"`ބ&Rlimit%Reals#Coq@()Notations$Init#Coq@%Logic$Init#Coq@*Logic_Type$Init#Coq@)Datatypes$Init#Coq@&Specif$Init#Coq@%Peano$Init#Coq@"Wf$Init#Coq@'Tactics$Init#Coq@%Tauto$Init#Coq@'Prelude$Init#Coq@)Notations$Init#Coq@0&v!D]hwnv %Logic$Init#Coq@0\͉!Ig)Datatypes$Init#Coq@0.i bYN Z*Logic_Type$Init#Coq@0 1jc6&Specif$Init#Coq@0;RWMi\N'Decimal$Init#Coq@0C涳N*ua#Nat$Init#Coq@0eʤģPSR蠠%Peano$Init#Coq@0 jha|ؠ"Wf$Init#Coq@0q+W,J+'Tactics$Init#Coq@0/9m+ a%Tauto$Init#Coq@0̂"&/rk0JqTttֱ'BinNums'Numbers#Coq@0dmk(5Ju<*EqdepFacts%Logic#Coq@0FI$ͼՋ`)Eqdep_dec%Logic#Coq@0u wWIϰ߼&Basics'Program#Coq@0!bs߯? :VU$Init'Classes#Coq@0](p{yOh.'Tactics'Program#Coq@03u%+Equivalence'Classes#Coq@07;ꮹ-SetoidTactics'Classes#Coq@0S_`nOU$&Setoid'Setoids#Coq@0D9AsWE!>$Bool#Coq@0j 2cZ`FW*Equalities*Structures#Coq@0όe얟)H.Ƞ2Relation_Operators)Relations#Coq@0%s鯰s4Operators_Properties)Relations#Coq@0U3y#h&)Relations#Coq@0r砠*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ&NZSqrt&NatInt'Numbers#Coq@0` .%m%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|&NZBits&NatInt'Numbers#Coq@0MlIpKt'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$&NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ)NMulOrder(Abstract'Natural'Numbers#Coq@04> Aat/ j $NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ'NMaxMin(Abstract'Natural'Numbers#Coq@0]v|Qg̟ʠ'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NLog(Abstract'Natural'Numbers#Coq@0KI'BinList+setoid_ring#Coq@0Au,Ring_polynom+setoid_ring#Coq@0gaKw9`UW+ListTactics%Lists#Coq@0,Jcy{+InitialRing+setoid_ring#Coq@0k/T=cN(Ring_tac+setoid_ring#Coq@0x2]%762f)Ring_base+setoid_ring#Coq@0fbU(2cNe$Ring+setoid_ring#Coq@0Msᬠ)ArithRing+setoid_ring#Coq@0ṔCgt?}%Arith#Coq@0I|кX*o4#Max%Arith#Coq@04=;3$>aU堠#Min%Arith#Coq@0Ce-Fѕ(PreOmega%omega#Coq@0\|چBb~w4%Omega%omega#Coq@0t.J'6\ϨrK(Zpow_def&ZArith#Coq@0f蓜DX;V*ZArithRing+setoid_ring#Coq@0{#'[{nm!/,Zcomplements&ZArith#Coq@0ʾq %RIneq%Reals#Coq@0JUڻIu)$w&DiscrR%Reals#Coq@0z41pV.%Rbase%Reals#Coq@0Jܡ\ c6{%R_Ifp%Reals#Coq@0c4+ZŠ,Fourier_util'fourier#Coq@0ϳ> 4`*r0'Fourier'fourier#Coq@0wV9TN*Rbasic_fun%Reals#Coq@0hܒiclE>%R_sqr%Reals#Coq@0X%MԹ%M+SplitAbsolu%Reals#Coq@0M)&qYlݹ5*SplitRmult%Reals#Coq@0sD\rt/$Even%Arith#Coq@0YO%q}d߫%$Div2%Arith#Coq@0n*Áht!,)ArithProp%Reals#Coq@0B+L?>*e˃a j*Rfunctions%Reals#Coq@0d¹d‹@9do\}r#@pWQ_ZР&Rlimit%Reals#Coq@A+eps2_Rgt_R0 @@@#eps,Rdefinitions%Reals#Coq@@!RӀ@,Rdefinitions%Reals#Coq@@#Rgt=@@@@@AA@@>@,Field_theory+setoid_ring#Coq@@&FEeval>@@A@A"s @,Ring_polynom+setoid_ring#Coq@@&PEeval"s @@A@BA@A@$eps2 @@A%Logic$Init#Coq@@"eq @@@Ӏ@%Rplus+1uAr@@7@B@@u*@B @CAĀ)B"BCA@@@@@$eps4 @@Bpe]πÀj^BȩgBѩA뀐}B穚!B𩚠 A 3B@@@@@,Rlt_eps2_eps @@uCed@ZAPHc@#Rlt=>;:7?@@@@@,Rlt_eps4_eps @@D@Awo'b_^[@%Rplus+1bbj@@@@@D(prop_eps @@E!r@@A|UC@#Rle=@A@@@@@s*mul_factor @!l@!RӀ"l'@$Rinv8RW*Rbasic_fun@$Rabs; wƩ E@% !q +k()7 7 7!77 7!7$'Р(lv`@ tdA@LݐT@@@@@ -mul_factor_wd @@EFO4K8@#notШ-BC]%Reals#Coq@@$Rabs; wBAPA@@@@@ -mul_factor_gt @@G@}Csk^D@CBb~@@@@@@/mul_factor_gt_f @@Hњ͚@Cq@$Rmin; 〠BCFEɀA@@@@@,Metric_Space,<@@QBAHA@@2Build_Metric_Space$Base@@$dist@K@)(dist_pos!xն!yO@#Rge=-W^](dist_sym\%Logic$Init@"eq @Ms)dist_refl'%E@#iffС)_ & F (dist_tri:8!zG @#Rle=  +@@@AB@aFF@x@{C@@@@AAF@BA@@@@@Q@}@A@A@A1DHN@A@x @!m@C@@()@@@@@@@@@ҐxvdbRPT@@C@@ +k= R '>''+k6'x*EAFp@@@@@O @=;5?=@>@ /h@ŷ@43@@ /h@ۀ +k= R '>''+k+ 7 T'+7 T'6'̠_zAFp(@8@@ @trlvt72⠩x@ 3^9?>?Ϸn@ml:<Щ@#Rge=- +k= R '>''+k+ 7 T'+7 T'G7 7"7%'Р AFp d؀@w@@Š  @%v#qU??tzz;9531/   {@3u2w   +k= R '>''+k+ 7 T'+7 T' 7" 7"77&'РXࠒrAFp< @@@1 @^\6NzP:xvrpnl][IG75A@䶐poH@LС) H+k= R '>''+k+ 7 T'+7 T'7 7"L7 7"77"7%' -AFpa4ް~(젒_@@@Cc @1/)31i@f!|°%İ'}@-,   p+k= R '>''+k+ 7 T'+7 T'+7 T' 7" 7"7!7"7%'РP,YtAFpA8%\@8@@(limit_in @!Xu"X'x!f@88!D@A"x0Gp((@@=<RQ@"ex @7#alp:@#andЖw@gI@ )@#Rlt=;Jw @:@I@LM@zU@ AXɶϔ D+k() +7T'+ L7 7!T'+ 77%'+7 TL7 7!7%' + 7"7!  7!T' 7"7%' u$̠DXtlhjR0ؠÐD@X@@@@@%%R_met @A*RfunctionsR@&R_dist@*R_dist_pos {d @*R_dist_sym W@+R_dist_refl.@*R_dist_tri 7@u @6777778kࠒ\TߐlDL4d@@@@@j#Dgf @"Df@ڷ"Dg@ĠL@@@@隠A T+k()  7%'@@@@@@)limit1_in @4:423@-=@ ՐsZ`@'@&(*@-ӶL1-5ې X+k() 777# '$@"xp@@@@@ݠ*tech_limit @@`IQ@PRT@Wv[W_@CA@x@\82-݀֩*@@@~A1DH%Logic$Init#Coq@@A@@0tech_limit_contr @@J@@7@CA@gokqHkx@@@@@M%lim_x @@K@fĀ_@@@@@e*limit_plus @@Lٶ@؀ڀ!g@‶@뀶뚠@FDCA@:é dNHQ̩m}O@@@@@*limit_Ropp @@5M&@%')@,ҶK0,4@ЀrxԀ-Z@$Ropp΀A @@@@@㠠+limit_minus @@fNW@VX~@]_a@d hlhp@ FDCA@8E@r{@&Rminus&HeΩK \ΐ@@@@@1*limit_free @@O@@QN!h֩D#@@@@@X)limit_mul @@P̶@ˀ̀@ҀԀֶ@ـ݀ံݚ倶@FDCA@,皠Āא@B̀n@@@@@@%adhDa @7!a12@ 5 6`Z@#@&̶*А +k() +7T'+ L7 7!T'+ 77%' 7!7!  7%'Mt*t(ܠРd@@@@@㠠,single_limit @@fQW@VXZ@]|axeai@}@c ր@ /<7@+4쀰8E@@@@@*limit_comp @@R@@@A@F@Hbx@Mg}Qש<@ (Uu~+@@@@@`)limit_inv @@SԶ@ӀՀ׶@ڀހښ‶@~N &@Ȱ ', /@@@@@@@@Q@A ӳ2@ ӳ2[)Datatypes$Init#Coq@@A@ Գq@ Գq\ @A@AB@cA@A.0TQ+Ring_theory+setoid_ring#Coq@@ABA.U>[J @@AB@@"O@(PeanoNat%Arith#Coq@#Nat@&of_int"O#Nat$Init#Coq@@ 6@A@A\@&BinInt&ZArith#Coq@!Z@'quotrem\)BinIntDef&ZArith#Coq@!Z@ /@A@\@@+pred_double\@/S@@A@As2@3@&shiftls2*@vY@A@BCs8@8@&shiftrs8/@vY@A@ѓ@>@&squareѓ5@y@A@@D@&to_intϑ;@@A@z@5@&doublez,@/!@A@ABCD/@O@)log2_iter/F@wd@A@NH/@B@&moduloNH/9@1,@A@A\d@G@&of_int\d>@1?A @A@bz@M@&of_natbzD@1?G!@A@#@S@&shiftl#J@1dV@A@#@Y@&shiftr#P@1d\@A@ABCD/x@&BinPos&PArith#Coq@#Pos@)pred_mask/x)BinPosDef&PArith#Coq@#Pos@ )X@A@6@x@&square6o@19@A@AV+L@}@&to_intV+Lt@2@A@V1b@@&to_natV1bz@2 @A@V5=@@&to_posV5=@2@A@ABCl@@)sqrt_iterl@!$:@A@@@6@(sub_mask@-@)@A@ADEF c@@'testbit c@!ć@A@7 B@D@'of_uint7 B;@*`]?@A@AG@I@)mask_rectG@@+ED@A@F˱@O@)add_carryF˱F@+p@A@AB^Ҷ@@'to_uint^Ҷ@#m@A@gL7@@'sqrtremgL7@40@A@Aq@@'testbitq@5)@A@ݎO@@+succ_doubleݎO@6r@A@A p@l@0double_pred_mask pc@0-+m@A@BCD T@&BinNat&NArith#Coq@!N@!t T)BinNatDef&NArith#Coq@!N@ 2@A@ @@#add @3 @A@A l@@#div l@3@A@ Y@%@#eqb Y@3@A@AB #@*@#gcd #!@3n@A@ T@0@#leb T'@3@A@ACEG "@5@#lor ",@3m@A@ q@?@#ltb q6@3@A@A @D@#max ;@3@A@ @J@#min A@3`@A@AB @O@#mul F@3B@A@ ~@U@#odd ~L@3@A@AC =@Z@#one =Q@3@A@ @b@#pow ˑY@3@A@A c@g@#sub c^@3@A@ @m@#two d@3J@A@AB hx@r@$div2 hxi@>@A@ @x@$even o@>4@A@ACD @}@$ggcd Бt@>U@A@ @@$iter }@>:@A@A 3"@@$land 3"@>m@A@ F)@@$log2 F)@>t@A@AB S@@$lxor S@>@A@ @@$pred @?U@A@AC @@$size ܑ@?'@A@ !@@$sqrt !@?@A@A ! @@$succ ! @?\@A@ !7@@$zero !7@@P@A@ *@@%ldiff *@@A@AB g_@1@+pred_double g_(@25\@A@CD m@6@÷ m-@2j@A@S@=@&of_intS㫑4@4}5@A@AS@B@&of_natS9@4};@A@BEFGH\R@G@(mask_ind\R>@4@A@\^@Q@(mask_rec\^H@4@A@A!,@V@&pred_N!,M@4s)@A@B@[@&shiftlR@5X@A@@b@&shiftrY@5X@A@A&@g@&square&ّ^@5,x@A@BC"@l@&to_int"c@5L@A@"@t@&to_nat"k@5L @A@AnTq@y@+testbit_natnTqp@6n@A@B@@(succ_posB@@A@I@@'abs_natI@?n@A@AB.@@'of_uint.@MS@A@3~@@'sqrtrem3~@7]%{@A@ACD,@ @'bitwise,@/v@A@>4'@@'testbit>4'@8g$@A@A{U@@,sqrtrem_step{U@8R@A@u^@9@(div_euclu^0@ @A@Afz@@'to_uintfz@9w@A@Bl@'@'comparel@3R@A@CDEFs8@,@+of_uint_accs8#@5+@A@}@R@,pos_div_eucl}I@&`@A@3x@(@'compare3x@]=@A@A@^@&doubleU@'޺_@A@BCq@@+of_succ_natq@$@A@w@i@&modulowɑ`@)1@A@ADK@n@&of_intKe@)j,I@A@K@v@&of_natKm@)j2_@A@AI@{@&shiftlIr@*O@A@O@@&shiftrOx@*O@A@AB,@@&square,}@*ow@A@Z@@&to_intZ@*81@A@ACE`@@&to_nat`@*9G@A@e@@+testbit_nateđ@+@A@A+{@@'sqrtrem+{ё@,J@A@5z@@'testbit5z@-T|@A@A @@'to_uint ͑@.@A@ @@+succ_double @.^4@A@A#@'@'compare#ݑ@ )Q@A@BCD%t2@,@(size_nat%t2#@ @A@%9@3@+of_uint_acc%9*@ ΋@A@A%V@8@+double_mask%V/@ S@A@%%@>@'div2_up%%5@ "@A@ABEF'ş@C@'Ndouble'ş:@ @A@(b0@K@*shiftl_nat(b0B@9-@A@A(nՖ@P@*shiftr_nat(nՖG@'@A@(@V@0succ_double_mask(M@@A@*W$@\@,compare_cont*W$S@!@A@.0@b@.sub_mask_carry.0Y@΂@A@ABCD.@@!t.@ ;@A@.먩@@#add.먩@ `@A@A.U@@#div.U@ @A@.B@@#eqb.B@ @A@A. @@#gcd. @ @A@.=@@#leb.=@ @A@ABCEGHI. @@#lor. @ @A@.Z@ @#ltb.Z@ @A@A.p@@#max.p@ '@A@B.@@#min. @ @A@.@@#mul.@ @A@AC.g@@#odd.g@ @A@.&@&@#one.&@ @A@A.뾴@+@#pow.뾴"@ k@A@.L@1@#sub.L(@ @A@.@7@#two..@ @A@ABCD.,a@<@$div2.,a3@ @A@.Xz@D@$even.Xz;@ ?1@A@A.@I@$iter.ؑ@@ @A@B. @N@$land. E@ @A@. @T@$log2. K@ @A@ACE.@Y@$lxor.P@ R@A@.y@`@$pred.yW@ `<@A@A.Ʉ@e@$sqrt.Ʉ\@ ;@A@.@l@$succ.c@ @A@.t @r@$zero.t i@ Z@A@AB/@w@.to_little_uint/n@ @A@CDF/@|@%ldiff/s@ H@A@00@@'compare00@?H{@A@A1P%@w@!t1P%n@  @A@B1P@|@#abs1Ps@ @A@1P&@@#add1P&z@ @A@A1P@@#div1Pґ@ y@A@BC1P@@#eqb1P@ f@A@1P@@#gcd1P@ 0@A@A1P@@#geb1P@ T@A@B1P@@#gtb1Pʑ@ q@A@1Pĺ@@#leb1Pĺ@ a@A@A1Pň@@#lor1Pň@ /@A@BCD1P@@#ltb1Pב@ ~@A@1P@@#max1P@ @A@A1P{@@#min1P{@ "@A@B1P]@@#mul1P]@ @A@1P@@#odd1P@ @A@A1Pɣ@@#one1Pɣ@ J@A@BC1P@@#opp1Pԑ@ {@A@1P1@@#pow1P1@ @A@A1P;@@#rem1P;@ @A@B1P@@#sgn1Pˑ@ r@A@1P@@#sub1Pɑ@ p@A@A1Pe@@#two1Pe@  @A@BCDE1[8@@$div21[8ޑ@ @A@1[d@@$even1[d@ I@A@A1[6@@$ggcd1[6@ i@A@B1[U@ @$iter1[U@ @A@1\@@$land1\@ /@A@A1\@@$log21\ @ 6@A@BC1\$@@$lxor1\$@ @A@1\Y@$@$of_N1\YÑ@ >j@A@A1\@)@$pred1\ @ j@A@B1\@.@$quot1\֑%@ }@A@1\@5@$sqrt1\,@ @A@A1\w@:@$succ1\w1@ @A@BC1\k@?@$to_N1\k6@ @A@1]@G@$zero1]>@ eD@A@A2:@L@%abs_N2:C@ @A@21@R@%ldiff21I@ ߵ@A@2=*@X@%quot22=*O@ @A@ABC2kF@@(size_nat2kF@{@A@3@x@(tail_add3o@^q@A@ADEFGH3@}@(tail_mul3t@^@A@5Z@@*shiftl_nat5Z@y/@A@5f}@@*shiftr_nat5f}@4@A@AB5a@@'iter_op5a@ @A@C6w~@@'of_uint6w~@^5@A@8j@@'of_uint8j@'"h@A@9E@@(div_eucl9Eđ@(*k@A@AB:x@6@,Nsucc_double:x-@ ʭ@A@CD@[@&divmod>R@C@A@>@b@&double>Y@NĴ@A@?2@S@,pos_div_eucl?2J@-u@A@AB?;@m@&modulo?;d@"i@A@CEFGIJ@%Arith#Coq@0I|кX*o4)ArithProp%Reals#Coq@0B+L?>*e˃a j)ArithRing+setoid_ring#Coq@0ṔCgt?}*Arith_base%Arith#Coq@0Ĕ}CS&Basics'Program#Coq@0!bs߯? :VU'Between%Arith#Coq@06v*0ur`C0&BinInt&ZArith#Coq@0BpHޞun^)BinIntDef&ZArith#Coq@0ådR4Tuy'BinList+setoid_ring#Coq@0Au&BinNat&NArith#Coq@0K11ڤs+Π)BinNatDef&NArith#Coq@03@1O,[{ 'BinNums'Numbers#Coq@0dmk(5Ju<&BinPos&PArith#Coq@0vyػ0= u)BinPosDef&PArith#Coq@0}H d.%,b$Bool#Coq@0j 2cZ`FW*CMorphisms'Classes#Coq@0qیZBeϠ0CRelationClasses'Classes#Coq@0TL;0RUfw1+Compare_dec%Arith#Coq@0jXF 8>=<@0.i bYN Z)Decidable%Logic#Coq@0ND걸풬/Oߠ'Decimal$Init#Coq@0C涳N*ua&DiscrR%Reals#Coq@0z41pV.$Div2%Arith#Coq@0n*Áht!,%EqNat%Arith#Coq@0AIgՋXRV *EqdepFacts%Logic#Coq@0FI$ͼՋ`)Eqdep_dec%Logic#Coq@0u wWIϰ߼*Equalities*Structures#Coq@0όe얟)H.Ƞ+Equivalence'Classes#Coq@07;ꮹ$Even%Arith#Coq@0YO%q}d߫%)Factorial%Arith#Coq@0@oehJd%Field+setoid_ring#Coq@0J _ȫ)Field_tac+setoid_ring#Coq@0d vDZl^۹HI0B~uYٮ٠'Fourier'fourier#Coq@0wV9TN,Fourier_util'fourier#Coq@0ϳ> 4`*r0-GenericMinMax*Structures#Coq@0måj$"Gt%Arith#Coq@0䙛#c:D $Init'Classes#Coq@0](p{yOh.+InitialRing+setoid_ring#Coq@0k/T=cN"Le%Arith#Coq@0d}Omq+$List%Lists#Coq@0>I+ListTactics%Lists#Coq@0,Jcy{w0\͉!Ig*Logic_Type$Init#Coq@0 1jc6"Lt%Arith#Coq@0KZ-eJkP܏#Max%Arith#Coq@04=;3$>aU堠#Min%Arith#Coq@0Ce-Fѕ%Minus%Arith#Coq@0LFtR")Morphisms'Classes#Coq@0Imӽ%\$PD.Morphisms_Prop'Classes#Coq@0% :B'.>u%$Mult%Arith#Coq@0햖Qyb0$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI%NBits(Abstract'Natural'Numbers#Coq@0qteo_hɅ $NDiv(Abstract'Natural'Numbers#Coq@0bz$?[p(5$NGcd(Abstract'Natural'Numbers#Coq@08E-S ;j_Ҡ$NLcm(Abstract'Natural'Numbers#Coq@0 ~xZ9L{:$NLog(Abstract'Natural'Numbers#Coq@0K Aat/ j &NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf+NProperties(Abstract'Natural'Numbers#Coq@0unt"kwpYC%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ%NZAdd&NatInt'Numbers#Coq@00h`ZK4*NZAddOrder&NatInt'Numbers#Coq@0e~1>r砠(NZAxioms&NatInt'Numbers#Coq@0] ρ5r&NZBase&NatInt'Numbers#Coq@0^&8yUL&NZBits&NatInt'Numbers#Coq@0MlIpKt%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZMul&NatInt'Numbers#Coq@0ctR~6[Ƞ*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R'NZOrder&NatInt'Numbers#Coq@0 q;Ve7R W,(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x&NZSqrt&NatInt'Numbers#Coq@0` .%m#Nat$Init#Coq@0eʤģPSR蠠$Nnat&NArith#Coq@0$W;s #%M)Notations$Init#Coq@0&v!D]hwnv *NumPrelude'Numbers#Coq@05WUVŦ]xVXԠ%Omega%omega#Coq@0t.J'6\ϨrK+OmegaLemmas%omega#Coq@0TJ#Jes4Operators_Properties)Relations#Coq@0U3y#h&&Orders*Structures#Coq@0$Znl0\͗+OrdersFacts*Structures#Coq@05Mܿ獐ζΖLB)OrdersTac*Structures#Coq@05'4Ԗ+9%%Peano$Init#Coq@0 jha|ؠ(PeanoNat%Arith#Coq@0O~2$k[#lZ)Peano_dec%Arith#Coq@0Kݢ*k$Plus%Arith#Coq@04tmG$Pnat&PArith#Coq@0,?pr.gZ(PreOmega%omega#Coq@0\|چBb~w4'Prelude$Init#Coq@0JqTttֱ%Quote%quote#Coq@0J@ŹVz-,3%%RIneq%Reals#Coq@0JUڻIu)$w%R_Ifp%Reals#Coq@0c4+ZŠ%R_sqr%Reals#Coq@0X%MԹ%M'Raxioms%Reals#Coq@0S]jnj][L%Rbase%Reals#Coq@0Jܡ\ c6{*Rbasic_fun%Reals#Coq@0hܒiclE>0(2{Ze$ќ8)RealField+setoid_ring#Coq@0 >ʾq /RelationClasses'Classes#Coq@0Gz rA6ՠ4Relation_Definitions)Relations#Coq@0]4Ѐd{n^2Relation_Operators)Relations#Coq@0%s鯰s)Relations#Coq@0-SetoidTactics'Classes#Coq@0S_`nOU$&Specif$Init#Coq@0;RWMi\N+SplitAbsolu%Reals#Coq@0M)&qYlݹ5*SplitRmult%Reals#Coq@0sD\rt/'Sumbool$Bool#Coq@0sB ,$11.]m'Tactics$Init#Coq@0/9m+ a'Tactics'Program#Coq@032 Q@@A@#_12)@% P''@A@@@@@@@@#_132M접#_14'`o@B'R_scope@@6+@2 Q@@A@#_15T@ 3&@A@@@@+@#_162M접 #_17'`o@A)@]@j2 Q@@A@#_18x@u 3&@A@@@@O@#_192M접 #_20'`o@AM@@(2 Q@@A@#_24@34X@A@@@@s@#_252M접 #_26'`o@Bq@@@)2 Q@@A@#_30@44z@A@@@@@#_312M접 #_32'`o@B@@Π@&2 Q@@A@#_33@1,\?@A@@@@@#_342M접 #_35'`o@B.function_scope@A@ 2 Q@@@@#_36h(@#_372M접 Ϡ#_38'`o@B預@"@2 Q@@A@#_39=@w^@A@@@@@#_402M접 #_41'`o@B@HK@נ2 Q@@A@#_42f@w>@A@@@@=@#_432M접 #_44'`o@D;=?@@twzo@֠2 Q@@A@#_45@}A@A@@@@o@#_462M접 #_47'`o@Dmoq@@@ N$@@B@N@@@@@#_48@A@@@@@A@#_49'`o@@@@@#_50'`o@@AF*type_scope蠐ꠐ점@@AAAAA@2 Q@@H@#_51(<+@#_522M접1AA@A#_53'`o@8A@@q@2 Q@@H@#_54*@ 3^]@#_552M접 AA@A#_56'`o@C@@@@be@+2 Q@@H@#_57S@6e)@#_582M접 AA@A#_59'`o@C@@@@@B2 Q@@H@#_60|@MeR@#_612M접 AA@A#_62'`o@C@@@@栐@V2 Q@@H@#_63@a(ؠ{@#_642M접 AA@A#_65'`o@C@@@@ݠ@l2 Q@@H@#_66@we@#_672M접 AA@A#_68'`o@D@@@@@9  @#_69L4xGHAAAAAAA@'⠐mF@2 Q@@@@#_70@"=R@#_712M접 @#_72'`o@F@@13@@@렐AA預@2 Q@@@@#_73T@ Րs*@#_742M접 @#_75'`o@@@@#_76W칠B*Rfunctions%Reals#Coq@@&R_dist2 Q@@@@#_77@ (UZ@#_782M접 e#_79'`o@D\@AAA@2 Q@@@@#_809㠠@#_812M접 #_82'`o@D@AA@2 Q@@A@#_83@?@A@@@@@#_842M접 #_85'`o@F@@@AA󠐑@@|2 Q@@A@#_86@<@A@@@@@#_872M접 #_88'`o@F')@@@AA*-@@}2 Q@@A@#_89L@ O@A@@@@#@#_902M접 #_91'`o@B^#@AY@2 Q@@A@#_92t@]Iz@A@@@@K@#_932M접 #_94'`o@HOQS@@@AAA03@2 Q@@A@#_95@Z)@A@@@@@#_962M접 #_97'`o@EȠʠ@@AAʠ͠h@2 Q@@A@#_98@f@A@@@@@#_992M접 $_100'`o@HƠȠʠ@@@AAA  @z2 Q@@A@$_101-@\D@A@@@@@$_1022M접 $_103'`o@D?A@AA@C@2 Q@@A@$_104^@8@A@@@@5@$_1052M접 $_106'`o@Hprt9;=@@@AAAy|@{2 Q@@@@$_107#Au@$_1082M접 $_109'`o@Bs@A@_2 Q@@A@$_110@j1,@A@@@@@$_1112M접 $_112'`o@H֠ؠ@@@@AAܠߠ⠐x@j2 Q@@A@$_113@u[@A@@@@@$_1142M접 $_115'`o@I㠐堐@@@AAAA%(+Ơ@j2 Q@@A@$_116L@u8۝@A@@@@#@$_1172M접 $_118'`o@F^`%'@@@AAad/@@@*r0ē([HAE@k[CI1Y@d0ٞ_7 ҳ҄@gQ\^v_[t3{AbRa>P %Coq_Reals_Rlimit_eps2_Rgt_R0_subproof#eps,Rdefinitions%Reals#Coq@@!RӀ!H@#Rgt=݀721h@%Rplus+1n@"R1Ȁs@"R0ǀ3new_hyp_for_fourier|@#Rle=Ȑ"H0/@.Rfourier_le_ltI؀ ac#]%gD0i$$Fk+4B@+Rfourier_leS5 -I@0Rlt_mult_inv_pos8ş99O@*Rlt_zero_1&րU@1Rfourier_gt_to_ltvڀ@bGN^@2Rlt_zero_pos_plus1-N@#Rlt=\80T`44zt@*Rnot_lt_lt;EĀkGDtrFF[\%Logic$Init@&eq_sym XZ}%RIneq@&Rinv_1 ;9ۀ@"eq @j@&eq_ind J!r۠󩚠 @&Rminus&H栩F ZȐ(list_hyp)DatatypesE@$list]@A @$prodt@,Ring_polynom+setoid_ring8@%PExprk@$"Ȑ+field_lemmaa@3RField_field_lemma1(Mk(Ring_tac@0ring_subst_niter!8B_G=aK,Field_theory,@%FExprs@G* C/T17+F7E<> @"B$D&II ,DOGQ3S5U 7W-@$Truey@A#lmp_xzgs@#Monf@z@#Polj@u@Ű@.mk_monpol_list(~M&BinInt&ZArith@#add1P&)BinIntDef@ ̀@#mul1P] @ @#sub1P@ p@#opp1P@ {%Zbool!@(Zeq_bool0߀*@'quotrem\$@/ŀ۶$nfe1@&linear@@  @%Fnormw$D4.("﶐$nfe2@ $L<60*@@$boolZ'@@#Peqj*:@*norm_subst7:d0cSMGA9 G橚@#num:uX@%denum00xhb\VN! .A@@%PCondS<H11@J@$Ropp΀\ 8,@#nat@&BinNat&NArithW!N@&to_nat`)BinNatDef @*9G(Rpow_defg@#pow#׀qMN@#appʀC@)condition.=E@2"@&FEeval>@uD$_B@$Rdiv̀\NyA;*7N53@N.iL aS~F@/!Ȑ#reswȐ&res_eqA@(d3VȐ$res0AlzCBAȐ'res_eq0@Ȑ$res1~FD9rtvȐ'res_eq1@ͩG Yõ<@Ω@-RField_lemma55vtqlm$lock"le9A(lock_def ߩ8f@(eq_ind_r!2#8OSnC<  V@ؐ@$Fapp{FЩ@&Fcons2w$YIC=7/9j+ KR)&$'H@#notШr@(Rnot_lt0!.Ҡ֠~--d@%Falsee@l@)False_induُ<=C)#espXyZD0H*t@*double_var?igHF# m:W,.0257׶@Ķ@$?dl}@$Ejr@{@I<uD$_B=It<6%2I0 @|K+fI^P{C=,9J7)@P0kN cUHB1"ZhEܩ`fceLrNt @..lݵ@-- 3bکװ)ҷ̷Ʃİx8sSqlxkeT(ԩ}8xXvq}pjYfKd*C<~^|wvp_@ &Coq_Reals_Rlimit_Rlt_eps2_eps_subproofͶҷĵ}@2Rfourier_not_ge_lt#M瀰xc@#Rge=-ab_ Z\vRPX\@1Rfourier_ge_to_le1 4_RF?61k/-Рo&9,%~#Jȩҩ֩zx@e,*@#,@./%$dTNHB@@4)@+!:xv3sqplljBd~@b"E:1>BA>5٠۠00Cx &Coq_Reals_Rlimit_Rlt_eps4_eps_subproofOMA?$#ZXLJ0+*/ 2 =ܩ?A = & (cͩ ƠȩȠàW[8$ &ce5g(+7tvFx9?%da_ZRK7k4mOo1Qq'-s<u,,WwYyB{L27}FP5Hc Y,%#@ն@ζ׶@ٰک$\$@ö@߰OO@nJoE*@>3=;51/#!1B4A%ǰ'LLNI7@%%`۩өhjǩϠnѠӠC @Mة,@&or_ind"V6@"or @)  7@&Rlt_le A8-"H1I@&Req_le 3vb#$ gg"H2ǩΠ346d@*Rlt_irreflnQՐBBn@,Rtotal_order%wK!lc"l'fnh*Rbasic_funm@$Rabs; w) $.twP{ed@*tech_Rplus/:v@+Rabs_triang97&<$$@(Rabs_pos+F쀐0.@)Rle_trans"6=U?<ҩ>[Z@'Rlt_0_14CJkI'Raxioms@*Rplus_commq _]ũȩ L&Rlimit@*mul_factorCB0"@1Rmult_lt_compat_l`ũǵ@0Rinv_0_lt_compatD~?}ghuܩNyX }婚@%proj1O @(Rplus_neTȩ$/(&!P-1@1Rplus_le_compat_l? |àTŐ̠Πː!$F$B5S@,Rlt_le_trans9-ݠߠ2C3n3`@)Rmult_0_r+ȀCA&|x=YWXYM-@*Rmin_Rgt_r'IxRJ@#andЖw@A[p@-mul_factor_gtw>!?\!f@xx!D@|}"x0t10@)limit1_in8 9WuBAAAA@@@@@D@٠+ĩ  sYX@$dist 3^@%R_met Րs4Р@"ex @BBB@@@@D@ŷ#alpȩf!x@$Base /h'@H50#94O <7R,B=Gِ&alpha1"H4.BBB@@@@D@753@;xJ`[3Nd_MgbP9W11"H3NL@Tͩcyt IKg}xL|U v\\^_@@p@H= &Jp@MshhOD/ȩ|@)dist_refl(#Hr1#Hr2@cXCb\EZ]IJ/N3Rˠַ;v@@~s\]@zc|d4ϐ/-@۰֩NoVuZy ?4qKQn@!@$*eu@&+(}c0^meC@*tech_limit?:iGEC·Aȷɩ̶@~*Rfunctions@&R_dist\  `Ķ@7*.nط"m @'and_ind14ۀЩ>*~C@A?=;9@A<Oe`ܩSidCI@(limit_in=mmPC  !g)*+V75'W@&ex_ind 5{=x>v1tr@z&>OPCS@8&8+cdW@&°E!m@0pqdt@P&fI78^||@9ѠjF"x1͠@$ݠɠuqkЩܶ@ܠ6U렩נ+{@&gZQyP{`6X;̶@)(d(@5@ ض@#"ũ! S ׶@ %/~3SR59޷z1@7IEH+G3Dt(ǩ> @D$R#6T@TS S Q O @U(ΩdP !hTU੐TǠ8l@$Rmin; 〠] *  $o <@u|p .ov W&8v 9J Cz =| !"x2 Wdhc +[.mj"H5 8Ȑ"H6}Щ `ܩ dM VU s"H7ΠXXe d ^"H8٠Š o n hȐ"H9@$eps2 3&ƀ  A ~ x  G  ~   N堩\'Y렩[2 @/Rplus_lt_compat":Ȁ <ZW    DrZ Ǡ  ĩ{  ϠM  ʩt@*Rmin_Rgt_l'IxLRv r~@+R_dist_plus. "ĩv w"   *ѩ,  @,Rle_lt_trans*GӀ5 }=ԩ  >L    CF @H @N LJ@R `vq   dzuu Ԡ Z@+eps2_Rgt_R0 P'' ک UC 0 .@ n 1l 2j %hf@ zC%p = ֠:f ' C ) 𐑵зͷ I J > N L@ > O P C S@ ܷ _ ]  O( ` a T d@  U S 8  q r e u@ 13k ~ rc @ ɠ/ 6 ˠ} sʠ  Ơ  @ʠv ؠĠ  e ܠȠSwUȷ p @۠  ϩ 렩נԩ    @=    栩q9s0 ] @s MG   > з    ܩ r y< P  YA   1zZ ! ͷ   :M %'@*R_dist_sym WC C  vC H!z !WQ #@/Ropp_involutive"2VC W 0]C ]I   C  !@ % #@ c &a '_ ][@c" qZ 4 2@ $r 5p 6n )lj@c ~CȶŶ A B@. m  / 0{ H{ r  CնҶ N O@  {  ߷2ݷ Y Z [ O0 ./ c  M  @*limit_plus]Iz ߷ n %k X '   [@*limit_RoppZ) a  ( cC | s? e tS -         | z  Ġ  @< Ԡ  b4y @Ѡ ߠˠh     ж@      @       !a !b@ °    _ ;   @+R_dist_refl.'CQONL ȶK ɶ  ʶ@   ͷ Ω @ ,'BB VCb`_]  ٶ\ ک--!h ?  ɩ Cljig f a   Аtrsrp  p  ÷ m    2 0 .,@ @Π  Ԡ 6B @ > < @ N:    M K IG@թ [M @#Z X V T !@ fR   Q] * c a .@۩ s1 2 k &i 6@© {    fqNt A@  lz   J K > N@  ' (ǩe9 X@ + @@ `@  7ש h i \ l@  E~ Fy gV  v@x tI 3;te ~@s ào U   z @n Ϡ cg db a0Z @X ٠Š mO nNsMG `E ?=8Ȑ(hyp_list  aȐ'fv_list O  Q  S  U  R l R @2RField_ring_lemma1!7 g    x  z   |  ~   ܩ        $        5 @ ݰ  1  /    0   c         0   e           ۩ t d b  i ڠ lh       Ġ    80   ͠    D   ڠ۩ |C   ߠ   V  ꠩   W &    !X,  ߩ ' *  Š    lf&m ; 5 * 5 8  Ӡ  נ Ԑ ,| G D $ ߠ#; F I Π 5 S M ! L #-   Y S   0J U X ݠ . 0, H g a  _ b 砩 8 P n h e 5 g g ̠ l i @ k &r } r o  t H . s s @(Rmult_neF z Q K..@&Rinv_l($5@-mul_factor_wdw^C  d  fpA N@+Rplus_assoc  StW@+Rmult_assoc& ~\ ;o@2Rmult_plus_distr_l0ylɀ @*Rmult_comm8  ; Q Q  Y X _ ia  ˩ J    aL Ҡ  Ԡ Z!Щ ܠ 6 ޠ àĩ%7d< 7  ˠB @ Ҡs M  ۠  éQ  s%#H10 KK]G]OO 3@2Rplus_lt_le_compatڀ ^m #ra ʠ ǐu kyk ϐoѐ 6 Y@9Rmult_ge_0_gt_0_lt_compatO $  `@&Rle_ge @ H:'' ZT #  TWH n@/Rle_lt_0_plus_17$耠,,CQK11 y@.Rplus_lt_reg_l5=Ӏ !9F; qn  *? ps  .  _ j  <  ɠ s $ E&%\ z  ֠- N  P& 3v2   W 5@/Rabs_triang_inv߀g, xn 46 C 6 k gLK ) @+Rplus_opp_l73QU<* xVP PZY/[ }D  [l ? T @1Rmult_le_compat_lڀ K A& Ckѐ "Ԑ *aީ _   c8Π C  j֠ĩ   ޠ Ʃ N FR ĩ ( @)Rabs_mult)- 33e " % ɠ Ɛ 04 ʐѠ>;8נ Ԑ ֐. ;PO2Cxg 55CL@:N@B@93 +&  C* EG/   @/mul_factor_gt_f}A Cjh@Zkl_@.ʰfe C_ǷwK:`'L NCc*     !  x @%adhDa ր 4 @͠ɠŶ@۠͠  i@۠נӶ@a; % f hs@ 4   ¶@ ,   !  6 =<η0 Ҷ@  W H  5 0 ɩ Ŷ @ /+.- @K@ !@ '  6"ީ:&7  l> T O k Ҡ &~  Ѷ 6@ <J0L |  @ @ FѩT 8VB!R T:@#iffС) J   \6ж@  V e  ߶@ j% ' a!)   b%l @5  1J ~K # ~<Z" , o+ ZkЩ /l2  Z;. f ΩB?  IfZfG vP n |pж@uV    }ʩx @ ˠk ᠩtgA 9@wנ Щ{ M   GAK g dɠ` jϠsMM ߩ sؠa(g*ԩ ~㠩bqr$$ܩ x @.Rabs_minus_sym, @ !۩JJܠ<Ϸ O -< omVed { ~?@& zbx;0_OIC=5  0aQKE?7  /$4)&hh&)m $@K '͠ ʐ/Vc ѐ6lAܠ ِ>Zdϩ ߐDk;C@נ E  0  @*R_dist_tri 7)7*O9,C@   JG:  Eb   b R   UO  # ʠr r @(Rmin_Rgt 3zˠL} 3 d Cߠ  sf P" Q@񩵵Ȑ!s A@)Rcase_abs7[&Specif@'sumbool7̂K@  BAAAA@@@@@D!Ǡ  @ն@ǩ % ՠKɩ a/T[Ӡ#Hltk@4< ķ  ϠʷЩԠG٠ 2֩ + ˩   @S ˩Wڷg e ѷ@_   ݩb  &  m@1Rplus_lt_compat_l ]߀ {  v@)Rlt_transC  C   & "A; e;>@:B 1B R4QN"$zPS@@^XVY@0  mЩla5pe9@!c .~sG-}w_ux@2t 1h 7y T  l=nX>np 7@&Rinv_r ;:S@6Rlt_dichotomy_converse,#dZ~ Bޠa  c    k    [dyfs. iiC yy{ީ :i@ ¶@| O   ީYlG 0@*Rgt_not_le3Sy͐@6Ropp_gt_lt_0_contravarߞ$k @(prop_eps,\?#Hge$t@=C ˷  թ ̩ ȷ@I©K   @Qɷ@W %@\^nl& !@fh L  usqonն*(@mF 0.@ sj P Eж@ pu%'wK@)@NC|, {ʠ0̠2ݩVK #@ ՠ;נ=j@0Rminus_diag_uniq)6Xȩ)  u@&Rge_le 6/R#O|@)Rle_le_eq" fH1YC@sq@cm z C@~|@n  C@@tǠР @,Metric_SpaceC@@FF@@@@@@@@@!m@ K@ S 𐷐 ΔQB @@ @@y(dist_pos }!ybנe(dist_sym h ǰ s BѰƩGu԰(dist_tri M!zVʩm©Yb!aC@۶@ͩ  6 1R (hCbC n l k i i@c@  < <k@  ? ?C z x w u u@o@ rwĶ@ u#"    "Df "Dg   "Hf @ M K I G@ M  G[ G  A"Hg!@ _" ]# [ Y&@ _ $ ,*'eps_pos / j0 h# f3@ l  z f  y< w= u0 s@@ y {    w ̷$alpgO"lg" T U H X@      7ߩ a b U e@   ĩ C{  n $alpfu"lf# z { n ~@   F ̩ɠ  Ɛ X   @ Ǡ ՠנ8  ͠y @ Ѡ Ӡ -  Щ㠩 Ϡ ސ  } ˷ $ @    ݠ @#   @  &      @   ٩ 4   Ґ 86 +ζ@ &   Gt ϶ ض@   $  &    "   Щ$  3   7 g  x ː +Q> *  l    א ux LЩ P <  }: X > CZ F   Uʩ -S @Y _ Tg S   ]*@c  ,q ] oZC 31678@<:@,z=x>v1tr@z? 9!nȶ@LJ@<MNA@O5#YW@IZ[N@ C Bge jkl@Y@!uY@#Dgf (Uf-  & |@|ʠƠ@ʠ >ؠ* fݠ/ Dxvr mޠ@BS~G ,+L~@VI&delta1̷' Ϸ ЩöӶ@  l `q  W@$Rsqr=MW )'%#@5젩 , +"&delta2-  ^3@9 G ^L  T֩PNLJ@P t^ cc 8 ^+@d r+ߩt(ZR z@ @m:@s #'Ր: ԩ JK>N@`琩L h#쐩Q()kA a@ J'<ܩߠ2  f p@" p Bs@ Gʠ hXϠ!]ȩ^ #r3v@Р ޠ0 \t㠩5qr 2;&!n@'Rle_dec3u GCȩ h@ 3eʠ L3 T@#u O(zߠ @'`[ީ' G6 ЩQ> Cѐ _ dv w nO Ȑ#H11 ީZ B@&Rmin_l|[ Cn% `ީ@&Rmin_ro*s o,Ԑ9P#H12~ ߐD  琩L   ɩ,-Ϡx \" שZ   ۠ ]-#H13e 5k  |y r b |àk HP|   ̠ YQ#H14Ԡ ( n[Ȑ#H1576 i= pDC   p \^ [  j{} % (@а$ "0V x0X z*n,C۰0iɠh Y [7Π7 4ܶ@!ɩxؠwS[| l.堩N ;KWW@DFP   @R*/e|YphȐ#H16)9$!/"fDl95203wːJ##"@'Rabs_R00)Ȑ#H17Z@1Rmult_lt_0_compat=@+Rabs_pos_ltc ԩtd  AB Ȑ#H18k!e@@A@A@@@@D#]ـ@'4a4,CP": iojC@Šl@#INRr.搩@(lt_0_INR 6"Lt%Arith@(neq_0_ltBLCka:mm]g\#Dhwa`CŰz ĩѰƩ۩ dթnݩ&%ԩ"$ʠ+-:Ҡ>C8: ۠LG  ADTUS Ϸ%OӐO U("c$fݐik⩚@@)Rmult_1_r+1 F@*Rinv_l_sym9`g~u!0 zyw; ;aP@9Ropp_mult_distr_l_reverse/MvA@)Rmult_1_l9f_@*Rinv_r_sym9lU䀠l 'y n&r{l@2Rmult_plus_distr_r~yCj_3X?/9|@/Rinv_mult_distr DWzoCMvsGAKvy }QȠp TРb$Ye U Vmࠩj+gy;qwZ | ~}U/:ʩͩѩ##֩©@1Rmult_lt_compat_r ?r-/ @.Rmult_lt_reg_l>eЩE:GG&ȠQʠHϠWӠZՠ   ٠` ݠԩߠfݩcl!rҷ("y )#%@*Rabs_no_R0 C' / @7 7C C S  CJ? DA?B.ސf ?"[U)+-'/"[^k`Jhb68  nh<ķhkxm#A%YwqE?G }wK>Mշy|~4R6a:;Y=[UDPE#2ЩeKiԩhb[f]@'IZR_neq%b``f@ci>d@@AA@AA@@@@@@Dmn@n@@rrjC~qA  K #X %g^ ^n (lrn .tpذ ЩGhA© ?**zC'7Z C+;^2%R_sqr@(Rsqr_abs /RRb b O4Awt©Gѐwj  ǷV 24D ѩ 'b M@t© Ilgd@5 W  O@ 'Rmult_integral_contrapositive_currified  QߩȠ.ېh LȐ#H19[U)#(WZg\ 02 460 lf: -<>@==:B5nq~s )]{uI KE wz| 2P 4hTQVS  ZW^[`]d^f&c Mk OmOqdsLp Zx \z\~UW} g ii.oŰ p rrzqʩyWҩ]ة.۩    _q |N   J][׵VȐ#H20VCECANʠ (a4c2ϩԠ6Uנې[ hlwnprbuw蠩 }   C+   BC8-    :7 58@}ѐ6ikڐ 3ᐩFjl ک ꐩ,   0W'/; R<> "ᠩ46[@4Rmult_le_0_lt_compat2o=/  rL=rOJVP n322@)Rabs_Rinv&R Z! wz>){@)Rplus_0_rH€ 35 C@<頩;wȩxF %K%:Hcllotpq;}@+Rsqr_pos_lt8WµwCffhdCbXC&  [C||~zCxnC<C@@a@A?=;@AO;IC@@u@USQ OM@U۩cyt][C&'@@||_,ݩC23@@  QkV': {u5