"`ꄕiy'Rminmax%Reals#Coq@()Notations$Init#Coq@%Logic$Init#Coq@*Logic_Type$Init#Coq@)Datatypes$Init#Coq@&Specif$Init#Coq@%Peano$Init#Coq@"Wf$Init#Coq@'Tactics$Init#Coq@%Tauto$Init#Coq@'Prelude$Init#Coq@)Notations$Init#Coq@0&v!D]hwnv %Logic$Init#Coq@0\͉!Ig)Datatypes$Init#Coq@0.i bYN Z*Logic_Type$Init#Coq@0 1jc6&Specif$Init#Coq@0;RWMi\N'Decimal$Init#Coq@0C涳N*ua#Nat$Init#Coq@0eʤģPSR蠠%Peano$Init#Coq@0 jha|ؠ"Wf$Init#Coq@0q+W,J+'Tactics$Init#Coq@0/9m+ a%Tauto$Init#Coq@0̂"&/rk0JqTttֱ4Relation_Definitions)Relations#Coq@0]4Ѐd{n^2Relation_Operators)Relations#Coq@0%s鯰s4Operators_Properties)Relations#Coq@0U3y#h&)Relations#Coq@0u%+Equivalence'Classes#Coq@07;ꮹ-SetoidTactics'Classes#Coq@0S_`nOU$&Setoid'Setoids#Coq@0D9AsWE!>$Bool#Coq@0j 2cZ`FW*Equalities*Structures#Coq@0όe얟)H.Ƞ&Orders*Structures#Coq@0$Znl0\͗'BinNums'Numbers#Coq@0dmk(5Ju<*EqdepFacts%Logic#Coq@0FI$ͼՋ`)Eqdep_dec%Logic#Coq@0u wWIϰ߼)OrdersTac*Structures#Coq@05'4Ԗ+9%+OrdersFacts*Structures#Coq@05Mܿ獐ζΖLB-GenericMinMax*Structures#Coq@0måj$*NumPrelude'Numbers#Coq@05WUVŦ]xVXԠ(NZAxioms&NatInt'Numbers#Coq@0] ρ5r&NZBase&NatInt'Numbers#Coq@0^&8yUL%NZAdd&NatInt'Numbers#Coq@00h`ZK4%NZMul&NatInt'Numbers#Coq@0ctR~6[Ƞ)Decidable%Logic#Coq@0ND걸풬/Oߠ'NZOrder&NatInt'Numbers#Coq@0 q;Ve7R W,*NZAddOrder&NatInt'Numbers#Coq@0e~1>r砠*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ&NZSqrt&NatInt'Numbers#Coq@0` .%m%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|&NZBits&NatInt'Numbers#Coq@0MlIpKt'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$&NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ)NMulOrder(Abstract'Natural'Numbers#Coq@04> Aat/ j $NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ'NMaxMin(Abstract'Natural'Numbers#Coq@0]v|Qg̟ʠ'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NLog(Abstract'Natural'Numbers#Coq@0KI'BinList+setoid_ring#Coq@0Au,Ring_polynom+setoid_ring#Coq@0gaKw9`UW+ListTactics%Lists#Coq@0,Jcy{+InitialRing+setoid_ring#Coq@0k/T=cN(Ring_tac+setoid_ring#Coq@0x2]%762f)Ring_base+setoid_ring#Coq@0fbU(2cNe$Ring+setoid_ring#Coq@0Msᬠ)ArithRing+setoid_ring#Coq@0ṔCgt?}%Arith#Coq@0I|кX*o4#Max%Arith#Coq@04=;3$>aU堠#Min%Arith#Coq@0Ce-Fѕ(PreOmega%omega#Coq@0\|چBb~w4%Omega%omega#Coq@0t.J'6\ϨrK(Zpow_def&ZArith#Coq@0f蓜DX;V*ZArithRing+setoid_ring#Coq@0{#'[{nm!/,Zcomplements&ZArith#Coq@0ʾq %RIneq%Reals#Coq@0JUڻIu)$w&DiscrR%Reals#Coq@0z41pV.%Rbase%Reals#Coq@0Jܡ\ c6{%R_Ifp%Reals#Coq@0c4+ZŠ,Fourier_util'fourier#Coq@0ϳ> 4`*r0'Fourier'fourier#Coq@0wV9TN*Rbasic_fun%Reals#Coq@0hܒiclE>,ROrderedType%Reals#Coq@0}q1MIX'tI`o/cqQР'Rminmax%Reals#Coq@A&Rmax_l @@@!x,Rdefinitions%Reals#Coq@@!RӀ!y@@#Rle=AB%Logic$Init#Coq@@"eq @,RdefinitionsBA@@!RӀ*Rbasic_fun @$Rmax; UC%@@@@@AA@@>@,Field_theory+setoid_ring#Coq@@&FEeval>@@A@A"s @,Ring_polynom+setoid_ring#Coq@@&PEeval"s @@A@BA@A@&Rmax_r @@xAhX[i@XTUSH>X@@@@@3&Rmin_l @@Bor@oklj_U@$Rmin; RQ@@@@@P&Rmin_r @@C@|@@@@@g*RHasMinMaxA#max @@!x,Rdefinitions%Reals#Coq@@!RӀ!y@@@@@#min @P@#"&([@@@@@%max_l @ @ր@@@@@@%max_r @@܀@@@@@@̠%min_l @$@@@@@@@ݠ%min_r @5@@@@@@@@@@@@@@DA"OTA!t @N!O-GenericMinMax*Structures#Coq@@T@@O!M   @j@@?_.@@#max?_.d0@A@?_.@ @#min?_.d@A@AB@A@@N",ROrderedType%Reals#Coq@'R_as_OT@@~2@,ROrderedType%Reals#Coq@@'eq_refl~2 'R_as_DT@`@A@ϒ@@!tϒJ,Rdefinitions@@!RӀ@A@ABϚ2@@"eqϚ2"(R_as_UBE@"eq+@A@Ϛ@8@"leϚh@#Rle=@A@Ϛ@C@"ltϚh$@#Rlt=@A@AB)t@>@#eqb)t6@@A@CD$m@C@&eq_dec$m;@#ћ@A@$@J@&eq_sym$B@#Ѳ@A@$@P@&eqb_eq$ϑ1@&eqb_eq @A@AB%4@V@(eq_equiv%4N@$@A@%@\@(eq_trans%T@%Ӡ@A@;K@q@'compare;KdhQ@(Rcompare"S/@A@ABCE@A@5UsualMinMaxProperties@A@@ %'A*Equalities@@U!O&Orders*Structures#Coq@@y5<<@@@@p>@@5p>d@@A@AT@@TJ@@A@\%@@"eq\%^%Logic$Init#Coq@@ @@A@A\@@\h@@A@\@ @\h@@A@ABC@A@91OTF_to_TotalOrderP@@@A@@@ %'@M@A@A@@@AA@@A@"eq @%Logic$Init@ @*o@@ʶ@˔Ae@F5C{\2@@@@@((eq_equiv @+@ +q" @/RelationClasses'Classes2@+Equivalence~@9@(eq_equivݣ:$\@@@A݋X_A@A@@V"lt @Y@ \P:@@@L@5D@ZDŠ|@@@@@AA@@A@+lt_strorder @x@ soY@M@+StrictOrder.[@<@*☔iˠ@@E@@%)lt_compat @@ )#p{@)Morphismsn@&ProperL@a@b @*respectful%WO?i@jl np@#iffС)Q @0X%#@@@AviA)@A@@b'compare @@ p>Π9@@@)Datatypes@*comparison;f@6@TߏѠˠL-@@@@@,compare_spec @@ †ݠ^@!x!y*@+CompareSpec!Q]@ ȐBA}g@,compare_spec#8u~_5@@@@@&eq_dec @.@ *``%@20쩛&Specif1@'sumbool7̂K@<10=@#notШE:9@)xE/g@@@@@] @_@\V@@@@R@ 5D1`Jˠ@@@@@'le_lteq @{@ r'r\@8}9ʠ#q@"or @!zG~@'le_lteq4Yuנ@@@@@1(lt_total @@@T@@@@!@#X%@A@A 6@@ 6@x@A@ H/@@{ H/ @}ݣ@A@A!F]@@+!F]d݀@A@B' @@' @#8u@A@/I @@^/I @`*☔@A@ACD8F@@>8F@@4Y@A@:cl@@:clȠJ*@A@A:ctD@@ :ctD^̀@A@B:ct@@:cth@A@:ct@@:ct̠h@A@ACE@A@-OTF_LtIsTotal @@@A@@CBy|@@@@@@@@@@@@#@@ @A@A @($@ @Y4@A@ @.*@ J@A@AB @3/@L ^K@A@ @=9@ h@A@A @B>@ h@A@@HD@@#e@A@ABS@MI@S@A@(@RN@(@A@31@WS@31d@A@9]$@]Y@.9]$Ց&@0 0@A@ABCDE@+Private_TacfA'eq_refl @Q;@@KTSW@@@\@Qd@@A@@@O梠d@@A@AB@A@@Joc@@ @@ @r'@A@Az%@ @9z%J@A@@@^@A@AB@@)h-@A@)@@%)h:@A@A@@@)#p@A@R@@qRܑ@s*``@A@ABd@@Xd@Z+q@A@,bͺ@@ ,bͺ@ p>@A@2^@@2^@@A@:e}@@::e}@<s@A@ABCDE@A@ @@"lt\ @@"eq8L@lР@SȠ@@PON@@A@B@A@xA܀D.zuZUNH-@@@@@$%trans @\FǠ rmf`E@F"o'y2w3!z6@6@>M݀Ew@?@>M݀ E@>M݀@)trans_ord-0uGF @@@@AAۀߠK@Aۓό^@_@ABC@@p(eq_trans @9n@\K߀МA-"fW@Q@<@?éOA L+k() LL7#'@$t٠àDy<7* ݠ@@@@@(le_trans @IМCod\WJ/@ Ŷ ƶǶ@~@ L+k() NN7#'AtŠytgLG,' @@@@@(lt_trans @8?6@AМUB0/6 ֠l@IG@=@?< L+k() MM7#'|tQ;gb[U:@@@@@1+le_lt_trans @szq{|x;hgnX٠Ѡ̠@:;<@%u@wt L+k() MN7#'ts8)ڠr@@@@@i+lt_le_trans @2sUF @rs@t@R@_U L+k() NM7#'t,pa$נҠˠŠ@@@@@%eq_lt @j1*TנޠȠI~A</@x@c@吐 L+k() ML7#'%te]XK0+ @@@@@ڠ%lt_eq @#$%jcƠzuhM@*(@@Y" L+k() LM7#'^t3ӠidID=7@@@@@%eq_le @U\S]^ZJIP:@ca@!Y@ Z W L+k() NL7#'tlVנ Ϡʠ}vpU@@@@@L%le_eq @s8)ڠ@UV#W@@@˰\D L+k() LN7#'АtTE۠֠@@@@@&eq_neq @(l] ӠΠǠ@G]@H̶@Mѩ _Q@@@@@&neq_eq @ϠPHC6@H@-r@0uȐ4y@@@@@ՠ*not_neq_eq @ xpk^C>#@?I&߶$@萩ꐩVX!@@@@)not_ge_lt @1ѠgbGB;5@cJJH@ ;@@@ @@)not_gt_le @Q;gb[U:@Kj#h$@,[`@@@@@9)le_neq_lt @q[ܠ ԠϠ {uZ@LCD@-{@NK(@@@@@]@@@@M(max_spec @E6@E!nd!mg%Logic$Init#Coq@@"or @@#andЖw@[BA ⠐BAAuAB BAB@@@ %'A*Equalities*Structures A݋X_A/RelationClasses'Classes#Coq@@A@@AA@@A@+max_spec_le @ݠ^VQD)@F]\©[PBA?Щ .BAA_ABNߩ =BAB@@@@@<1Proper_instance_0 @ , ̠۠}b@ 0G)Morphisms'Classes#Coq@@&ProperL@ @ < @ ?{  C S@#iffС)@@@}AviA)Morphisms'Classes#Coq@@A@@w*max_compat @ g QҠʠŠ@ kH;@ 7@ 8 8 :@ ; ; = ? ? A C @@@A.@Aۓό^0@A@ABC@@+max_unicity @  }B3@ I ` b!p e@􀠩 KCB tAB bBC AC  :@@@@@ޠ/max_unicity_ext @ Π  9}n1,@ J!f "x0  @A @ ?4  ! CA@  - CBa Ķ` Ʃ 7 ȩZ (@@@@@$(max_mono @   àwreJ@ KF@  @쀰@  詚ҠѠ@@*respectful%WO?   d  f A@@      :J I  w  f͐DϐEѐ nJI@@@zA@|A@~Ax@ABC@@p&max_id @ ` J ˠà@ dL -  / AAA@@@@@)max_assoc @ | f +ߠڠ͠@ M I K M  O C BA  CBA@@@AI@AAۀߠKJ@A@A@ABC@@(max_comm @   ^O @ N | ~   ޠBA ⠐AB@@@AC@A@AB@@䠠(le_max_l @ Ԡ  ?t72% @ O> =  B BA@@@@@(le_max_r @  ܠ ]UPC(@ P\ [  A "BA@@@@@ )max_l_iff @   {snaF@ Qz ݶy ߩw@ pС) V  EBAB ԠAB@@@@@H)max_r_iff @ 8 " ؠn@  #@tWVZ߀AΠCBSACAB@@@@@-/min_le_compat_l @ ̠   { n S@!u궐춐@נCB۠/ 1 @@@@@Q/min_le_compat_r @A+      w@Ev@CB" S$ U@@@@@u-min_le_compat @eOР Ƞ à  @iw246F8@!DC@& x(K  թM  @@@@@2min_max_absorption @x=.   ߠ @x[]ΰ_BkBAB@@@AR@A$@A@ABC@@Š2max_min_absorption @ dU @y  B砐BAB@@@Ay@AK@A@ABC@@젠-max_min_distr @ܠƠG|?:-@z F EI CBACBCA@@@ (A@ *A}@ ,A &@ABC@@ -min_max_distr @yql_D@{ x۶ wݶ{ߩPꠐCBBAFCBCA@@@ ZA@ \A@ ^A X@ABC@@ P/max_min_modular @@*v@D|   qCBwCA&}CBCA@@@ A @ A@ A @ABC@@ /min_max_modular @u_$ؠӠƠ@y} B DFHQCBWCA]CBaCA@@@ A G@ A @ A @ABC@@ 0max_min_disassoc @YJ @~ w y {cCޠBA⠩CBA@@@ A v@ A.@ A @ABC@@ 頠0max_min_antimono @٠àDy<7*@ @@ @ŀ"$A@ @Ԁ&Basics'Program @$flip$ζЩAҩ0   @@@ EA @A FA @ HA B@ JA!s̓P&Basics'Program#Coq@@ TA!t Q @ABCD@@ H0min_max_antimono @8"ؠn@<@ j@@ @   $A@ @ 3_!!VYi#h%'0 c d ih@@@ A @A A @ A @ AU@ AM@ABCD@@ ,max_monotone @m2#@A @NN@ X@TT lXX??A[] @"eq @eàˠ@@@ A Z@ A1DH   @@ A1FdJ@ABC@@ Ԡ,min_monotone @Ġ/sd'@B @@ @ AA6ީ8ߩ:@@@ A @ A=@ A8@ABC@@ 4min_max_antimonotone @e]@C )@Ŷ@ π@˩ AԶ֩yک㠩npr@@@@ MA @A NA@ PA@ RAy@ TAt@ABCD@@ F4max_min_antimonotone @6 ֠@7D e@@ @   K  BAVUtRS'XW@@@ A @A A@@ A8@ A@ A@ABCD@@ +Private_DecA/max_case_strong @ ښL@5 !P@ Ⱥhi@@&Compat@@"Hl@#@N=)"Hr@ /Ȑ!c@-CompSpec2Type2K;==@u=)@B@t</FH@@)CompSpecTӊS;RȐ"c0AР@,CompareSpecT, /@CAAAAAA@@@@@@@@D45mIH35M@J󰷐"EQmȐ!H%lemmaYk!%w@9iff_flip_impl_subrelation2VAu^ 0@S%3B9==5@(symmetry0xjv@5Equivalence_Symmetric. U}@*uGOG@%max_rFV7Ð9"LT\FD/A*D)"GThRPjݠm`rsPwg堩i|l]Ly|arzE@|t|@%max_l54s]ޠ@@Mvu"!@A@@LzŠ@T@\BC@A@8UsualMinMaxDecProperties@A@@L M@O@QR@U@@?@@B퐩ې T+k()7!7!7777= gR'>#97!7!7!7!7!7  #7"  7!7777"7777! # '>#97!7!7!7!7!7  #7"  7!7777"7777! # '>"97!7! 7!7! 7!7  "7"  7!7777"7777! # '' +k()7!$'D*@pp<Pࠒ@t<D@t=xX@5H,h@\S%Hؠ4Ġ&@=#(@$\`+@~= 0Р@CAABACAALi@8th@|E@*u@Tx@by@@Ⱥhi@v@A@A@@bA AL-@AB@@ (max_case @@j"@@!X"X0r"X11@+sـ@/2r-3@@,@HF@H=<@'@#g +k()+++7# '''$'[3MinMaxDecProperties@G\WA ٠@@G]\@@@@Y@A@Ǡ@@VǠ@A@AB@A@@FuiȠ@@t<@@t<@A@A5@@<5@A@=#@@=#^@A@A=@ @,=@A@=@@$=@A@ABC@A@2@A@@@j"@x@A@A@zA@A@@ 'max_dec @u@<Vr$u(*+,"H04%36'BAAAA@@@@@D!sŰE-ǰGF˰K4!E A ͩذXW&?@=trans_co_eq_inv_impl_morphism&ni$_$@6Equivalence_TransitiveWdMg,OfN@/eq_proper_proxy)fn`#+B,2!$y>xabb{d ,g@+reflexivity(ϓ/K@5Equivalence_Reflexive977!    7777"777  7777"777 9'>977!    7777"777  7777"777 9'' +k7!7!7%' 7! 7!7%'4P@@@#<V*D 젒7`Р @BAABAAQL@T588x8xX|Р@V=#@00Ptp$$@9*u  lp,@[EƠ@@@@@$@ABC@@}/min_case_strong @@k۠}@@߶@طֶ@@wǠ kf @%min_lɀ[&XVT NLJF y%t@%min_rπih3/(@3o,p+@r?@tu@x!@@b/@@e> L+k()7!7!7777= eR'>#97!7!7!7!7!7  "7"  7!7777"7777! # '>#97!7!7!7!7!7  "7"  7!7777"7777! # '>"97!7! 7!7! 7!7  #7"  7!7777"7777! # '' +k()7!$'D#@pp@-ϐH@@ɠx̰<@ؠ;@t<D@@=pXE@58hJ@S%@ؠŰ$R@=#(0T`@Ǡ0lX\@=0Р4@C10/1ALg@*ux @|@@k@@A@A@@5(min_case @@m5@@@4{[ 9: 4:$Ǡà@@@OM @O DC@.@*@(.>\ZDŠܠ@@m@:@A@A@trans_sym_co_inv_impl_morphism'\|֩f@/Equivalence_PER/;`mhpk ةܩ#" %$ {'v /+$@/k(lpys| x+k()7777"7779 7777"7779 ++7#'()= XR'>G   7777"777  7777"777 7777"7779'>G   7777"777  7777"777 7777"7779'' +k7!7!7%' 7! 7!7%'0D\$ĠĠ`Р@BANL%@5@T8pTX|@-@=#PXDL0hLPt2@*u |(DlM\Wx@d$a@kԠUwsl@@@V@@AB@@ @@@@ @{z@rA @@@j^@_aϷ~|Ȑ!e@x!y$@'f_equal='&N)!0A/0)627@'eq_rect=߀9P"X2=56T676='ʠƠ@ Ķ@ K@@@BCN@@ϩАҐ} +k()++h7# '()9777 G +17 +17T7   77   + 77# ' $'6''$'ࠒ4EPoHU`Pzd@@rA@@A@A@@@A@@A@AA1E%I@A@A@ABCD@@ @@!r@@ &@9722%=92@z|7@!@@AC@>?P +k()+++7# '''$',X֠Ac_X@@r@@@A@A@BA@A@@S @@[+`֠Wyun@SR&Specif$Init#Coq@@7̂K@iʩ(BABrө1BAA/@@@IAp@A@@; @@t9:@@@0@/EC·>-,*&&%$)CP/. GHGHGN8۠נ@ն@-@@@ CB_@@㐩9ÐࠒD]SHQPpPt @@t9@b@A@A@e@@Af@@iA&@AjA@A@A@ABCD@@ @-,&-%@/t@@  @O`؀< /=%GC<@! A@@@AC@ːHIZ) )XߠɠJlha@@t@;@A@A@=A@A@@ @@,)ߠ`~w@\[ hɩҠBABqҩ۠BAA%@@@HAo@A@@: @O+5@܍/@<:@+iX2='@@@@@Y @@ܓL6@YW@JuOPZD@@@@@vʐ @<@ˀiS@v/t0@g4=l鐑wa@@@@@ِ @Y@рp@LM@6QZ~@@@@@0plus_max_distr_l @@D!n@@Ӏ!m !pꀰ>*Rbasic_fun%Reals#Coq@@$Rmax; U@%Rplus+1AC ABA"CB@@@@@0plus_max_distr_r @@NEGF>H=J&z<2CA8BA>PCBA@@@@@!0plus_min_distr_l @@}FvumwlyUk@$Rmin; 〠dACjABpACB@@@@@S0plus_min_distr_r @@Gĩ2CABAFCBA@@@@@-opp_max_distr @@Hך,Rdefinitions%Reals#Coq@@Ӏٚ 驚@$Ropp΀ހBAyBA@@@@@-opp_min_distr @@I: >1BA?BDA@@@@@ꠠ1minus_max_distr_l @@FJ?587;" @&Rminus&H1 32 5Ő@@@@@1minus_max_distr_r @@kKd[!Z)C8.!(M#NO%6Q@@@@@+1minus_min_distr_l @@LAwCv?_T=<hM@@@@@B1minus_min_distr_r @@MRT\vk 3S@@@@@Y@@@rA@Ark@t9@td@ABC@@@AB@@@ABC@t@A@@n@A @ @ABCDE @ @A@@A@@ABCF@@@~@K@ @A@A @@ P@Y4@A@ @@5 J4@A@AB @@ ^;@A@ @@+ h*@A@A @@% h$@A@@@p@#e@A@ABS@@sS @A@(@@[(@A@31@@ 31d @A@9]$@@9]$Ց@ 0@A@ABCDE@@@@rA#@Ar@t9@t@ABC ӳ2@ ӳ2[)Datatypes$Init#Coq@@A@ Գq@ Գq\ @A@ADi,e@ @A@BCcA@A.0TQ+Ring_theory+setoid_ring#Coq@@BA.U>[J @A xBDE [wF@@"O@(PeanoNat%Arith#Coq@#Nat@&of_int"O#Nat$Init#Coq@@ 6@A@A\@&BinInt&ZArith#Coq@!Z@'quotrem\)BinIntDef&ZArith#Coq@!Z@ /@A@\@@+pred_double\@/S@@A@As2@3@&shiftls2*@vY@A@BCs8@8@&shiftrs8/@vY@A@ѓ@?@&squareѓ6@y@A@A@D@&to_intϑ;@@A@z@5@&doublez,@/!@A@@ȑ@A@A~2@@A@BCDE/@U@)log2_iter/L@wd@A@NH/@H@&moduloNH/?@1,@A@A\d@M@&of_int\dD@1?A @A@bz@S@&of_natbzJ@1?G!@A@#@Y@&shiftl#P@1dV@A@#@_@&shiftr#V@1d\@A@ABCD/x@&BinPos&PArith#Coq@#Pos@)pred_mask/x)BinPosDef&PArith#Coq@#Pos@ )X@A@6@~@&square6u@19@A@AV+L@@&to_intV+Lz@2@A@V1b@@&to_natV1b@2 @A@V5=@@&to_posV5=@2@A@ABCl@@)sqrt_iterl@!$:@A@@@6@(sub_mask@-@)@A@ADEF c@@'testbit c@!ć@A@7 B@E@'of_uint7 B<@*`]?@A@AG@J@)mask_rectGA@+ED@A@F˱@P@)add_carryF˱G@+p@A@AB^Ҷ@@'to_uint^Ҷ@#m@A@gL7@@'sqrtremgL7@40@A@@&ROrder"TO@'le_lteq@Y4@A@ABCq@@'testbitq@5)@A@ l9@@!t l9J@A@A s@@"eq s^%Logic$Init@ @@A@ t.@+)@"le t.h@A@ t=@20@"lt t=h@A@ABCݎO@@+succ_doubleݎO@6r@A@ p@@0double_pred_mask p@0-+m@A@ADE T@&BinNat&NArith#Coq@!N@!t T)BinNatDef&NArith#Coq@!N@ 2@A@ @@#add @3 @A@A l@@#div l@3@A@ Y@%@#eqb Y@3@A@AB #@*@#gcd #!@3n@A@ T@0@#leb T'@3@A@ACFG "@5@#lor ",@3m@A@ q@?@#ltb q6@3@A@A @D@#max ;@3@A@ @J@#min A@3`@A@AB @O@#mul F@3B@A@ ~@U@#odd ~L@3@A@AC =@Z@#one =Q@3@A@ @b@#pow ˑY@3@A@A c@g@#sub c^@3@A@ @m@#two d@3J@A@AB hx@r@$div2 hxi@>@A@ @x@$even o@>4@A@ACD @}@$ggcd Бt@>U@A@ @@$iter }@>:@A@A 3"@@$land 3"@>m@A@ F)@@$log2 F)@>t@A@AB S@@$lxor S@>@A@ @@$pred @?U@A@AC @@$size ܑ@?'@A@ !@@$sqrt !@?@A@A ! @@$succ ! @?\@A@ !7@@$zero !7@@P@A@ @JH@A@ABC *@@%ldiff *@@A@ @LJ@A@AD @HF@A@ @B@@A@ @?=@A@AB g_@o@+pred_double g_f@25\@A@C m@t@÷ mk@2j@A@S@{@&of_intS㫑r@4}5@A@AS@@&of_natSw@4};@A@BDEFGH\R@@(mask_ind\R|@4@A@\^@@(mask_rec\^@4@A@A!,@@&pred_N!,@4s)@A@B@@&shiftl@5X@A@@@&shiftr@5X@A@A&@@&square&ّ@5,x@A@BC"@@&to_int"@5L@A@"@@&to_nat"@5L @A@AnTq@@+testbit_natnTq@6n@A@B@@(succ_posB@@A@I@(@'abs_natI@?n@A@AB.@%@'of_uint.@MS@A@3~@@'sqrtrem3~@7]%{@A@ACDE,@M@'bitwise,D@/v@A@>4'@@'testbit>4'@8g$@A@A{U@@,sqrtrem_step{U@8R@A@u^@D@(div_euclu^;@ @A@Afz@@'to_uintfz@9w@A@BC_G@ @!t_GJ @A@f@ @fÑ @A@A@ @#eqbd@$Reqb+#W@A@ϒ@ 1@!tϒJ !@A@ABϚ2@  @A@)t@d@A@"@@)lt_compat"@#e@A@ABl@@'comparel@3R@A@@@&eq_dec @A@ACDEFs8@@+of_uint_accs8@5+@A@ @@(eq_equiv  @A@A}@@,pos_div_eucl}@&`@A@3x@@'compare3x@]=@A@A@@&double@'޺_@A@@@A@ABCq@J@+of_succ_natqA@$@A@w@@&modulowɑ@)1@A@ADK@@&of_intK@)j,I@A@K@@&of_natK@)j2_@A@AI@@&shiftlI@*O@A@O@@&shiftrO@*O@A@S@4 R@A@ABC,@@&square,@*ow@A@Z@@&to_intZ@*81@A@ADE`@@&to_nat`@*9G@A@(@F V@A@Ae@@+testbit_nateđ@+@A@B+{@@'sqrtrem+{ё@,J@A@5z@@'testbit5z@-T|@A@AC @@'to_uint ͑@.@A@ @@+succ_double @.^4@A@#`@ @ y#` {@A@ABD#@@'compare#ݑ@ )Q@A@$m@  @A@$@  @A@$@  @A@ABC%t2@@(size_nat%t2@ @A@%9@@+of_uint_acc%9@ ΋@A@%4@  @A@AB%V@@+double_mask%V@ S@A@%@  @A@A%%@@'div2_up%%@ "@A@BCDEF'ş@@'Ndouble'ş@ @A@(b0@@*shiftl_nat(b0@9-@A@A(nՖ@@*shiftr_nat(nՖ@'@A@(@@0succ_double_mask(@@A@A*W$@@,compare_cont*W$@!@A@-@@'compare-Πd @A@A.0@@.sub_mask_carry.0@΂@A@BCD.@v@!t.m@ ;@A@.먩@}@#add.먩t@ `@A@A.U@@#div.Uy@ @A@.B@@#eqb.B@ @A@A. @@#gcd. @ @A@.=@@#leb.=@ @A@ABCEGHI. @@#lor. @ @A@.Z@@#ltb.Z@ @A@A.p@@#max.p@ '@A@B.@@#min.@ @A@.@@#mul.@ @A@AC.g@@#odd.g@ @A@.&@@#one.&@ @A@A.뾴@@#pow.뾴@ k@A@.L@@#sub.L@ @A@.@@#two.@ @A@ABCD.,a@@$div2.,a@ @A@.Xz@@$even.Xz@ ?1@A@A.@@$iter.ؑ@ @A@B. @@$land. @ @A@. @@$log2. @ @A@ACE.@@$lxor.@ R@A@.y@@$pred.y@ `<@A@A.Ʉ@@$sqrt.Ʉ@ ;@A@.@@$succ.@ @A@.t @@$zero.t @ Z@A@AB/@@.to_little_uint/ @ @A@CDF/@@%ldiff/@ H@A@00@@'compare00@?H{@A@A1P%@@!t1P% @  @A@B1P@@#abs1P@ @A@1P&@@#add1P&@ @A@A1P@$@#div1Pґ@ y@A@BC1P@)@#eqb1P @ f@A@1P@1@#gcd1P(@ 0@A@A1P@6@#geb1P-@ T@A@B1P@;@#gtb1Pʑ2@ q@A@1Pĺ@B@#leb1Pĺ9@ a@A@A1Pň@G@#lor1Pň>@ /@A@BCD1P@L@#ltb1PבC@ ~@A@1P@U@#max1PL@ @A@A1P{@Z@#min1P{Q@ "@A@B1P]@_@#mul1P]V@ @A@1P@f@#odd1P]@ @A@A1Pɣ@k@#one1Pɣb@ J@A@BC1P@p@#opp1Pԑg@ {@A@1P1@x@#pow1P1o@ @A@A1P;@}@#rem1P;t@ @A@B1P@@#sgn1Pˑy@ r@A@1P@@#sub1Pɑ@ p@A@A1Pe@@#two1Pe@  @A@BCDE1[8@@$div21[8ޑ@ @A@1[d@@$even1[d@ I@A@A1[6@@$ggcd1[6@ i@A@B1[U@@$iter1[U@ @A@1\@@$land1\@ /@A@A1\@@$log21\@ 6@A@BC1\$@@$lxor1\$@ @A@1\Y@@$of_N1\YÑ@ >j@A@A1\@@$pred1\@ j@A@B1\@@$quot1\֑@ }@A@1\@@$sqrt1\@ @A@A1\w@@$succ1\w@ @A@BC1\k@@$to_N1\k@ @A@1]@@$zero1]@ eD@A@A2:@@%abs_N2:@ @A@21@@%ldiff21@ ߵ@A@2=*@@%quot22=*@ @A@ABC2kF@@(size_nat2kF@{@A@31@XV@A@A3@@(tail_add3 @^q@A@BDEFGH3@@(tail_mul3@^@A@4J r@LJ@,compare_spec4J rI@ 0@A@A5Z@@*shiftl_nat5Z@y/@A@5f}@@*shiftr_nat5f} @4@A@AB5a@@'iter_op5a@ @A@C6w~@<@'of_uint6w~3@^5@A@8j@.@'of_uint8j%@'"h@A@9]$@@A@A9E@7@(div_eucl9Eđ.@(*k@A@BC:x@@,Nsucc_double:x@ ʭ@A@;ȑ@}{@+lt_strorder;ȑz@ @A@ADE@ @&divmod>@C@A@>@@&double>@NĴ@A@?2@@,pos_div_eucl?2@-u@A@AB?;@@&modulo?;@"i@A@CEFGIJ@%Arith#Coq@0I|кX*o4)ArithRing+setoid_ring#Coq@0ṔCgt?}*Arith_base%Arith#Coq@0Ĕ}CS&Basics'Program#Coq@0!bs߯? :VU'Between%Arith#Coq@06v*0ur`C0&BinInt&ZArith#Coq@0BpHޞun^)BinIntDef&ZArith#Coq@0ådR4Tuy'BinList+setoid_ring#Coq@0Au&BinNat&NArith#Coq@0K11ڤs+Π)BinNatDef&NArith#Coq@03@1O,[{ 'BinNums'Numbers#Coq@0dmk(5Ju<&BinPos&PArith#Coq@0vyػ0= u)BinPosDef&PArith#Coq@0}H d.%,b$Bool#Coq@0j 2cZ`FW*CMorphisms'Classes#Coq@0qیZBeϠ0CRelationClasses'Classes#Coq@0TL;0RUfw1+Compare_dec%Arith#Coq@0jXF 8@0.i bYN Z)Decidable%Logic#Coq@0ND걸풬/Oߠ'Decimal$Init#Coq@0C涳N*ua&DiscrR%Reals#Coq@0z41pV.%EqNat%Arith#Coq@0AIgՋXRV *EqdepFacts%Logic#Coq@0FI$ͼՋ`)Eqdep_dec%Logic#Coq@0u wWIϰ߼*Equalities*Structures#Coq@0όe얟)H.Ƞ+Equivalence'Classes#Coq@07;ꮹ)Factorial%Arith#Coq@0@oehJd%Field+setoid_ring#Coq@0J _ȫ)Field_tac+setoid_ring#Coq@0d vDZl^۹H&0B~uYٮ٠'Fourier'fourier#Coq@0wV9TN,Fourier_util'fourier#Coq@0ϳ> 4`*r0% 0måj$"Gt%Arith#Coq@0䙛#c:D $Init'Classes#Coq@0](p{yOh.+InitialRing+setoid_ring#Coq@0k/T=cN"Le%Arith#Coq@0d}Omq+$List%Lists#Coq@0>I+ListTactics%Lists#Coq@0,Jcy{&}0\͉!Ig*Logic_Type$Init#Coq@0 1jc6"Lt%Arith#Coq@0KZ-eJkP܏#Max%Arith#Coq@04=;3$>aU堠#Min%Arith#Coq@0Ce-Fѕ%Minus%Arith#Coq@0LFtR")Morphisms'Classes#Coq@0Imӽ%\$PD.Morphisms_Prop'Classes#Coq@0% :B'.>u%$Mult%Arith#Coq@0햖Qyb0$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI%NBits(Abstract'Natural'Numbers#Coq@0qteo_hɅ $NDiv(Abstract'Natural'Numbers#Coq@0bz$?[p(5$NGcd(Abstract'Natural'Numbers#Coq@08E-S ;j_Ҡ$NLcm(Abstract'Natural'Numbers#Coq@0 ~xZ9L{:$NLog(Abstract'Natural'Numbers#Coq@0K Aat/ j &NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf+NProperties(Abstract'Natural'Numbers#Coq@0unt"kwpYC%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ%NZAdd&NatInt'Numbers#Coq@00h`ZK4*NZAddOrder&NatInt'Numbers#Coq@0e~1>r砠(NZAxioms&NatInt'Numbers#Coq@0] ρ5r&NZBase&NatInt'Numbers#Coq@0^&8yUL&NZBits&NatInt'Numbers#Coq@0MlIpKt%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZMul&NatInt'Numbers#Coq@0ctR~6[Ƞ*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R'NZOrder&NatInt'Numbers#Coq@0 q;Ve7R W,(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x&NZSqrt&NatInt'Numbers#Coq@0` .%m#Nat$Init#Coq@0eʤģPSR蠠$Nnat&NArith#Coq@0$W;s #%M)Notations$Init#Coq@0&v!D]hwnv *NumPrelude'Numbers#Coq@05WUVŦ]xVXԠ%Omega%omega#Coq@0t.J'6\ϨrK+OmegaLemmas%omega#Coq@0TJ#Jes4Operators_Properties)Relations#Coq@0U3y#h&&Orders*Structures#Coq@0$Znl0\͗+OrdersFacts*Structures#Coq@05Mܿ獐ζΖLB)OrdersTac*Structures#Coq@05'4Ԗ+9%%Peano$Init#Coq@0 jha|ؠ(PeanoNat%Arith#Coq@0O~2$k[#lZ)Peano_dec%Arith#Coq@0Kݢ*k$Plus%Arith#Coq@04tmG$Pnat&PArith#Coq@0,?pr.gZ(PreOmega%omega#Coq@0\|چBb~w4'Prelude$Init#Coq@0JqTttֱ%Quote%quote#Coq@0J@ŹVz-,3%%RIneq%Reals#Coq@0JUڻIu)$w'0}q1MIX%R_Ifp%Reals#Coq@0c4+ZŠ'Raxioms%Reals#Coq@0S]jnj][L%Rbase%Reals#Coq@0Jܡ\ c6{*Rbasic_fun%Reals#Coq@0hܒiclE>)90(2{Ze$ќ8)RealField+setoid_ring#Coq@0 >ʾq /RelationClasses'Classes#Coq@0Gz rA6ՠ4Relation_Definitions)Relations#Coq@0]4Ѐd{n^2Relation_Operators)Relations#Coq@0%s鯰s)Relations#Coq@0-SetoidTactics'Classes#Coq@0S_`nOU$&Specif$Init#Coq@0;RWMi\N'Sumbool$Bool#Coq@0sB ,$11.]m'Tactics$Init#Coq@0/9m+ a'Tactics'Program#Coq@03+2 Q@@A@"_7+@+@A@@@@@@@@"_82M접"_9'`o@C'R_scope@@+++@+R2 Q@@A@#_10+@+]@A@@@@0@#_112M접 #_12'`o@C.0@@+ՠ+ؠ+@+h2 Q@@A@#_13+@+s@A@@@@]@#_142M접 #_15'`o@C[]@@,,+@+x2 Q@@A@#_16,#@+@A@@@@@#_172M접 #_18'`o@C@@,/,2,"@+rHȠ@+2 Q@@@@#_19+@+?_.2@#_202M접 %RIneq%Reals#Coq@@'Rle_dec3#_21'`o@Bà@++@+2 Q@@@@#_22+@+?_.d@#_232M접 2#_24'`o@B預@+ՠ+@+2 Q@@@@#_25+@+B$@#_262M접 #_27'`o@C@@,,,@+2 Q@@@@#_28,@+B$=@#_292M접  #_30'`o@C9;@@,ࠐ,㠐,@+ڠ2 Q@@@@#_31,G@+Bޠg@#_322M접  #_33'`o@Cce@@- - ,@+2 Q@@@@#_34,q@+B@#_352M접 #_36'`o@C@@-4-7-'@@- rHȠ@-#tӡ-GenericMinMax*Structures#Coq@+]@ ,@A@++@@~2@+ّ+@A@Aϒ@+@+ϒJ+@A@Ϛ2@++@A@ABϚ@+@+Ϛh+@A@Ϛ@+@+Ϛh+@A@A)t@++@A@$m@++@A@AB$@++@A@$@++@A@A%4@++@A@%@++@A@;K@, @+;Kd+@A@ABCDE@,),$@@?_.@,(@,#?_.d-R@A@?_.@,-@,"?_.d-@A@AB@AB2 Q@@A@#_37,b@('@A@@@@ @#_382M접 #_39'`o@C  @@2 Q@@A@#_40,@(' @A@@@@:@#_412M접 #_42'`o@C8:<@預점@2 Q@@A@#_43,@*Q@A@@@@h@#_442M접 #_45'`o@Cfhj@@2 Q@@A@#_46,@*W@A@@@@@#_472M접 #_48'`o@C@EHK@2 Q@@A@#_49-@9Uu@A@@@@@#_502M접 #_51'`o@B @@o2 Q@@A@#_52-C@z@A@@@@@#_532M접 #_54'`o@B렐@Ġ@j2 Q@@A@#_55-l@uj@A@@@@@#_562M접 #_57'`o@C@...@s2 Q@@A@#_58-@~j@A@@@@D@#_592M접 #_60'`o@CBDF@.ꠐ..@2 Q@@A@#_61-@ #3@A@@@@r@#_622M접 #_63'`o@Cprt@///@2 Q@@A@#_64-@ #9@A@@@@@#_652M접 #_66'`o@C@/F/I/L@@@@ޣ|WEgb@>\W.cǖzӄ@rD퉤\S6!@"qYVb# s 8!x,Rdefinitions%Reals#Coq@@!RӀ!y!H@#Rle=ABȐ!s%RIneq@'Rle_dec3C&Specif$Init+@'sumbool7̂K@$%Logic @#notШ BAAAA@@@@@D.!:D'@"eq @Y]2KE)bI!r !n F Q"H'"8@&or_ind"ਗ਼w@#Rlt=/,1 "H0 '5)7+!{n@+Rle_antisym>`K*Gv@&Rge_le 6/R2}@&Rle_ge @ H9@&Rlt_le A@BD FC^H,|@&eq_sym X'QC ;>L975:9CBTqU@*Rnot_le_lt.JizRZUndE|ffPABVNC C׶ض@ǩ۩*Rbasic_fun@$Rmax; Uکؠؠ|zx}1~ C F{ezC}CC@*ð; 2ܷթΰ!  ۵43,5`^_9C2qCC:8,9@P<a@$Rmin; HF:G86-+ /M,4[ݩϷFKG>=۩ԷK׵^DCPD6Cg굩ecdCgChfZg@Vj.Pm!mp!ps'Rminmaxuq@,max_monotone,L@%Rplus+1l{j@1Rplus_le_compat_l?guvC)Morphisms'Classes@&ProperL@ @*respectful%WO?%{?97q@(eq_ind_r!2#1Na٠89m>Zm堩Dv ƩHeɩx˩ O\@0plus_max_distr_l('GW'Raxioms@*Rplus_commq b d˩ {y꩚w@,min_monotoneLsMHF}VDC \̷  @󩚠@0plus_min_distr_l*Q=5431fߠ@$Ropp΀ L=@4min_max_antimonotone,53'4%K@4Ropp_le_ge_contravar(IJkCB@4A@X&Basics'ProgramC@$flip$NNA=3CRR?TTA66CŰXXE:>?[\^CB%w@4max_min_antimonotone-:lmnp;Us"u_\-cFHbfbE@-opp_min_distr`C!9@&Rminus&H}3-+)@0plus_max_distr_r(' {C=75U͠ȩאJDB yESf}Dک=⩚J@-opp_max_distr9UuC]ĶWŶUƩuȩ<;gηaϷ_Щ]@0plus_min_distr_r*W4Cp׶jضh٩۩3Nxk)12ߪ