"`wy-F*Rbasic_fun%Reals#Coq@()Notations$Init#Coq@%Logic$Init#Coq@*Logic_Type$Init#Coq@)Datatypes$Init#Coq@&Specif$Init#Coq@%Peano$Init#Coq@"Wf$Init#Coq@'Tactics$Init#Coq@%Tauto$Init#Coq@'Prelude$Init#Coq@|)Notations$Init#Coq@0&v!D]hwnv %Logic$Init#Coq@0\͉!Ig)Datatypes$Init#Coq@0.i bYN Z*Logic_Type$Init#Coq@0 1jc6&Specif$Init#Coq@0;RWMi\N'Decimal$Init#Coq@0C涳N*ua#Nat$Init#Coq@0eʤģPSR蠠%Peano$Init#Coq@0 jha|ؠ"Wf$Init#Coq@0q+W,J+'Tactics$Init#Coq@0/9m+ a%Tauto$Init#Coq@0̂"&/rk0JqTttֱ'BinNums'Numbers#Coq@0dmk(5Ju<*EqdepFacts%Logic#Coq@0FI$ͼՋ`)Eqdep_dec%Logic#Coq@0u wWIϰ߼&Basics'Program#Coq@0!bs߯? :VU$Init'Classes#Coq@0](p{yOh.'Tactics'Program#Coq@03u%+Equivalence'Classes#Coq@07;ꮹ-SetoidTactics'Classes#Coq@0S_`nOU$&Setoid'Setoids#Coq@0D9AsWE!>$Bool#Coq@0j 2cZ`FW*Equalities*Structures#Coq@0όe얟)H.Ƞ2Relation_Operators)Relations#Coq@0%s鯰s4Operators_Properties)Relations#Coq@0U3y#h&)Relations#Coq@0r砠*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ&NZSqrt&NatInt'Numbers#Coq@0` .%m%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|&NZBits&NatInt'Numbers#Coq@0MlIpKt'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$&NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ)NMulOrder(Abstract'Natural'Numbers#Coq@04> Aat/ j $NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ'NMaxMin(Abstract'Natural'Numbers#Coq@0]v|Qg̟ʠ'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NLog(Abstract'Natural'Numbers#Coq@0KI'BinList+setoid_ring#Coq@0Au,Ring_polynom+setoid_ring#Coq@0gaKw9`UW+ListTactics%Lists#Coq@0,Jcy{+InitialRing+setoid_ring#Coq@0k/T=cN(Ring_tac+setoid_ring#Coq@0x2]%762f)Ring_base+setoid_ring#Coq@0fbU(2cNe$Ring+setoid_ring#Coq@0Msᬠ)ArithRing+setoid_ring#Coq@0ṔCgt?}%Arith#Coq@0I|кX*o4#Max%Arith#Coq@04=;3$>aU堠#Min%Arith#Coq@0Ce-Fѕ(PreOmega%omega#Coq@0\|چBb~w4%Omega%omega#Coq@0t.J'6\ϨrK(Zpow_def&ZArith#Coq@0f蓜DX;V*ZArithRing+setoid_ring#Coq@0{#'[{nm!/,Zcomplements&ZArith#Coq@0ʾq %RIneq%Reals#Coq@0JUڻIu)$w&DiscrR%Reals#Coq@0z41pV.%Rbase%Reals#Coq@0Jܡ\ c6{%R_Ifp%Reals#Coq@0c4+ZŠ,Fourier_util'fourier#Coq@0ϳ> 4`*r0'Fourier'fourier#Coq@0wV9TN&1E]k Fkꈧℕ'"qlϠР*Rbasic_fun%Reals#Coq@A$Rmin @!x,Rdefinitions@@!RӀ!y Р&Specif$Init@'sumbool7̂K@BAAAA@@@@@D!$@#Rle=BA%Logic@#notШ6%RIneq7@'Rle_dec3!r C!n@J,Rdefinitions%Reals#Coq@@!RӀK +k() 7!= R'>'>''+k6'bZAABAAAP5h@@@@@AA@@>@,Field_theory+setoid_ring#Coq@@&FEeval>@@A@A"s @,Ring_polynom+setoid_ring#Coq@@&PEeval"s @@A@BA@A@)Rmin_case @@@"r1N"r2S!P@Y,VݠB@@@AC@pq@; 〠ED@@,V@@A@A@@@Q0Rmin_case_strong @@A543@,X[D2@@@@,Rdefinitions%Reals#Coq@@#Rle=CBŐ4@@:<ECB@@,X[@)@A@A@@@*Rmin_Rgt_l @@BvÀuǀҚˀ@9@#Rgt=<iCBA%Logic$Init#Coq@@#andЖw@|!@@@@@Π*Rmin_Rgt_r @@YC@.@CAFBAL(A@@@@@(Rmin_Rgt @@Dᚠ.2=6[@#iffС)q׀CBAnCABA@@@@@5&Rmin_l @@Efj׀BAB@@@@@R&Rmin_r @@F͚Ě􀠩!BAA@@@@@o)Rmin_left @@Gꚠ @Ӏ㚠@BA@"eq @K@@@@@*Rmin_right @@!H!)@5AB!ĩh@@@@@0Rle_min_compat_r @@>I.D#@!z۶@UCB[@@@@@נ0Rle_min_compat_l @@bJRhGd$ @xCB~:>%@@@@@)Rmin_comm @@Ku+l/%ɀBAπAB@@@@@6Rmin_stable_in_posreal @@L`%Reals#Coq@@'posreal̠@@#Rlt=Š@@#IZR/r'BinNums'Numbers@@!Z7@A%RIneq%Reals#Coq@@#pos=D.BA@@@@@m(Rmin_pos @@M蚠ߚ@HE>=@;7@AB@[Xߩc`\YҐ@@@@@(Rmin_glb @@2N"؀܀@NAC@U Y@@@@@Ѡ+Rmin_glb_lt @@\OLC" @AC@7"@@@@@$Rmax @vtjuhX@7UN4M6@|2s68 +k() 7!= R'>'>''+k6'(AAPZh@@@@@%)Rmax_case @@P VZ@_,f͠R@@@AC@uv@Q; U@@,f@@A@A@@@T0Rmax_case_strong @@Q876@,hKT5@@@@BC-@@ 359<;@@,hK@@A@A@@@(Rmax_Rle @@Ron˚Ā5A^CB@"or @HACNAB@@@@@Ġ)Rmax_comm @@OS?6LǩBAAB@@@@@栠&Rmax_l @@qTaXBBA@@@@@&Rmax_r @@U~4u8A΀BA@@@@@ )Rmax_left @@V@AB&퀠hh@@@@@=*Rmax_right @@Wζʶ@܀BAȀC @@@@@Z0Rle_max_compat_r @@X붐綐Y@CB)+-@@@@@}0Rle_max_compat_l @@Y @CB$LNPː@@@@@)RmaxRmult @@+Z!pҀ!q׀⚠ۀ@I~9A8zZ@%Rmult׀ @@@@@ݠ6Rmax_stable_in_negreal @@h[X@'negrealzcD@S@#neg=DBAǀ@@@@@ (Rmax_lub @@\;|?[C@CA@Wp䀠_@@@@@4+Rmax_lub_lt @@]eim@CA@@@@@@^(Rmax_Rlt @@^][@@ӀcB2CBA΀QCAWBA@@@@@(Rmax_neg @@ _ƀʀ@pBn)@zw2rt>@@@@@Ơ)Rcase_abs @@Q`&Specif$Init#Coq@@'sumbool7̂K@Ad|@#Rge=-Ap@@@@@$Rabs @0qduTv@#Rlt=Q}@/r@(=- @T7cO@$Ropp΀mWn@XQS +k7 = R'>7$'>''+k6'`FAB@'X@@@@@C'Rabs_R0 @@aÀ8@Y; wII@@@@@W'Rabs_R1 @@b׀өYB@(positive*@C@@@@@u*Rabs_no_R0 @@c@@#notШAQ n@; w橚c@@@@@)Rabs_left @@1dޚ׀@}A{64& V@΀@@@@@̠*Rabs_right @@We@A\ZL00@@@@@젠*Rabs_left1 @@wf!a@A€}{۩mQGU@@@@@(Rabs_pos @@gB䀐A@@@@@,'Rle_abs @@h]ʀAA@@@@@D(RRle_abs @4@!1@@@@@@U'Rabs_le @@iiඐ!b@%Logic$Init#Coq@@#andЖw@ABBA쀐А@@@@@+Rabs_pos_eq @@j@+`Az @@@@@,Rabs_Rabsolu @@7k'݀0"&A+A@@@@@̠+Rabs_pos_lt @@WlG@WU A`hT8@@@@@.Rabs_minus_sym @@mo%f)|ܩn@&Rminus&HBA{ AB@@@@@!)Rabs_mult @@nRV qBAwBA@@@@@O)Rabs_Rinv @@o@ڀ؀ A(㩛ူAӀ@$Rinv8‐Ɛ@@@@@)Rabs_Ropp @@ pfҀAA@@@@@+Rabs_triang @@ -qӀO׀DL@%Rplus+1BA -B2A@@@@@Ӡ/Rabs_triang_inv @@ ^r皠  uۀQBVA[퀠BA@@@@@ 0Rabs_triang_inv2 @@ s 2 6{ BABA@@@@@ 3)Rabs_def1 @@ t  dK h@  @- z  @@@@@ U)Rabs_def2 @@ u К m @0E j  lS @@@@@ u'RmaxAbs @@ v՚ Ԛ   @ CB@ #  ۩ ' QS Z  ֐@@@@@ )Rabs_Zabs @@ 6w'BinNums'Numbers#Coq@@!Z7@:, @#IZR/rA&BinInt&ZArith#Coq@!Z@#abs1P)BinIntDef&ZArith#Coq@!Z@#abs A@@@@@ 'abs_IZR @@ x='BinNums'Numbers@@7@E=A~RA@@@@@ #)Ropp_Rmax @@ y "  ǩo퀠BA }BA@@@@@ M)Ropp_Rmin @@ z  ~  rр񩚠 BABA@@@@@ w*Rmax_assoc @@ {v"x!cwy@CEBAKOCBA@@@@@ 'Rminmax @@ -| ӶM ǩ @ mBAnBA@@@@@ *Rmin_assoc @@ K} ;  0   穛 F 驚 C BA  CBA@@@@@ @@@ ӳ2@ ӳ2[)Datatypes$Init#Coq@@A@A Գq@ Գq\ @A@,V @A,X[ j@,f@,hKs@ABCD@cA   @A.0TQ+Ring_theory+setoid_ring#Coq@@ABA.U>[J @B@@"O@(PeanoNat%Arith#Coq@#Nat@&of_int"O#Nat$Init#Coq@@ 6@A@A\@&BinInt&ZArith#Coq@!Z@'quotrem\)BinIntDef&ZArith#Coq@!Z@ /@A@\@@+pred_double\@/S@@A@As2@3@&shiftls2*@vY@A@BCs8@8@&shiftrs8/@vY@A@ѓ@>@&squareѓ5@y@A@@D@&to_intϑ;@@A@z@5@&doublez,@/!@A@ABCD/@O@)log2_iter/F@wd@A@NH/@B@&moduloNH/9@1,@A@A\d@G@&of_int\d>@1?A @A@bz@M@&of_natbzD@1?G!@A@#@S@&shiftl#J@1dV@A@#@Y@&shiftr#P@1d\@A@ABCD/x@&BinPos&PArith#Coq@#Pos@)pred_mask/x)BinPosDef&PArith#Coq@#Pos@ )X@A@6@x@&square6o@19@A@AV+L@}@&to_intV+Lt@2@A@V1b@@&to_natV1bz@2 @A@V5=@@&to_posV5=@2@A@ABCl@@)sqrt_iterl@!$:@A@@@6@(sub_mask@-@)@A@ADEF c@@'testbit c@!ć@A@7 B@D@'of_uint7 B;@*`]?@A@AG@I@)mask_rectG@@+ED@A@F˱@O@)add_carryF˱F@+p@A@AB^Ҷ@@'to_uint^Ҷ@#m@A@gL7@@'sqrtremgL7@40@A@Aq@@'testbitq@5)@A@ݎO@@+succ_doubleݎO@6r@A@A p@l@0double_pred_mask pc@0-+m@A@BCD T@&BinNat&NArith#Coq@!N@!t T)BinNatDef&NArith#Coq@!N@ 2@A@ @@#add @3 @A@A l@@#div l@3@A@ Y@%@#eqb Y@3@A@AB #@*@#gcd #!@3n@A@ T@0@#leb T'@3@A@ACEG "@5@#lor ",@3m@A@ q@?@#ltb q6@3@A@A @D@#max ;@3@A@ @J@#min A@3`@A@AB @O@#mul F@3B@A@ ~@U@#odd ~L@3@A@AC =@Z@#one =Q@3@A@ @b@#pow ˑY@3@A@A c@g@#sub c^@3@A@ @m@#two d@3J@A@AB hx@r@$div2 hxi@>@A@ @x@$even o@>4@A@ACD @}@$ggcd Бt@>U@A@ @@$iter }@>:@A@A 3"@@$land 3"@>m@A@ F)@@$log2 F)@>t@A@AB S@@$lxor S@>@A@ @@$pred @?U@A@AC @@$size ܑ@?'@A@ !@@$sqrt !@?@A@A ! @@$succ ! @?\@A@ !7@@$zero !7@@P@A@ *@@%ldiff *@@A@AB g_@1@+pred_double g_(@25\@A@CD m@6@÷ m-@2j@A@S@=@&of_intS㫑4@4}5@A@AS@B@&of_natS9@4};@A@BEFGH\R@G@(mask_ind\R>@4@A@\^@Q@(mask_rec\^H@4@A@A!,@V@&pred_N!,M@4s)@A@B@[@&shiftlR@5X@A@@b@&shiftrY@5X@A@A&@g@&square&ّ^@5,x@A@BC"@l@&to_int"c@5L@A@"@t@&to_nat"k@5L @A@AnTq@y@+testbit_natnTqp@6n@A@B@@(succ_posB@@A@I@@'abs_natI@?n@A@AB.@@'of_uint.@MS@A@3~@@'sqrtrem3~@7]%{@A@ACD,@ @'bitwise,@/v@A@>4'@@'testbit>4'@8g$@A@A{U@@,sqrtrem_step{U@8R@A@u^@9@(div_euclu^0@ @A@Afz@@'to_uintfz@9w@A@Bl@'@'comparel@3R@A@CDEFs8@,@+of_uint_accs8#@5+@A@}@R@,pos_div_eucl}I@&`@A@3x@(@'compare3x@]=@A@A@^@&doubleU@'޺_@A@BCq@@+of_succ_natq@$@A@w@i@&modulowɑ`@)1@A@ADK@n@&of_intKe@)j,I@A@K@v@&of_natKm@)j2_@A@AI@{@&shiftlIr@*O@A@O@@&shiftrOx@*O@A@AB,@@&square,}@*ow@A@Z@@&to_intZ@*81@A@ACE`@@&to_nat`@*9G@A@e@@+testbit_nateđ@+@A@A+{@@'sqrtrem+{ё@,J@A@5z@@'testbit5z@-T|@A@A @@'to_uint ͑@.@A@ @@+succ_double @.^4@A@A#@'@'compare#ݑ@ )Q@A@BCD%t2@,@(size_nat%t2#@ @A@%9@3@+of_uint_acc%9*@ ΋@A@A%V@8@+double_mask%V/@ S@A@%%@>@'div2_up%%5@ "@A@ABEF'ş@C@'Ndouble'ş:@ @A@(b0@K@*shiftl_nat(b0B@9-@A@A(nՖ@P@*shiftr_nat(nՖG@'@A@(@V@0succ_double_mask(M@@A@*W$@\@,compare_cont*W$S@!@A@.0@b@.sub_mask_carry.0Y@΂@A@ABCD.@@!t.@ ;@A@.먩@@#add.먩@ `@A@A.U@@#div.U@ @A@.B@@#eqb.B@ @A@A. @@#gcd. @ @A@.=@@#leb.=@ @A@ABCEGHI. @@#lor. @ @A@.Z@ @#ltb.Z@ @A@A.p@@#max.p@ '@A@B.@@#min. @ @A@.@@#mul.@ @A@AC.g@@#odd.g@ @A@.&@&@#one.&@ @A@A.뾴@+@#pow.뾴"@ k@A@.L@1@#sub.L(@ @A@.@7@#two..@ @A@ABCD.,a@<@$div2.,a3@ @A@.Xz@D@$even.Xz;@ ?1@A@A.@I@$iter.ؑ@@ @A@B. @N@$land. E@ @A@. @T@$log2. K@ @A@ACE.@Y@$lxor.P@ R@A@.y@`@$pred.yW@ `<@A@A.Ʉ@e@$sqrt.Ʉ\@ ;@A@.@l@$succ.c@ @A@.t @r@$zero.t i@ Z@A@AB/@w@.to_little_uint/n@ @A@CDF/@|@%ldiff/s@ H@A@00@@'compare00@?H{@A@A1P%@w@!t1P%n@  @A@B1P@|@#abs1Ps@ @A@1P&@@#add1P&z@ @A@A1P@@#div1Pґ@ y@A@BC1P@@#eqb1P@ f@A@1P@@#gcd1P@ 0@A@A1P@@#geb1P@ T@A@B1P@@#gtb1Pʑ@ q@A@1Pĺ@@#leb1Pĺ@ a@A@A1Pň@@#lor1Pň@ /@A@BCD1P@@#ltb1Pב@ ~@A@1P@@#max1P@ @A@A1P{@@#min1P{@ "@A@B1P]@@#mul1P]@ @A@1P@@#odd1P@ @A@A1Pɣ@@#one1Pɣ@ J@A@BC1P@@#opp1Pԑ@ {@A@1P1@@#pow1P1@ @A@A1P;@@#rem1P;@ @A@B1P@@#sgn1Pˑ@ r@A@1P@@#sub1Pɑ@ p@A@A1Pe@@#two1Pe@  @A@BCDE1[8@@$div21[8ޑ@ @A@1[d@@$even1[d@ I@A@A1[6@@$ggcd1[6@ i@A@B1[U@ @$iter1[U@ @A@1\@@$land1\@ /@A@A1\@@$log21\ @ 6@A@BC1\$@@$lxor1\$@ @A@1\Y@$@$of_N1\YÑ@ >j@A@A1\@)@$pred1\ @ j@A@B1\@.@$quot1\֑%@ }@A@1\@5@$sqrt1\,@ @A@A1\w@:@$succ1\w1@ @A@BC1\k@?@$to_N1\k6@ @A@1]@G@$zero1]>@ eD@A@A2:@L@%abs_N2:C@ @A@21@R@%ldiff21I@ ߵ@A@2=*@X@%quot22=*O@ @A@ABC2kF@@(size_nat2kF@{@A@3@x@(tail_add3o@^q@A@ADEFGH3@}@(tail_mul3t@^@A@5Z@@*shiftl_nat5Z@y/@A@5f}@@*shiftr_nat5f}@4@A@AB5a@@'iter_op5a@ @A@C6w~@@'of_uint6w~@^5@A@8j@@'of_uint8j@'"h@A@9E@@(div_eucl9Eđ@(*k@A@AB:x@6@,Nsucc_double:x-@ ʭ@A@CD@[@&divmod>R@C@A@>@b@&double>Y@NĴ@A@?2@S@,pos_div_eucl?2J@-u@A@AB?;@m@&modulo?;d@"i@A@CEFGIJ@|%Arith#Coq@0I|кX*o4)ArithRing+setoid_ring#Coq@0ṔCgt?}*Arith_base%Arith#Coq@0Ĕ}CS&Basics'Program#Coq@0!bs߯? :VU'Between%Arith#Coq@06v*0ur`C0&BinInt&ZArith#Coq@0BpHޞun^)BinIntDef&ZArith#Coq@0ådR4Tuy'BinList+setoid_ring#Coq@0Au&BinNat&NArith#Coq@0K11ڤs+Π)BinNatDef&NArith#Coq@03@1O,[{ 'BinNums'Numbers#Coq@0dmk(5Ju<&BinPos&PArith#Coq@0vyػ0= u)BinPosDef&PArith#Coq@0}H d.%,b$Bool#Coq@0j 2cZ`FW*CMorphisms'Classes#Coq@0qیZBeϠ0CRelationClasses'Classes#Coq@0TL;0RUfw1+Compare_dec%Arith#Coq@0jXF 8765@0.i bYN Z)Decidable%Logic#Coq@0ND걸풬/Oߠ'Decimal$Init#Coq@0C涳N*ua&DiscrR%Reals#Coq@0z41pV.%EqNat%Arith#Coq@0AIgՋXRV *EqdepFacts%Logic#Coq@0FI$ͼՋ`)Eqdep_dec%Logic#Coq@0u wWIϰ߼*Equalities*Structures#Coq@0όe얟)H.Ƞ+Equivalence'Classes#Coq@07;ꮹ)Factorial%Arith#Coq@0@oehJd%Field+setoid_ring#Coq@0J _ȫ)Field_tac+setoid_ring#Coq@0d vDZl^۹H0B~uYٮ٠'Fourier'fourier#Coq@0wV9TN,Fourier_util'fourier#Coq@0ϳ> 4`*r0-GenericMinMax*Structures#Coq@0måj$"Gt%Arith#Coq@0䙛#c:D $Init'Classes#Coq@0](p{yOh.+InitialRing+setoid_ring#Coq@0k/T=cN"Le%Arith#Coq@0d}Omq+$List%Lists#Coq@0>I+ListTactics%Lists#Coq@0,Jcy{)0\͉!Ig*Logic_Type$Init#Coq@0 1jc6"Lt%Arith#Coq@0KZ-eJkP܏#Max%Arith#Coq@04=;3$>aU堠#Min%Arith#Coq@0Ce-Fѕ%Minus%Arith#Coq@0LFtR")Morphisms'Classes#Coq@0Imӽ%\$PD.Morphisms_Prop'Classes#Coq@0% :B'.>u%$Mult%Arith#Coq@0햖Qyb0$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI%NBits(Abstract'Natural'Numbers#Coq@0qteo_hɅ $NDiv(Abstract'Natural'Numbers#Coq@0bz$?[p(5$NGcd(Abstract'Natural'Numbers#Coq@08E-S ;j_Ҡ$NLcm(Abstract'Natural'Numbers#Coq@0 ~xZ9L{:$NLog(Abstract'Natural'Numbers#Coq@0K Aat/ j &NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf+NProperties(Abstract'Natural'Numbers#Coq@0unt"kwpYC%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ%NZAdd&NatInt'Numbers#Coq@00h`ZK4*NZAddOrder&NatInt'Numbers#Coq@0e~1>r砠(NZAxioms&NatInt'Numbers#Coq@0] ρ5r&NZBase&NatInt'Numbers#Coq@0^&8yUL&NZBits&NatInt'Numbers#Coq@0MlIpKt%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZMul&NatInt'Numbers#Coq@0ctR~6[Ƞ*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R'NZOrder&NatInt'Numbers#Coq@0 q;Ve7R W,(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x&NZSqrt&NatInt'Numbers#Coq@0` .%m#Nat$Init#Coq@0eʤģPSR蠠$Nnat&NArith#Coq@0$W;s #%M)Notations$Init#Coq@0&v!D]hwnv *NumPrelude'Numbers#Coq@05WUVŦ]xVXԠ%Omega%omega#Coq@0t.J'6\ϨrK+OmegaLemmas%omega#Coq@0TJ#Jes4Operators_Properties)Relations#Coq@0U3y#h&&Orders*Structures#Coq@0$Znl0\͗+OrdersFacts*Structures#Coq@05Mܿ獐ζΖLB)OrdersTac*Structures#Coq@05'4Ԗ+9%%Peano$Init#Coq@0 jha|ؠ(PeanoNat%Arith#Coq@0O~2$k[#lZ)Peano_dec%Arith#Coq@0Kݢ*k$Plus%Arith#Coq@04tmG$Pnat&PArith#Coq@0,?pr.gZ(PreOmega%omega#Coq@0\|چBb~w4'Prelude$Init#Coq@0JqTttֱ%Quote%quote#Coq@0J@ŹVz-,3%0JUڻIu)$w%R_Ifp%Reals#Coq@0c4+ZŠ'Raxioms%Reals#Coq@0S]jnj][L%Rbase%Reals#Coq@0Jܡ\ c6{0(2{Ze$ќ8)RealField+setoid_ring#Coq@0 >ʾq /RelationClasses'Classes#Coq@0Gz rA6ՠ4Relation_Definitions)Relations#Coq@0]4Ѐd{n^2Relation_Operators)Relations#Coq@0%s鯰s)Relations#Coq@0-SetoidTactics'Classes#Coq@0S_`nOU$ 0;RWMi\N'Sumbool$Bool#Coq@0sB ,$11.]m'Tactics$Init#Coq@0/9m+ a'Tactics'Program#Coq@03(2 Q@@@@#_10q@A@@@@@@@@#_112M접 l@'Rle_dec3#_12'`o@B'R_scope@@2 Q@@A@#_13e@"e[R@A@@@@/@#_142M접 #_15'`o@E*,.function_scope@@@,/A@@@2 Q@@A@#_16@^2@A@@@@a@#_172M접 #_18'`o@E\^246@_bAAA@2 Q@@A@#_19@'IxL@A@@@@@#_202M접 #_21'`o@D@@@2 Q@@A@#_22@'IxR@A@@@@@#_232M접 #_24'`o@DàŠǠ@@àƠɠ@2 Q@@A@#_250@ 3@A@@@@@#_262M접 #_27'`o@C@@2 Q@@A@#_28^@|@A@@@@(@#_292M접 #_30'`o@B#%@ #@2 Q@@A@#_31@@A@@@@Q@#_322M접 #_33'`o@BLN@IL@2 Q@@A@#_34@"fQ1@A@@@@z@#_352M접 #_36'`o@Cuw@@Ӡ֠@2 Q@@A@#_37@'>`@A@@@@@#_382M접 #_39'`o@C@@@͠2 Q@@A@#_40 @,@A@@@@@#_412M접 #_42'`o@DϠѠӠ@@/2ՠB@۠2 Q@@A@#_43<@,@A@@@@@#_442M접 #_45'`o@D@@adt@2 Q@@A@#_46n@"en@A@@@@8@#_472M접 #_48'`o@B35@03@2 Q@@A@#_49@((@A@@@@a@#_502M접 #_51'`o@B@@@  @Ǡ2 Q@@A@#_52@ @A@@@@@#_532M접 #_54'`o@D@@@*-@2 Q@@A@#_55@ @A@@@@@#_562M접 #_57'`o@E@@@(+@ʠ2 Q@@A@#_58%@zG@A@@@@@#_592M접 #_60'`o@Eꠐ점@@@렐񠐑@֠2 Q@@@@#_615#@#_622M접 !#_63'`o@B@@Ѡ2 Q@@A@#_64@ pF(@A@@@@J@#_652M접 #_66'`o@EEG@@@FIA@@@Ӡ2 Q@@A@#_67@ @A@@@@{@#_682M접 #_69'`o@EvxLNP@y|AAA@Ѡ2 Q@@A@#_70@ Z@A@@@@@#_712M접 #_72'`o@C@@Ơ2 Q@@A@#_73@ pY|@A@@@@@#_742M접 #_75'`o@B٠@֠@'RmaxSym9D{(@@&Bנ2 Q@@A@#_76G@?>@A@@@@@#_772M접 #_78'`o@B @  @2 Q@@A@#_79p@?D@A@@@@:@#_802M접 #_81'`o@B57@25@)RmaxLess19D{(@@O\)RmaxLess29D{(@@/e2 Q@@A@#_82@  q<@A@@@@u@#_832M접 #_84'`o@Cpr@@ΠѠ@2 Q@@A@#_85@XB@A@@@@@#_862M접 #_87'`o@C@@ @!2 Q@@A@#_88@,=K@A@@@@@#_892M접 #_90'`o@Dʠ̠Π@@*-Р=@02 Q@@A@#_917@;=K@A@@@@@#_922M접 #_93'`o@D@@\_o@?2 Q@@A@#_94i@J W@A@@@@3@#_952M접 #_96'`o@D.02@@.14@42 Q@@A@#_97@? [@A@@@@e@#_982M접 #_99'`o@B@@@MP@.2 Q@@A@$_100@9 g@A@@@@@$_1012M접 $_102'`o@E@@@@:2 Q@@A@$_103@E:>@A@@@@@$_1042M접 $_105'`o@E@@@Ġil@F2 Q@@A@$_106.@Q Z$@A@@@@@$_1072M접 $_108'`o@C@򠐑e@=2 Q@@A@$_109\@H с@A@@@@&@$_1102M접 $_111'`o@D!#@@@ #Ƞ@=2 Q@@A@$_112@H7@A@@@@W@$_1132M접 $_114'`o@AR@M@/2 Q@@@@$_115#y@$_1162M접 "$_117'`o@Ar@m@2 Q@@A@$_118@0@A@@@@@$_1192M접 $_120'`o@@@@2 Q@@A@$_121@0@A@@@@@$_1222M접 $_123'`o@@@@2 Q@@A@$_124@ @A@@@@@$_1252M접 $_126'`o@BԠ@@Р)@2 Q@@A@$_1277@)a@A@@@@@$_1282M접 $_129'`o@B@@@ 2 Q@@A@$_130_@ |T@A@@@@)@$_1312M접 $_132'`o@B$@@ @2 Q@@A@$_133@ !@A@@@@Q@$_1342M접 $_135'`o@BL@@H@2 Q@@A@$_136@+F@A@@@@y@$_1372M접 $_138'`o@At@o@2 Q@@A@$_145@(1@A@@@@@$_1462M접 $_147'`o@A@@)2 Q@@@@$_148@4$@$_1492M접 #$_150'`o@A@@92 Q@@A@$_151@D0'@A@@@@@$_1522M접 $_153'`o@Cݠߠ@@;KV@/2 Q@@A@$_154E@:u@A@@@@@$_1552M접 $_156'`o@B @@s@72 Q@@A@$_157m@B@A@@@@7@$_1582M접 $_159'`o@A2@-@;2 Q@@A@$_160@F@A@@@@[@$_1612M접 $_162'`o@BV@@R@;2 Q@@A@$_163@F, @A@@@@@$_1642M접 $_165'`o@B~@{~@72 Q@@A@$_166@B)@A@@@@@$_1672M접 $_168'`o@B@@22 Q@@A@$_169 @=&@A@@@@@$_1702M접 $_171'`o@BР@@̠%@'2 Q@@A@$_172 3@2&#@A@@@@@$_1732M접 $_174'`o@A@@+2 Q@@A@$_175 W@69@A@@@@ !@$_1762M접 $_177'`o@B  @  @#2 Q@@A@$_178 @.@A@@@@ J@$_1792M접 $_180'`o@B E G@ B E@2 Q@@A@$_181 @)!T@A@@@@ s@$_1822M접 $_183'`o@B n p@ k n@2 Q@@A@$_184 @ (R@A@@@@ @$_1852M접 $_186'`o@D  @@@  >A@$2 Q@@A@$_187!@/(S@A@@@@ @$_1882M접 $_189'`o@C Ƞ ʠ@@ Ơ ɠn@12 Q@@A@$_190!0@<1d3@A@@@@ @$_1912M접 $_192'`o@E   @@@    i l@12 Q@@A@$_193!f@<'y@A@@@@ 0@$_1942M접 $_195'`o@A'Z_scope@K@ 2 Q@@A@$_196!@g@A@@@@ U@$_1972M접 $_198'`o@A%@&@2 Q@@A@$_199!@  @A@@@@ y@$_2002M접 $_201'`o@B t v@!q!t@2 Q@@A@$_202!@  Y@A@@@@ @$_2032M접 $_204'`o@B  @!!@2 Q@@A@$_205"@ 7o@A@@@@ @$_2062M접 $_207'`o@C Ơ Ƞ @!Š!Ƞ!@2 Q@@A@$_208"/@1~@A@@@@ @$_2092M접 $_210'`o@B  @!񠐑!@2 Q@@A@$_211"X@'h@A@@@@ "@$_2122M접 $_213'`o@C   !@""""@@"_9HƠ"0")@hܒiclE> @Qq-xP[[g4@/%E-]@ U> /s}qU{Th"r1,Rdefinitions%Reals#Coq@@!RӀ"r2!P@,VݠB*Rbasic_fun@@"H1AC"H2BР&Specif$Init)@'sumbool7̂K@BAAAA@@@@@D!sA@#Rle=ED%Logic!@#notШ -!xF`A!r G!n  %RIneqi@'Rle_dec3+3R+NCTc@$Rmin; 7tr@,X[Dp@@n@KlghGm@QrKs\.Zn^?RrE`^<CWBH@BFMaEME@&Rlt_le AWPL@*Rnot_le_lt.JW^CG^Z7:|<@@#Rgt=<y~v@#andЖw@Ƞ#Hle !HϩAֵ@,Rlt_le_trans9C$Hnle316 "H0 @#Rlt=@)Rgt_transȠ΀cC@JAOQ'%&'<LZ  \haf@'and_ind14ۀpMP7<"r0! #!vBX%?D 'Cv}#NL@MN^7@) @*Rmin_Rgt_l'IxL729@*Rmin_Rgt_r'IxR a!yd=-+)=!,FpQ* RR GZ /@"or @Bw``9@"eq @hh Ams%kp;CRhoA7rb5\0x+779@*Req_le_sym bCjXNH;@0Rmin_case_strong^2W8s13vY@+Rle_antisym>`Kt˷j̷pҩQJO۷zܷ!z߷U/ǩ6ȷͷ"̷]ȷ@ҷ׷,@)Rle_trans"ݷn@(Rle_refl w - ZŷΠ #a!/d.*+ ˩eېg&gjbd4 ߩ:psl ŰH' }·"n00 2  46683Cذ[ǩ@'posreal̠@@#pos=D.Iǩq@#IZR/r'BinNums'Numbersy@!Z7@A!@(cond_pos 1y!琑<2'qqaҩ-l=~:zC2ZNDhtrnh[H?Cp<^T̩WNC÷ķ@Ɣ,f͠R@@~t{yqysowtCf@$Rmax; U׶@蔑,hKT@@Ӷ@1cζ@'_$ַ֐KFC"@Ġ*{L@fAΠ4EQ@ՠPPӷOթޠ^7da;8AC(@ e_@&or_ind"TI#W$"F   [ (\ DB@,Rle_lt_trans*GӀ/627CJ!p]!q`9)e=GG!AID $ILF6CsRK?N/?/:]W[4V]NVFS;F# ʷkXeéBi59C `:0k[.Uv2$}/zzC[wI?zj=dA3?2+ Cn$\R詚?@0Rmax_case_strong 3Dj`·Z>@u̷kͷηDpҩķ G~'Nᐑ[1̩Z8;  ۵ӷ4|׷Šà@%Rmult׀zÐ   Էة?ҷᠩߠ2cڐ(ө0 -%/%<<+!BAAAA@@@@@D@@AʰM̰O."E1 Р @%Falsee@@@D@ܰ_Z\B@1Rmult_le_compat_lڀ$#E!#@&eq_ind JstvqYԩs[1@(eq_ind_r!2# e" 'l2'@)Rmult_0_l+€94Qyp`}5Rug}Wb@[!rpU]S@M'IKD@.Rmult_le_reg_l΀lOVciHFU6AC?KZ;PFR:7>,53{]w{;CEȩve@'negrealzcD@rs@#neg=Ds9 ܠРe@(cond_neg 1݀C$')ݷ~Щ̠;7CΠ48*FC!"F#3@" L" @P&'!  q@- [1K2oy"xy"yz*R  % ''"xz  Z-'RaxiomsM@)Rlt_transC5@*Rnot_le_gt.뀰7>C8r2BBB@@@@D@?JH!hA"h'4@+Rmax_lub_lt:>.-OV!xyrV wVFxlQ"^dC}w(!XRGj@+sumbool_rec=_YQac3@#Rge=-B G@&Rle_ge @ HFA  CWǐYY&Iw n @$Ropp΀gvhhb@)Rcase_abs7~@)False_induُj}@*Rlt_irreflnQ-kCu@$Rabs; w(ٷɩǠB@(positive*@CrL G6>& #$@)R1_neq_R0iwo+©-@&IZR_leN 2%Zbool&ZArith<@/Zle_bool_imp_lenE>)Datatypes!@$boolZ'@&BinInt@#leb1Pĺ)BinIntDef@ aYC_Pܠg`CiqMc m%rSK;9/|T'~_ߩ :G @1Ropp_neq_0_compat9NfCC #!2x'p`% }a%d+# >@*Rlt_not_ge=C,BQȩ}5B8fyQbe#Hlt*砩LO)a#Hge1CSF!a۷G@ؠg`sbJǠnr@)Rabs_left)a÷uqL%M}y,@&eq_sym X3@&Ropp_0 GU`@*Rabs_right |T`ݰذΩŠC#KHxo`?[]B0`1)o0+/u;w@4Ropp_lt_gt_contravarY"$rͩ@&Rge_le 6/RC X %Coq_Reals_Rbasic_fun_Rle_abs_subproofS0 &Coq_Reals_Rbasic_fun_Rle_abs_subproof0[>>^7'@!=;eF˷GHթ#> LC-P{q,Fourier_util'fouriers@2Rfourier_not_gt_le#߽__3new_hyp_for_fourier&@+Rfourier_ltSDee@"R1Ȁ@$Rinv8 '@1Rfourier_gt_to_ltvڀzz.@0Rlt_mult_inv_pos8ş4@*Rlt_zero_1&ր%>@*Rnot_lt_lt;EĀ.ϩ+0T@&Rinv_1 ;9ۀA72X9eǩFɩĠ@"R0ǀ@&Rminus&HҠԠNȐ(list_hyp@$list]@A@$prodt@,Ring_polynom+setoid_ring@%PExprk@Ȑ+field_lemma@3RField_field_lemma1(Mk(Ring_tac@0ring_subst_niter!5Bѩ:,Field_theory,@%FExprs@G* C/1$F68:  D?- @$Truey@A#lmpG`bO[@#Monf@b@#Polj@]@ذk@.mk_monpol_list(fY@#add1P& @ ̀@#mul1P]@ @#sub1P@ p!@#opp1P@ {>@(Zeq_bool0߀,@'quotrem\(@/ŀ_f$nfe1m@&linear@@ v@%Fnormw$"71+%z$nfe2@ $*?93-'t@![@#Peqj*1@*norm_subst7:d0;PJD>83UG@#num:uv@%denum00Pe_YSMHjͩ A@@%PCondS<fϚ@%Rplus+1  Zk@#nat@&BinNat&NArith!N@&to_nat`)BinNatDef @*9G(Rpow_def@#pow#׀L橚@#appʀ@)condition.ũ @&FEeval>@ AFF @$Rdiv̀ @:)  M@ !KPP %E?.Ȑ#resFȐ&res_eq @(3&  Ȑ$res0A;IC^OȐ'res_eq0 %@Ȑ$res1M[FR`DȐ'res_eq1@    7 2 9Р@@-RField_lemma55vgdu_`$lock"len0A(lock_def  U8 vopzZ8 { tu h }Nf aEGC< }~ H ^ e@ _j@$Fapp{Fq@&Fcons2w$2,&  ;4\ y  ̠2  ?  X2@(Rnot_lt0!۠$ g  TV͠X  CX ^  T!E  ;fѩK@.Rfourier_lt_ltK` ;* ==8F0 A32  . .C^@2Rlt_zero_pos_plus1-J00Ϡ֠ (ڠ1\g# >   2+ b  o )" 4 1''0l  (&   ܰEީ  婜H"$ܶ@ɶ@@$.!! @@]< .'X(]]S2RL;0 0 @ 2+\,aa6VP?"@ 4-^.cc8XRA+ ?A臭OEFTHKMOB@BD@--      4 / 6;ذ <⵩8 `YZd~mM bOK)C< f_`js* @ G@ G hΩ lȩk +oq 1 Y YC$ {!b ~ W G @  D e  F ` c h$_tmp  0@  R L ɩ T N w"it%_tmp0 ] 5@.Ropp_le_cancelcld ]*  I E  g  ِ C@/Ropp_involutive"2'; 1U@% u %  x C@ ݠ {  T }  k · ˵ CP  ' ĩ  頩 N     D k@*Rgt_not_le3Sj   C  ݩ g@+Rabs_pos_equ𩚠 n@(Rabs_pos+F A      b@  w   o ޠ   ැ#Heq   @*Rabs_no_R0  =     L     4 $  u u  !  " LV  렩 !    (b é  6    2l qͩ >  pr      @z ۩ Lt    5&   /   S  ݰ `  ;  ) _ \ k L %  R$Hlt' @)Rminus_lt$Yπ  6 \ u "3@(Rlt_asym!]7 ˩ <= &  i  (    I ŐǠ  t $Hge'@# 6 >    3  ;D <@0Ropp_minus_distr Nx r`f  tU - NM ?W8 R S  4    / XS #a@ b T C d V E Y  @Š a ` O c b Q ԩ 2 rL     r@6Ropp_lt_gt_0_contravar"ڴ   ٠ u z X  T REW U | n ]J ѩ    w *K - 0  @0Rminus_diag_uniq)6  d     f x   " >@!    D F  - IK   O00 }   6^X  W :%     *  Ʃ ,   - ( ^`  ©  4d EfG  3 ik   ͩ  ?$   :p ;@9 C  D Y İ G7 5 \ ǰ J/ -  + )C ɰ LT(U   S  T ~S ,  S  6 & $ Z_    h @  . di   p Q o / q P  R \ ] E W G E { >    / e 8 S  6 #  u 4 6 4 p C ֠ ; < A $Hltx i " { k $ אթܐ   Y t  P D   U  V  $Hlty+ U@8Rmult_lt_gt_compat_neg_l  ` T    $ XJƠ9 ];   Ƞg թР g v ة  Ҡ   m u@)Rmult_0_r+Ȁ  ޠV z k 렩"$ I$Hgeyf T   { .3  w [X  @9Ropp_mult_distr_l_reverse/Mv5$Hgex t    k  pf \   v L $ !  "  $/T !  ) @*Rmult_comm8Z+ +  =@ / hr  ;  ˩  =?p  S @   Cs]]  A B@1Rmult_lt_compat_l`^  ) 0 G|i LӰ OZ z 7  P~ U ] Xb   `  Z _Hi G G k  b gqr   r V p= x   y r w _    } ^ }   6 k ĩ  44  s . Z   % ? Ω   | +  ͐ kة  3 e@  ܩ '  : ) ܐ  @    G   E &Ҡ 7 ꐩ  N-  E  Q ` ¶    V E ȩ  5 Ġ  _ d   b C  T ש  H  E  |u b  \ \ UT A^ Ha  U c =< Ǡ.W n A   j   Ω d F E[ @-Rmult_opp_opp;-"e @  ,U  }W  5 4r b    ʷ@ԩ  $ z 蠷 q @1Rmult_lt_compat_r ?r'   ѩ 2  }Cq ֐ uG &j ' ސ !    9 㐩 & ĩL 4Щ /f;t 4 O = > n   o U C D t&  u~b ǰJީ E|Q bP PR Q аSk4 U  V հX9c Z   W;X @1Ropp_mult_distr_l< !fͷV(:*թ fTG *@p l g' t 2@ͩ t or. r1 \Z sĩ,a7 z0˩ *ah ![ ' oAU   :  v x  )8 }  . $ 0    2    :XU<@@1Ropp_mult_distr_r< !lC .[ $UF@s = P ?m 6; Y &ʩl> p @L  \G Ԡ n ;@ c v e 䠩\ Z  Lʠ "b ^dMؠ3@0Ropp_inv_permute>) f8   4   ˷@ =! "   젷L@0Rinv_lt_0_compatvթ* Vu ِ  B *& [(  0 <:6_[X p@S 7OIsNX @ 5n A ѩ CQO?@@0Rinv_0_lt_compatD.E [JѰ 13 L5  r װZ/0"U  ] ^W w g a  $ q    u   Y ZXS }C@    1Ȑ(hyp_listȐ'fv_list|kyy*@2RField_ring_lemma1!7zsd 'C S_fI@! [bJ`-0 2 GA;5/*0 4 IC=71,i*  ? E T5ө >  Đ .]>ֵ Y &I w n  p # sLJFE@@[ ;g60 l {uoid80 n }wqkf  y  F<i = J@ ꩚@.Ropp_ge_cancel>d @#IPR. ީ Z  @*Rge_not_lt3- 隠@'Rlt_0_14C  C S    @)Rmult_1_l9 8a %l@)Rabs_mult)q v O() SX( ©  /d ʩ 9nx ԩ E& wtv-  'Щ 8$Hlta"4$ϩ E$Hltbש@&Req_le 3v rsuVs˩y @/Ropp_plus_distr:$Hgeb #Eh @1Rplus_le_compat_l?+ \1% 57  uѠ8 vЩ*ؠ?. !v !w9  RRaé{שƩ ` mϩǠai@+Rplus_opp_l73pϠi k~s@(Rplus_neT> @1Rplus_lt_compat_l ]߀=yEʷWtNL r~sn  MCZy$Hgeap\uηi%ܠl - 0q[  4 ˠ8c {em ۩ xv+ߩ grJmЩ$O22l47tr,W<<) 1\Z3+`/t4 <=5 o""ѩp :ԩ 'kTgG,`ְ5 P xQb N20C}" @*Rplus_commq(jȩ wu 1ЩhթkQ p t v Ӡ ZX}S ֠x ۠L  ,Ar #  ;.@6Rlt_dichotomy_converse,#d-v1;@)Rge_trans72:FD@1Rplus_ge_compat_l?xPgOC z{< }6wdcb8";/~^]\1 ޠdWܩgeb pf_ b\oѩ[YϩW @ѠXU 頷Z©֠RR  gŐ YwYȷc }]{ $Z DC =p] v ho y K %cܩsYQ@)Rminus_le$Y`X cȠ 5! :Ҡ ?a_,  H " "# L''' z T     1M aC fȩ c67ةfIG"H JK  x0ߩeI ~ #ЩװZٰ\  Pv d f^GIGwB` KzgeN°TR &SxU-ȐY  C;  {##%%'CICJ a ې *@.Rplus_le_reg_l -<  N/ Ƞ ʠ   ѐ Bd Ѡ   ՠ 2!Mo ܠ 0:  (  @L[}  G 3 ةJ= 8  N@%proj1OO Qԩ ?hUة  Jnܩ 䐩  =~é   쐩  L|      F ~ %;  + f  /\@+Rabs_triang9 7 _ @+Rplus_assoc  fܩ A.  k @+Rplus_opp_r {G ; K Y& ( S8 Nr V  ; [ > ] & B C c F e HS g@AV>F v c IȰK {Q h.ĠO  W  I   Y ɷZ=  yY  bԩ Ncg Pe  Mԩ \HA  * m  o  " q  2 @ ' .  ,  w  0 y l       jV ' 0 { n       lX y   5}~>aZ$a`@)Rplus_0_rH€B9?)Kn M@/Rabs_triang_inv߀ȩ Kw  @WYL k   %Ȑ!o<@,Rtotal_order%w. ! t@p8  +u|* Ɛ  Vĩ ̐ 2=[ɩ ѐ  kͩ א [ש  ݷxک  d 됩  °k #J#)K2z@)Rabs_Ropp&#7bbA@,.sᠷ  Š 9Р  ? R٠  7 H '@'Rabs_R00 O *V ,C頩3 ] 3 3 #Hgt6ְ .Q9 = )= e>S:8   ;'͠ LM@F G6J 4 թ C@ Q [  8 >C ` a@4@#[ iDi0 J IB2  m@f Qj-Nl /W  yr ]y Heyb}#? %='CDl),@ ^ q uC@Š3 ! ]SzP. }xC@Ϡ 1ŠH J@@6Ropp_gt_lt_0_contravarߞ 8 ũ:I6z*yC@--]@,Rge_gt_transh\LCIGi@,Rgt_ge_trans.hCٶڶ@ӠM䷐"H'\#H'0_@堩m   @)Rle_or_lt"R #H'1'  Ƞ. ŷΠ4ũ˩7/@&Rmax_r?D5 ԩy{éqũr s   /- -. &@F X &B#H'2L<߷= c *CDj)Qn+8 =' 6)˩P P@f`#H'3jZ[[@h@1Ropp_le_contravar>=a#@&Rmax_l?> YLs s|ɩ w  a b b @@AA@AA@@@@@@D :@#abs1P6@ tvC' $"p0 à2q0(b@*comparison;f@_@'compare3x[@]=BC;B@@@@@Dc@ES@K#sʩO'!]gѩV. n1+gQ!e77@@@@@@@@@@@D!c@ ~̰  5 =E@nF88ӐjJ` j kGN np{3 t2@)Rmax_left q<}%" @*Rmax_rightXB8 P#bRɩ f9TRM}K.7qt5>sFa_y:Y<E_BSANJ!sEquV.\wumPY^Vg(c'a`&"}ȩ`i nfw s1p B}!&;` U̠I " Ѡ%˷ ey hԷ  䠷  砷  vJ y ` { [  }3$E  "Ʒ@  ,( % 0 *Ϸ@ɩ&) *1 . 9 ƀtyS0MMUDe @7  ;B1B2\MnI@ D D!KD H"n1O !ʰM.(wѰTf5yh/dذ[ j_<_f n @  p r l۠f u.y@J-t't 4F6r S;M=y } Z=(b   a߰  z>0j>   g{DPbNl+K"n2NCsn `'3rb٩\V>&ZAcɩ+Fhc-WcfXG3 5ik]`@nnY ?KW?mifΩfo tl~rܩt}7{ X|eNT'Π& b&S ٠CHӷ"| kᠷ _䠷(8蠷Ƿȷ,>ꀷZ_9rJ(#<+L' -"! %! 1&--d 6 I:[ 5ȷ5iة3 |Oa>??cRs#FMMg Xy) SBSC%tΰQR;2ve,aհX \:9c8߀ٷ}#n5%jްa CBl  tFn^ChI֩PPlSCin