey@A#lmpfnz@#Monf@@#Polj@|@@.mk_monpol_list(9&BinInt&ZArith7@#add1P&)BinIntDef=@ ̀@|1P] @} @#sub1P@ p@#opp1P@ {%Zbool @(Zeq_bool0߀)@'quotrem\#@/ŀ$nfe1@&linear@@E @%Fnormw$^|C3.("$nfe2@R $fK;60*v@W@$boolZ'@@#Peqj*:@*norm_subst7:d0}bRMGA9ީG쩚@#num:u@%denum0"0wgb\VN .A@@%PCondS<MD V&BinNat&NArithO @&to_nat`)BinNatDef&@*9GUf@#appʀ0@)condition.*,Vp@&FEeval>@wnu5)n@y pw7+p Ȑ#resXȐ&res_eq-@ǰ۩(Eo1Ȑ$res0AM[CR W zBn0qs" vk{Ȑ'res_eq0,`@Ȑ$res1/y,Ȑ'res_eq1@e yqn=@i@-RField_lemma55vupkl$lock)̷(lock_def85Xp?AW 7FC<>ayHJ`:@ϐ@$Fapp{F@&Fcons2w$Lj1!ũ,N@"   *\#%$АICL+clA0hC!Eܩ*GIaD@'IZR_neq%IMɩP`@@AA@AA@@@@@@D!zF{@@CUN}PmtYvZSݩU^{֐]l[m*Ranalysis4p@-derivable_exp5<*Ranalysis1y@)derivable$"n#MVT@3positive_derivativeuۀ7@穚@)derive_pt$FnB!@1strict_increasing/ z/JQc@&eq_sym XV-.5@.derive_pt_eq_0J^57@4derivable_pt_lim_exp(]2:=B/loŷƷ $ JР@"or @BAAAA@@@@@D@74!ũ9=@,Rtotal_order%w@o!@2ةN;0U{KYO/_& 쩚&Rpower @.exp_increasingOCoC8iϩw@)Rlt_transC ' ː$kX@.Rplus_lt_reg_l5=Ӏqj1àu4Ƞ @(MVT_cor1"'C!cFJEҩ< 9YZ^b̩XàEàIŠ4 @mY]ЩrӠzl^ `ڠ(ѩ2ڠeܠg.ޠY4]n*BwyF]x(*<C0t2LnL X<> XzRX _O#  #(ŷgTV?Bqʩ'^1O Ǡ өeg:P2ة5 2ݩ:q= ݠB`FIiM@1Rmult_lt_compat_l`Rp2eWTЩ]X__"H5etg!h>jCllinp@)Rplus_0_l 6ʀ D@+Rplus_opp_l73~@+Rplus_assoc ҩ@)Rplus_0_rH€@&Ropp_0 GU`Ƞ  ˠ}@*Rplus_commq2D 5Ȑ!f;J4>MMө@,Rlt_le_trans9=@&IZR_ltNΩԠf@*comparison;f@@'compare3x@]=RX:pq8Ԡ"˩@.Rplus_le_reg_l -<]ݠ_ԩJa(H20rȐ(hyp_listfFȐ'fv_list<6K62@2RField_ring_lemma1!7FA}cEZhD_mFd @jĩ0l ]X 0n"_Zn+D8/^~cn6cKW'%C).M@0continuity_minus EG Yũ Z ?Mڰ Ƿ h۠ N UW i NN %( [  O/ X!t !akBBB@@@@D@uw E    ǩ3   ʷ{ ˩  ͐QO x"H7  թ2` , ط ٩  ېR]  ~@4Rminus_diag_uniq_sym  cccc   -       ͷ   _ 5   <  { #Hle @*ln_exists1J  $Hnle  #      G     ֠         ݠ  ' w   `    @*Rnot_le_lt.J   ϩ  W(     q /   v k 2 ߷ ! 3 f    d bC   , : M@ { = >  @ S(o  E F  H [ʩ K L  N  A P!p ( U V  X2٩ @ЩZ  , b Z \ yY·  h  j  b d" Y   t   u  w o- # E {  } u '  İ 6 z . P  ~" - 2  ϰ A 7    # y; ;  ذ J * B d   B  ߰ Q 1  k   m = ? O A ؐC    " 0P˰IR K4  -RY        i  C  _ C  ǩ n$ pn n@ 'Rmult_integral_contrapositive_currified ms 1 ,q   0z     3   C  @1Rinv_neq_0_compat1j.C  +  ?   3 'Tactics @+decide_left:׀{ @'Rlt_dec4  ̩ ʠ  G  V   Ԡ~ ː  \@#Rln5hꀐ @'posreal̠@Al u  f 署@)ln_exists 瀠 @#pos=D.  ܩ @(cond_pos 1y  x : ;  =) " '  o   E F  H4  4 ͩ  N  B ~ }@@@@@ $  Y  Z  \3H  A  `  b@  I   e#Hex" j  C  l _@ WC  q k@"ln5hPH ` _ m | k } ĩ °  @ o i} h o 1 = n   4   9 9 w  հ  H @ ˷@ ڰ  E y B  D      G   L L   Ӡ  J ]      1 /   2 8      l    b  C x z   ?  cc    4 k ĩ   p | ې~   " t ͩ   P    J D } ? =B*K) }  ַ  ׷ [ ^@*exp_lt_inv.g‰mnl   ŷ   B  8    ӷ   I    ?@&exp_lnK1v ߩ O       @'exp_inv#?񀰩   Z E  x   Q   f   h   W   k   m멚@&ln_exp>      !  " i   GF b ) z1  -  i 0I  1   . X  ? H - < + =  ·#H'0  Ddc{@pWr 3 j  9] 3G@-ln_increasing'R   7  #- =  [,  ]   * G ,,   e     L @۩ Uj  Z  [ U" (  T  Р@ Z  xk ! z נ & &! ] ٠##  İ \ݩ  w  u       O i [   ;  ذ  琩%  I E g  E    J y n   L     © t   R     & #© (à( W@1Rmult_lt_0_compat=    f 0   ·  ưR   +W   s ̩   x  3  ө d } ֩  ة  c      ܩ    _ W p 7 3@(exp_Roppa x ;''  D   9 &  $Heps  ~ 4  g   Y  V   y j ] {D  a   @.Rmult_lt_reg_l>e _ s   M  e     v ũ #   !   } s  ө , ѩ  )   *2  ,     . %1  `3 )5%  (       >#alp A  , 5&Rlimit E@$Base /h @%R_met Րs@ &Rderiv W@#D_x> H R a    @$dist 3^   P Ǡ  I  i Ω Ԡ]  m ҩ ؠ  ʐ c 4A j ٶ u@@ <1)c 3 栩(? 7g ! k [  o   萩 j 9P++Q @&P_Rmin  62 6 K $ 8 w  & U   Z B +! 8,  p*  ^(' h c " y {! @     0   7 t o    Y BV   s ̩ )   w _ H % J -[ t[ *]  ] ~ ש 4  kDF aU  S@ I QP $  [ tkm   _   D : N    ~u DĐwCo   y o S ` [nF@  *  ^ k f  0   4 l   8 p ( n { v6  d@ Ҡ ݐ c! $ @      "    '       ɐ A 萷  ک E&@     ࠩ F   ̩ K  Щ    '] U r b d \  h ` b !m o  q r t l    S 3ڰz  ! +&b S ݵ@ ° k   ש f A  a0 C         4/ ^ C 㵷 Ͱ  ҩ \ 8  CN 5 5I K7  ۰ P$Hxyy    G  I- t <49 PY ^ CD  Jf S m<  : ' ) p:9 zu4 1 H  2 @  .  ,    0 .L        0 0N        0@'ln_Rinv5C36p ݠ B9@'ln_mult5F߀ I@  3 R{6. ө BX e ~N5@*_7.J; f s :$8c2#Hxy  }yQ@.Ropp_lt_cancel#m u '( sթR ! 0!1 ߩ.\ *l; d<6S#;j n l  '  N P  8 )   9   1;  @ I    D  y ?0 !     { s   A0 #     } u  #g_ ʠ4 &og1 Ҡ@tѠT ܐ%H~ ᐩ  B*ǰ/ b B   2 <7s Mp OtĠ Q  @ذ     | W  w0 Y        JE y0 [       LG [ 2@)Rabs_left)a퀠%G@)Rlt_minus u l@pW  3>^cU 7#tXP )DàU .H 4 tf@&Rmin_rbj=ԠƩ/өҩ,   Hͩ@/Ropp_involutive"2O*~lP  9u#w1 )^~,e 1 =1c @$ln_15t7ր J@ ?[ B>  D@x *Rɠ  #$ "֩?S01 &Z78=_<=d @'Rabs_R00T8=N@&Rinv_r ;:թRU#C ZB?$Zeg(^g_ Z#l0f igĠa F pe/  M - ԰t ְv  '"^ O 8ީٰ :_ ٩ <$ ޵ @ð l   ة g B  b0 D       50 d0 F       72  F̰L + #̷:'CfDI  | \   L VQ g   @      m թ 0 o#       `[  oE@*Rabs_right |Tǰ  `@)Rgt_minusBM Y,G̩ 4 /;xѩ.}ˠV 7)Roՠ$ @2![) =v@&Rmin_l| Sz!ͩ=ϩ:  L֩B0@#Rge=-@&Rgt_ge 7؀4 o طvL[2C)-tjCې@,Metric_SpaceC@A*+,   @*R_dist_pos {d@*R_dist_sym W@+R_dist_refl.@*R_dist_tri 7@P   CC@+continue_in 7ETCU V#Y렩SENUEP`bZ^IbT8nfÐuw!y ʐ""t p!@2Rmult_plus_distr_r~nlwCʰ @ ~mr8- a GdD  !  e     W !  a\  rZ  t  v  x   @      ~ ة 0 4       ql 0 6       sn Ʃ't0(tͩP ɠFK3͠Ϡf,CC"XZ<[D B1phYG~@)Rmult_0_l+€C;qQtE2G$CL 򐑷@'nat_indJ @L]#jW @(Rpower_OzUC+@_5C-@ar0/+"n1BB@@A@A@@@@DJ@,5D@xG/SK,ŷ"n0WᠩN W˩J:L<7,JY']C^`ؠJ  Z@(Rpower_1z7`^QClbdT;"wbq@t\scqam|Iwip |.˰3sux Zx :װA7cAްH>4! @+Rpower_plusN$($CPjCQ@@1"\ g% ൩ c@1Rmult_lt_compat_r ?rٷr˩(w~H|%yC,IJַ  @&ln_inv>nЩV ѩ&R_sqrt@$sqrt E؀еm {CKF@*sqrt_lt_R0zKЩ  S3[   B#g%ѵd+#MM.r0( ) +"   9&  !     ~@0+`&0snhbZ(0 upjd\  2l@)sqrt_sqrt9 UCVNxPzC\@<Ԡ~f V@*Rpower_pow*vCàPg  XSC d@&Rinv_l($}@)not_0_INR#rT°fl"J*z0@ 2n2 /CH t @+Rpower_mult ʀ{ٰ ;ް퐩-ũ7VC@')F3 ɩN DCƩȩUηϩѩ4ˠb}֩YҠ i~@9Ropp_mult_distr_l_reverse/MvC(^ b@ "Hx u9$Habs;O 5R-CȐ"z0@$intP"@&Z_spec(@@AABBABB@@@@@@@@@@D ڷ ͩ1b @'powerRZI ˩԰Ep01u3ٷAS~驚v@&of_natbzp@1?G!é~E= GIĐةPȠO: Uΐ?Y[ Ԡ^֠ @+INR_IZR_INZ#]KM!N H 1@+pow_powerRZVJy2!:Bxې%"{}]ک4%L&,ɰ 1Si C43а8G\, Q>۰ ICIpaN ˩!h]GXMEC$t@+powerRZ_invq3cV]Xa~@+powerRZ_negq9 5aG @+Rpower_Ropp.3f>i@'opp_IZRwзuѷ!mԷZ  @6 ]U@W ݩX ) @  Rbd  O 7   @)Rpower_lt ހ gǠz_=BfO !!#V6ةL-۠ _ q㠩o̩sw&|'z# ./@(Rle_refl  / թ : ?I-C  $913 3.))GHB;  s@,Rle_lt_trans*GӀa N@(exp_le_3c(^VA bp0fUgĠua w٩  Bc1e԰irkm5mFԵȩưB EA1.CG E@!g!Dܶ@zݰ>R$@be[c@_+JaYd NeavBBB@@@@D@©y@}I&hwo*l OԷթ@\9{;Ʃ= :% 2@@MکO /@ X\ ` _Ķ@ shjˠӶ@Ϡ x"|թ w  Ķ@ ."x1췐"H6  ~@ pְ!>ڰ  ꐷ {=/ I }KK  R2 U 9 >Z  C@ @)limit1_in8CJHEL ۷i"D1ll^m`o@Ե_s@]5v 8w.bk 6@2ηj~jhɷ@B E;ox C@?K NDx L@琷%alpha/ @O W@S _ bX `@ D [ &SK i@e \ tj r@ V m  ' @ {@!d  @# e |U 6uf | Tz~y|C@xzyڷ۷ǩ"6ܠ ۩ - ׷4  @/Rinv_involutiveCa ʩ '@/Rinv_mult_distr . ' CK  ͩ "HyG @*limit1_ext@Y0t 6  E'&Ʃ Ԡ  e-t ذ  {@z8|:M; R  a A.𐷐#HD1ͷ#HD2 Q9S4TViW  5 _à0fgi|j ;qi֠X,ܠ  H%~°*x$"P .˰ 5 1@0Rminus_eq_contrawŀ  a|ܰ  e@@D@ƩODQFYNCd5173cn@*not_eq_sym6Ԁj_ ֠<(  #!bmu  glCCĩאŠSMǠOU    ҩ @)limit_inv8۝@*limit1_imp@] @#Dgf (U  q pʷ,1@      zs u  ֩    {VQܩA G  %emk3C  @*limit_comp[ˀ$ w *y 99 @+ln_continue='ƀum @0derivable_pt_limy  .uЛ %delta!h9@ )@' ˩Fߠ 7 9S T ?HW@ y Ɛ GːƠfʠ ΠU a?\;s 5t+_hw@/ $ &٠搩, hߠ쐩砩Ωݐ v 2 gx |@N C #EK )a  \  b {^d[r2 "jba;9& ((o98yt30+2. @*(0*H 0,Jکl &1©ީp B">KF栩Jl< N JѰ3Щ  WݩR_; @@T ]j ǐM   ̐RqhԐZ ͩ  m ,**-! C~ 7CC*@- ."1@ک C';@%> ?*3 @   /  C @(limit_in=  FUT r { z | |EC G ~PdL2JCC @$D_inEO } Q_nh@#Dln5h,dxd[{ =|3gp@7 , $&.ᠩ o栩  {/BVfdgb@`@^29 ;^Y/¶@f [ S]c#"P $Wzɶ@@(50Р4bi k5{ݶ@ Y= é?LG  ϩҷ©$ZU޷̠ʠ ǐ   ^>CsnCup#CNN@@~&  2- "j?A")&)@4/ d*0 wrlf^ x P<<V;[Ő`Ġ   ԩ    ِ̠ Ӡ 8|$J@)Rcase_abs7N# $fVT !F;#Hlt ũHЩ| ʠCe  8J C ݩY^ v`      O Ȑ"H8;9&(ȩǠ Rq;:{v ;5- ?0 @,*0,J G0.L n#*C˷?vG  /٩| 1))O !9rp]_(poejb \mĩogC@LcKa%0cH83-'ͩSIt5M(R1w 8::K @*double_var? CJ hڷ#Hgt@4Rplus_lt_le_0_compatm @&Rge_le 6/RC@-Rminus_not_eq. z(©OQ ©99@D?t5:0|vn  `A b c)DĠ ChiƠ nЩsqV tp bC:xVCҠߐڠzޠ /gi "+C_k? {Ѷ}@;u5:;#pCZ <MYNf[0yGRWT@cn_\i^wp?~dxmmC@`{sbj}?>@A=ϷϷҩS;I~׶@}۩ڠ>`?=ɩ㠩GQv̷qR!~˩NhYC@ީ␑E@(D_in_imp7( w m 3,Ds @(D_in_ext7(Ѐ ? " B 'k)! #~ X'2E Է5y7/!1 >&?A9+; g#J?L4N!6')7 +9- @FAv<0~xp >0 zr  Cd\^N `Pb   <I  XXթ ΰZ\Cvn^ b p%@%Dcomp$"t{m֐XypX _{:<<$@?~  : 2E@+Dmult_const%MN@"Dx=cNCF˵36@5derivable_pt_lim_D_in u@#iffС)XE@'no_cond' ) + ж@d    @! m## o%%A \@t**Ҡ*C|22N H-jȷɰ fа޷հ 4 'ް@5derivable_pt_lim_compk2@3derivable_pt_lim_ln$oߩ  9 i;ũm< B#C]  h@qpJ0m]XRLD^x6Ƞ0Y  u<Π6`A5D@5derivable_pt_lim_mult=L-lũ@6derivable_pt_lim_const9A z@3derivable_pt_lim_idsTp@C6y@ pC:XFc|F ~ <C>\J쐑VeTfg۷"y0޵n  suƐoZsyH~U(ŰԐjT qU3а "z@2Rmult_plus_distr_l0ylɀnH|E r/C i   &Coq_Reals_Rpower_Rlt_Rpower_l_subproof"a03 'Coq_Reals_Rpower_Rlt_Rpower_l_subproof0!b"abM z"c0y@}ש% t̷˩ŰǠ~vxw 2z'ڷ%۷#n,Fourier_util'fourier@2Rfourier_not_ge_lt#M瀰Ϸ3new_hyp_for_fourier F45@.Rfourier_le_ltI؀ ީ !@+Rfourier_leS5 (@1Rfourier_ge_to_le1 4/@0Rlt_mult_inv_pos8ş5@*Rlt_zero_1&ր u& "(A@*Rnot_lt_lt;EĀ+1֩/rs/5@&Rinv_1 ;9ۀx6<q89};3=@"R0ǀ֠>@.Bޠ-+ TV /驜F " Dȩ(M+ ͶĶ@yw@zp$3k}@v$9"%@i@7<v2=1vݩ*%ǰ@~E9~ܩ25@K?4 Pi@##ީ UWTD۵@$$> RJ~G٩ְ ѷ˷ȩM]86XcWrөb8#;  ]h"\ U̵Ci<*Bdo)c[@[xaz署@(Rnot_lt0!ɩ$W~[uutMCϷ" ܠ Ҡٰԩ=t v z|34)Է5Tg`^@K@@Q $eJ:5/)@@<k uw Y@oy{+!é@q{}-#r%ni u*eq@  c`[WURoXש8/&7&]84+<+RC<7.?.@O={9QSv=ѠgӠikxCƐ &Coq_Reals_Rpower_Rle_Rpower_l_subproofJ~Ω 'Coq_Reals_Rpower_Rle_Rpower_l_subproof0 'Coq_Reals_Rpower_Rle_Rpower_l_subproof1TUV@ީ]C@`' @Š1h2  7 @Ҡ> U & x@,Rlt_Rpower_l)_a)  fej:.][ߩp gtD@>[fEM pNnS tu$Sg {'%4 ]bg_LJL:MF`PNN>QJdd  q zµȐ+Rminus_eq_0n@>+r<;|w- @)'0)G0+Iةک; q1Iީ"mt㠩Gyש | ֩)Qط7 ~嵩 x E n -  ZΩǩz Ω| ƩKߩJ˰@ K@ )j2_ 5ӰٰҩH@HF@I?$}mhb\(:L@OE$snhb@8@< NE VE P" R T@ VMTh^M X Z>@ \SZndS.ש-I$!@57@Bީϰ:v@112ݰ46O8  @66  3 + _ f d (2ư .>8 }9D8}0SC8  >I =  9CM<  &HS G  { ?@ٰ -;.4IE >L U  =DH ;   e   MT n  }x+ ͩ- t wir/(&@ٶ@ ܩ$ + Is ߶@ $ 1 O @˶@<  7 ZrAC Y % s@  ; ^vEG ]Zu@  = `xGI _\nl>kifb`PI><:@8eZ(KUM7C@       52-)'$ A* v-8! Z }df | f! Wʩi!  Zn*mC<! e  oq  a  @' S!ũ i N! ! Z!  ũ!  ! _!  ʩ!!"o" ЩFH@)sqrt_pow2Om |$ Ʃ  ǩ ;()RealField@'Rlt_0_2+Ӡ2 ;] C !FӐڠI<mᠩI  e!; !!= C !XP@'arcsinh l @$sinhB! &Coq_Reals_Rpower_sinh_arcsinh_subproof!]!l!!4Q!5  'Coq_Reals_Rpower_sinh_arcsinh_subproof0!f!u Ҡo  'Coq_Reals_Rpower_sinh_arcsinh_subproof1!q! ǩ ޠ  ߩ 90 %! 'Coq_Reals_Rpower_sinh_arcsinh_subproof2. 'Coq_Reals_Rpower_sinh_arcsinh_subproof3!!#cmp   5!OŐ 9!UJ!$ ?!ϐ C!T!.! !!!![!O!|Q!!!!ɩ!!"! Y!鐩 ]Š!n!H!y!x!KIED!!uGw>:@!640!6!T ! 0!8!V ! !(!ޠw!#!!!!J!E ! !;@-sqrt_lt_1_altM;+ !w!Ǡ!X!_@&pow_le!Èk!i.&0! "!"!\" }<!!!թ ""!"#!g"%W!ک "'!Է!"(!l"*!!ߩ ",!٩ F3N!(  R@+sqrt_square7}쌀!2!mC!"? a;!!"G iC!"N!! !r 栩N!y@(sqrt_pos "&!"K"" C!! " (!c"N "";"X"@*Rnot_le_gt.뀰"_!"!ש!D"zͷ"""{!"}|"+!Ґ 搩v"o!S"!!ܐ"7"!԰""@"~!b""@"!ݰ""Ȑ3Rmult_minus_distr_rR"""U"b "" ""\"W"mo_@!  uϩ0w" "+h"c 0y""-j"e y""""n"""!#"m$$"g@0Rminus_diag_uniq)6ˠ/ !K"!"ԩ5!Πɩ!Р ˷""۩"";"3.,"߷*"""("&"E"˩" "H3""-"L ""CfdQ"" +ba""٩RT[W3@"<S;Q0"S"q8(#" *"""#"##@!"G#fh"""^""!".!"" "' "!Щ" {" Ȑ)pow2_sqrt# "g!#$D"#%"i#'""#!#+#"#,"p#."#!#0#٩ b5C"v#4##&#5@Ȑ$hypsȐ%hyps'Ȑ'hyps_eq@Ȑ*f_rw_lemma"@3RField_field_lemma2(Ml#2#L#Nn!⠩ J "#:""fe#nfed@"g]$ ""z#H# @<#e""!"\!#"!m \ǰ#gjɰ#i! er!""#q@#s""""j! q"1"!{% jհ#uװ#w"  s!"$#^ @2display_pow_linear"O܀P#""""{! B"""!6 {+InitialRingM@)get_signZ#7j0L"#=#C`"m0O"#@#F\% SlU RW TpY.@"$_"#6a8cLe<g%E#S Ȑ#thm# ##X@L"#A@## #,"D" " "q#+!e @6 "# "K" *!^ ᐩ"U#>!d#>#m#Ʃ# ##r"" "^*"b ʠ0!s#M"̠" QO88= p-+@##$#7#U xBzre# Ȑ$thm0  ##@<##G#j"" Q"S#i! S#FU#" N!#t*#?#@##U#x"" _"a ##w" a$Qc$#" Y!#&P$ #a#"# k"m! #_#}##"! 0#a#F61+% 60#c#H83-' 8~'"$!#$#Y$!""~!D!!A"#!##ϵ"$("!"_!##$-#q$/!."à##   $9^## ө"@PN@#QG$ ##upjd#BT@#WM$ ##{vpj#@@@<$V##"#M "  #"^!M$XY #$[@$]##"#T "![#o #"e!T$_Z '@$b##"#Y "!`#t #"j!Yݩ %а ' )  +ְ -̩Ѱ <x@++ 4}@**! $/$'$[$b$`$$&#°$*:8$####y "5 @#"4!y%#O?8$#$##~ ": E#"9!~$[ 1CE<$#$## "@ K$"?!$s$7@!i"0k$5@4Rplus_le_le_0_compat 9p$#g$з$E$$e##$L$D@)Rle_0_sqr!#$#!C$r$)$$(#C#$!#E#*$0###M.##Ґ$k$mǩa $$v8$$$$G#_#!.#0 $F"!ũ0$2$C y#8$$-$P#h#!7#9 $O"!Ω9$;$  $@  2$@*Rgt_not_eq3ڀ#z$@C<$$C$f#~#!M#O $e"!$$@$Ԑ +C#頩##b6!X#f$$7 o0.+$H1$8%$^$##!h#j $#!j% ul% K #:8%$g$#$!q#s $#"s%ou%G 3 vC<%$n$#$!x#z $# "j$$@$0 +n;$ti%$T$Ͱ]TC$h%&!\%$~8}$ԩ${#IC$r%0ѐ#$ݐ%&%5Z@2Rfourier_not_le_gt#>݀#Р%&`#Ԡ$([%   $$Z $CU#ߠ%7o#$7y[U]$I%;I$##=#$Wi#%D#$K# $$>7$%m$Q%%n$%p5!Ѡ$}$l.$%-$ "t%3#$b$ !_!]!=!:!8!3%%;%!/%22/!H!/!J!!!L,h!3!N   @ Զ  @#  @$ڰ  $!X$%      %D@ @ V<%$%$/$!$ Q!\%# P" %  %$6$!M H$% 8@%%%#$;$" $ "$!h%"# \" % %ΐ$B$!Y\ B@%% %-$E$"$"$!r%,# f" , ; 9!  8 6 3 /'  %G  /!y!{ x x    @))"b %v%n%%%%k%% %q 8%%%B$Z$")$+ |!%A# {"$ 8%%$%G$_$".$0 !%F# "ũ 0%# 2%ҩ$f$!}!7C <%%/%R$j$"9$; !%Q# "  +%%@%%%("<v%%,&#"@$s $۠$w%${"%#$ѩ$ %%%$CD%%%@2Rfourier_not_gt_le#߽"%%"@.Rfourier_lt_leK` $.%+@+Rfourier_ltSD2@1Rfourier_gt_to_ltvڀ% % %s$$$BB$%*&%%%_&&% %&'%k&)"$66$%'""!!!!%ߩܰ!!ܰ!66!ް!!а!۩!!!!@!!K!I@Ҷ!9!K@%!N!D$"%%!!r!m!g!a%@!7@8%&M6 @&O%%$%F"$#M%a" %$W!#F  !    !Y   """  !a  @7b&%&^"FB%&b"àJ$%^pBA&&%%% $C&]&l%쵩3%%%Z< %& %u%$䐩%%m NP&7&s%꠩%!%%%%y%+%%/%%5%%%9ϩ% &1&2y%&%&W&%&w#%F%pؐ%Lq%%N%x%R{ %|{""""~"|"w!*&!,&"s&vvs"ͩ"s""e"p"w"pl"4"-"+@"!!޶@g!!@&!!$"&2&P"""!!&@!̶@!<&&8&[%s%#B%D!"&Z$!#٩!D&%x#$%Ω!L& "!&2&!@&&H&k%%#R%T#&"&j$!#!T&%#%]$%ߩ!]&"!@'&W&z%%#a%c#&"&y% !#5!!"X!!!!|t" !Tr!O!|"Ʃg"ns"e!i!^"!N!Z@44# &&&&&&!L!I0!D!@!>!;&X!A&!8'&n&%&#x%z!"&% !$&%!F!8'&s&%&#}%!"&%%!$!'?%$%$& !'(H"!H"C!<'-&&%&$#%!"&%5!$$!'&@!E 3&ש&q'/|#&l'3zw#%Ǡ]&/ AY%͠&!%Ϡ&7 I%Ӡ &; M&&&mC'8'G kө%ܠ&0 cU&& S [ N& I'&O a&Q c̩ ~@*Rnot_le_le;Ѐ&Z lݩ&\ n&& ; 4&'j&N''k&'m&e% u'#Ѡ&j ,1&l .;#U#S#3#0#.#)'$##:F##  $#=##? e#AF[##C ##*#E#"""޶@"˶""@&ϰ""$#M&'"""""'9""@&հ""$#S&'"""""'?@"@"Q<'&'&*&#%"L#W'%"K$!'#B"=&߰'"-@'&'&0&#&$&#]'%"Q$ %"/@'&'&2&$&$&#_'%"S$ $"("&""%"#" ""#d"#("!"!!@!" #j #lM#nJ#p""""!"@##$W 'k'c''''`!!!!!!&!'f"v8'''7&O&$& "q#|'6%"p$ =&!!ߵ#"C"|<'''=&U&$$&&"w#'<%"v$ ;"''n@! 'n''Ʃ&Y Ω$)fh'''t'ͩ'= @3Rlt_not_le_frac_opp>v&& ʩ$7&Р &Ҡ 9''' Cg''޷'r  '*'+ϩ '.'/  '' C{ 2Coq_Reals_Rpower_derivable_pt_lim_arcsinh_subproof 3Coq_Reals_Rpower_derivable_pt_lim_arcsinh_subproof0 3Coq_Reals_Rpower_derivable_pt_lim_arcsinh_subproof1x 3Coq_Reals_Rpower_derivable_pt_lim_arcsinh_subproof2 3Coq_Reals_Rpower_derivable_pt_lim_arcsinh_subproof3'\'W'z'('J'LK'G'7'E'O | ''k''@4Rplus_le_lt_0_compat&_a'&(''('ߠ'p x(C''sj('z'un( ( ## #'( "#"####"" #"j@'s###r####L#0#''#o#_#Z#T#N#F#'#0#''#q#a#\#V#P#H#'"C'|(:'2"+($&Π'6H''{(B':"3(%'(E'(G'?'\&ݠ'm&f'ʩ&'̩'K'h'O"H ('l(G$;$9$$$$"°(b( A$"> $ $$##$&#$(#$*# $$,# #ζ##Ŷ@##z#x@'#{#q$$4''#####( #l#~@'##w$$:''#####(&@#j@#8<(''''w$&#3$>'&#2%w"( #$'ư(#@(''''}$&%'$D'&#8%}"( &#@('(''$&%'$H(&#<%&##### # ##$MJ"$\"#""@!!"ݩ# $TQ"$cr"#"ڵ"@""%= (Q(I(}(((F"ة"հ"з""ʷ"ǩ'"(L#\8('('5'%'#W$b(&#V%'q"ҩ#a8('("':'% ' #\$g(!&#[%# ( """ש(Wΰ(0C#m<(( (.'F'%'#h$s(-&#g% &((_@"ͩ'(%'K('M(6''Ґ'"'(ũ%Ġ'Y|(v|(q(ʩ((̩'Ġ'ᐩ'b('fZ(O(''}'Ҡ((ީ'֠'ؠ((('(('ݠ'((b(((.('(%' (  $$$$$$#X(& ($$$$$$$  $$_$X$V@$C$ $ @(G$ $$$([(y$@$0$+$%$(#$@(M$$$$(a($F$6$1$+$%(@#@#<)(g('(%q's#$('#&#(U)#@)(k('( %u'w&('$('#& l#@)(m('(%w'y&()$('#&n##$n####$!#j#h@#f#$  $&#a#m@% (()) ) (#_#\#W#S#Q#N(k#T('#W#8).(('(%%'#$('6#&%#)0; P>(C>C#<)7(('(.%'#$('?#&. )(@#OWX()(3c&[z'Ѡ((9(;#4(('נ(?Q&A),'6((()M(E'(ʩ(I(f(M#F(j()[(SI'(ة(W) )b@)V)e)) d)[)j)K V"@5derivable_pt_lim_plus; Ϸ)c)r)S( "t p)g)v)W1 )j)y )Z2(ϩ#@4derivable_pt_lim_pow$Zއ 3(e)b(Sqrt_reg)@5derivable_pt_lim_sqrt Ȏ{)q )u()9Cm8);(  Z({  ](~) )! ( a  ( c)J )g( ( ʩI ),)- { t()()R)()@& ( i(%%%n%k%i%d%\)_; \%u %L%w W%I%%%@$$$ö@2$$Ŷ@)$ȩ$$%))5$$$$$)m@$@$) )ǩ$W@)))B(Z(&)(+&(%)A'${&%pO$Y@))!)D(\(&+(-&(%)C'$}&%r$R$P%"$O$M$J$F*$$'D$,$$$@$ )|))&5 4))  )))pCn $Coq_Reals_Rpower_arcsinh_lt_subproof))ߩ)))))㷐"xy#x)ŷ))))ԩ&x))M") #abs^@)")W# )@*Rlt_not_le))))?*)* )!)E* **)֠)#H@#=)r*%)[*,')!)Ǡ"lt  #@'sinh_lt5Ͳ 8.)Է!q(*/3)*0)өӐ#)#;D)*#.@,sinh_arcsinhwe#=*$&ǀ S*1*@N Z'-e))?Щ_ S<) A))G Y 3)K ]O)) * #)*Y)=**Z)*\ !&)V E&?&=&&&&$ư*fK& *  &&  %ȶ%%@%%t%r@ %b%t@)%w%m$&0))%%%%% *@%`@%.<*v))))m&(%)&4)(~%('m$ذ*x  "&"%)*}% @*))))v&('})&=)(%1'v$* " +G&+ .%@*))))}&(')&D)(%8'} % % %% %%% %$  $ k%$͵$@'0 *D*<*p*w*u*9$˩$Ȱ$÷$$$)װ$*?%O8*)*)()&(%J&U*(%I')d$ũ%T8*)*)-)&(%O&Z*(%N'$* ? HA&H$&C%\<*)*)5)')%W&b*(%V'$**N@$ *N)* 'UU)*   ' ) *X*X) Cϐ****)*z' #@###۩**c#!7Щ#@*arcsinh_lt0b7=#xqy#)****ɩ*٩**v)**'*y*ҩ**ԩa)h*.*.)*ک)nѩ)**X***$*o **:)**_ک)**>۩*c@&sqrt_1:6"*i)*G"ސ'*K((@+pow_ne_zerog(*D*~*'$CwC*C+ )m*X =-(ڤ