"`%Ȅ%-*Ranalysis4%Reals#Coq@()Notations$Init#Coq@%Logic$Init#Coq@*Logic_Type$Init#Coq@)Datatypes$Init#Coq@&Specif$Init#Coq@%Peano$Init#Coq@"Wf$Init#Coq@'Tactics$Init#Coq@%Tauto$Init#Coq@'Prelude$Init#Coq@()Notations$Init#Coq@0&v!D]hwnv %Logic$Init#Coq@0\͉!Ig)Datatypes$Init#Coq@0.i bYN Z*Logic_Type$Init#Coq@0 1jc6&Specif$Init#Coq@0;RWMi\N'Decimal$Init#Coq@0C涳N*ua#Nat$Init#Coq@0eʤģPSR蠠%Peano$Init#Coq@0 jha|ؠ"Wf$Init#Coq@0q+W,J+'Tactics$Init#Coq@0/9m+ a%Tauto$Init#Coq@0̂"&/rk0JqTttֱ'BinNums'Numbers#Coq@0dmk(5Ju<*EqdepFacts%Logic#Coq@0FI$ͼՋ`)Eqdep_dec%Logic#Coq@0u wWIϰ߼&Basics'Program#Coq@0!bs߯? :VU$Init'Classes#Coq@0](p{yOh.'Tactics'Program#Coq@03u%+Equivalence'Classes#Coq@07;ꮹ-SetoidTactics'Classes#Coq@0S_`nOU$&Setoid'Setoids#Coq@0D9AsWE!>$Bool#Coq@0j 2cZ`FW*Equalities*Structures#Coq@0όe얟)H.Ƞ2Relation_Operators)Relations#Coq@0%s鯰s4Operators_Properties)Relations#Coq@0U3y#h&)Relations#Coq@0r砠*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ&NZSqrt&NatInt'Numbers#Coq@0` .%m%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|&NZBits&NatInt'Numbers#Coq@0MlIpKt'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$&NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ)NMulOrder(Abstract'Natural'Numbers#Coq@04> Aat/ j $NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ'NMaxMin(Abstract'Natural'Numbers#Coq@0]v|Qg̟ʠ'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NLog(Abstract'Natural'Numbers#Coq@0KI'BinList+setoid_ring#Coq@0Au,Ring_polynom+setoid_ring#Coq@0gaKw9`UW+ListTactics%Lists#Coq@0,Jcy{+InitialRing+setoid_ring#Coq@0k/T=cN(Ring_tac+setoid_ring#Coq@0x2]%762f)Ring_base+setoid_ring#Coq@0fbU(2cNe$Ring+setoid_ring#Coq@0Msᬠ)ArithRing+setoid_ring#Coq@0ṔCgt?}%Arith#Coq@0I|кX*o4#Max%Arith#Coq@04=;3$>aU堠#Min%Arith#Coq@0Ce-Fѕ(PreOmega%omega#Coq@0\|چBb~w4%Omega%omega#Coq@0t.J'6\ϨrK(Zpow_def&ZArith#Coq@0f蓜DX;V*ZArithRing+setoid_ring#Coq@0{#'[{nm!/,Zcomplements&ZArith#Coq@0ʾq %RIneq%Reals#Coq@0JUڻIu)$w&DiscrR%Reals#Coq@0z41pV.%Rbase%Reals#Coq@0Jܡ\ c6{%R_Ifp%Reals#Coq@0c4+ZŠ,Fourier_util'fourier#Coq@0ϳ> 4`*r0'Fourier'fourier#Coq@0wV9TN*Rbasic_fun%Reals#Coq@0hܒiclE>%R_sqr%Reals#Coq@0X%MԹ%M+SplitAbsolu%Reals#Coq@0M)&qYlݹ5*SplitRmult%Reals#Coq@0sD\rt/$Even%Arith#Coq@0YO%q}d߫%$Div2%Arith#Coq@0n*Áht!,)ArithProp%Reals#Coq@0B+L?>*e˃a j*Rfunctions%Reals#Coq@0d¹d‹@'Compare%Arith#Coq@0OM v먣5L:'Rseries%Reals#Coq@08]$u+?'SeqProp%Reals#Coq@0Lt2|9D }SSԻ)Rcomplete%Reals#Coq@0{ڸ4q 'PartSum%Reals#Coq@0j&2"(>S)AltSeries%Reals#Coq@0d US^(Binomial%Reals#Coq@0]JrHr#E&Rsigma%Reals#Coq@0䟄WCJҦ<%Rprod%Reals#Coq@0gȀn_}!W+Cauchy_prod%Reals#Coq@0K*ߞ4q(Alembert%Reals#Coq@0I͗Huz&)SeqSeries%Reals#Coq@0Npc$5|T ٠*Rtrigo_fun%Reals#Coq@0T+ɧK/۠*Rtrigo_def%Reals#Coq@0$xR`VcxIaƶ"x*Rtrigo_alt%Reals#Coq@0zsC^,%+OmegaTactic%omega#Coq@0@{4-EܭEUBW'Cos_rel%Reals#Coq@0%}ֺ|3J-tWK(Cos_plus%Reals#Coq@0IWEGն&Rlimit%Reals#Coq@0*r0ē([HAE&Rderiv%Reals#Coq@0?KQ;^WU;H*Ranalysis1%Reals#Coq@0 n;qm.L%)Rsqrt_def%Reals#Coq@0eA~%&Y?%RList%Reals#Coq@05g2NaA:7PropExtensionalityFacts%Logic#Coq@0 +_.ɓoFؘ'Hurkens%Logic#Coq@05[gNk2up.ClassicalFacts%Logic#Coq@0$RzqIF\(4.Classical_Prop%Logic#Coq@0Yh޿JdI1ƽ3Classical_Pred_Type%Logic#Coq@0m[6BZ5)Rtopology%Reals#Coq@0;Wo G#MVT%Reals#Coq@0cq통 gZ+PSeries_reg%Reals#Coq@0䝠|%n͠'Rtrigo1%Reals#Coq@0x'ml^*Ranalysis2%Reals#Coq@02N헛W*Ranalysis3%Reals#Coq@0Gz魸NJ,:7(Exp_prop%Reals#Coq@0D:L-Zg q # QpaPKkР*Ranalysis4%Reals#Coq@A0derivable_pt_inv @@@!f@,Rdefinitions%Reals#Coq@@!RӀ !x@%Logic$Init#Coq@@#notШ@"eq @BA,RdefinitionsHG@@#IZR/r'BinNums'NumbersU@@!Z7@A@*Ranalysis1%Reals#Coq@@,derivable_pt8\ECB*Ranalysis1%Reals#Coq@@'inv_fct˷D@@@@@AA@@>@,Field_theory+setoid_ring#Coq@@&FEeval>@@A@A"s @,Ring_polynom+setoid_ring#Coq@@&PEeval"s @@A@BA@A@)pr_nu_var @@A@!g@#pr1_UA#pr2g]\@@{@!RӀEX *Ranalysis1@)derive_pt$FnFg{ i|@@@@@h*pr_nu_var2 @@B@‶L@瀚逶ݚ퀶KJI@!h߀L6\G怰SF;@@@@@-derivable_inv @@*C@@ B@@)derivable$"⩚တ@@@@@֠-derive_pt_inv @@_DO@NPDT"prBA"naNDCB@8P,Rdefinitions@@!RӀ8@)derive_pt$Fn+DC@8(>DCAB,Rdefinitions%Reals#Coq@@$Rdiv̀@$Ropp΀,DCB%RIneq%Reals#Coq@@$Rsqr=MWDC@@@@@Z-Rabs_derive_1 @@Eр@=@#Rlt=A@0derivable_pt_lim*Rbasic_fun%Reals#Coq@@$Rabs; wŀB@(positive*@C@@@@@-Rabs_derive_2 @@!F@>A逐ᩚ;8ʩ󀐩C.@@@@@1Rderivable_pt_abs @@GG%5@$ A b@@@@@ࠠ/Rcontinuity_abs @@iH @*continuity**Rbasic_fun@$Rabs; w@@@@@5continuity_finite_sum @@I"An@)Datatypes$Init#Coq@@#nat@!N1!y*Rfunctions%Reals#Coq@@(sum_f_R0Yc!k. @%Rmult׀D(Rpow_def%Reals#Coq@@#pow#׀cB@@@@@P3derivable_pt_lim_fs @@JW@Vʀ΀O`@%Peano$Init#Coq@@"lt Uxc)Datatypes$Init@@#nat@AAkj`_6\[`|rqu'Raxioms%Reals#Coq@@#INRrBnB#Nat$Init#Coq@@$pred `<@@@@@ܠ;derivable_pt_lim_finite_sum @@eK@‚VJZۛ쀩ښfـϛ΀E̩ˀ$АBB @@A@A@@@@D,Rdefinitions%Reals#Coq@@!RӀAh`!n+@4 Ҡy@@BE DAB@@@@@a7derivable_pt_finite_sum @@Lh@gۀ\mӚ〩_뀩^TSEQPUCA@@@@@4derivable_finite_sum @@ M@倐DB@@@@@Ƞ5derivable_pt_lim_cosh @@QN/?a*Rtrigo_def%Reals#Coq@@$coshQgA@$sinhBA@@@@@5derivable_pt_lim_sinh @@xOVfA+A@@@@@ 0derivable_pt_exp @@Pp:A@#exp3A@@@@@!1derivable_pt_cosh @@QRYA@@@@@61derivable_pt_sinh @@Rg`A@@@@@K-derivable_exp @@S @#exp3@@@@@`.derivable_cosh @@T@$coshQg@@@@@s.derivable_sinh @@U(@$sinhB@@@@@-derive_pt_exp @@V횠݀A@8#RAA@@@@@.derive_pt_cosh @@4W"瀐AA@?l\^A䀐A@@@@@Р.derive_pt_sinh @@YX7G'ש̀Af@?n9AA@@@@@'sinh_lt @@~Y\ԠӠ@@iӀ @BA//32@@@@@@@@ ӳ2@ ӳ2[)Datatypes$Init#Coq@@A@ Գq@ Գq\ @A@AB@cA@A.0TQ+Ring_theory+setoid_ring#Coq@@ABA.U>[J @B@@"O@(PeanoNat%Arith#Coq@#Nat@&of_int"O#Nat$Init#Coq@@ 6@A@A\@&BinInt&ZArith#Coq@!Z@'quotrem\)BinIntDef&ZArith#Coq@!Z@ /@A@\@@+pred_double\@/S@@A@As2@3@&shiftls2*@vY@A@BCs8@8@&shiftrs8/@vY@A@ѓ@>@&squareѓ5@y@A@@D@&to_intϑ;@@A@z@5@&doublez,@/!@A@ABCD/@O@)log2_iter/F@wd@A@NH/@B@&moduloNH/9@1,@A@A\d@G@&of_int\d>@1?A @A@bz@M@&of_natbzD@1?G!@A@#@S@&shiftl#J@1dV@A@#@Y@&shiftr#P@1d\@A@ABCD/x@&BinPos&PArith#Coq@#Pos@)pred_mask/x)BinPosDef&PArith#Coq@#Pos@ )X@A@6@x@&square6o@19@A@AV+L@}@&to_intV+Lt@2@A@V1b@@&to_natV1bz@2 @A@V5=@@&to_posV5=@2@A@ABCl@@)sqrt_iterl@!$:@A@@@6@(sub_mask@-@)@A@ADEF c@@'testbit c@!ć@A@7 B@D@'of_uint7 B;@*`]?@A@AG@I@)mask_rectG@@+ED@A@F˱@O@)add_carryF˱F@+p@A@AB^Ҷ@@'to_uint^Ҷ@#m@A@gL7@@'sqrtremgL7@40@A@Aq@@'testbitq@5)@A@ݎO@@+succ_doubleݎO@6r@A@A p@l@0double_pred_mask pc@0-+m@A@BCD T@&BinNat&NArith#Coq@!N@!t T)BinNatDef&NArith#Coq@!N@ 2@A@ @@#add @3 @A@A l@@#div l@3@A@ Y@%@#eqb Y@3@A@AB #@*@#gcd #!@3n@A@ T@0@#leb T'@3@A@ACEG "@5@#lor ",@3m@A@ q@?@#ltb q6@3@A@A @D@#max ;@3@A@ @J@#min A@3`@A@AB @O@#mul F@3B@A@ ~@U@#odd ~L@3@A@AC =@Z@#one =Q@3@A@ @b@#pow ˑY@3@A@A c@g@#sub c^@3@A@ @m@#two d@3J@A@AB hx@r@$div2 hxi@>@A@ @x@$even o@>4@A@ACD @}@$ggcd Бt@>U@A@ @@$iter }@>:@A@A 3"@@$land 3"@>m@A@ F)@@$log2 F)@>t@A@AB S@@$lxor S@>@A@ @@$pred @?U@A@AC @@$size ܑ@?'@A@ !@@$sqrt !@?@A@A ! @@$succ ! @?\@A@ !7@@$zero !7@@P@A@ *@@%ldiff *@@A@AB g_@1@+pred_double g_(@25\@A@CD m@6@÷ m-@2j@A@S@=@&of_intS㫑4@4}5@A@AS@B@&of_natS9@4};@A@BEFGH\R@G@(mask_ind\R>@4@A@\^@Q@(mask_rec\^H@4@A@A!,@V@&pred_N!,M@4s)@A@B@[@&shiftlR@5X@A@@b@&shiftrY@5X@A@A&@g@&square&ّ^@5,x@A@BC"@l@&to_int"c@5L@A@"@t@&to_nat"k@5L @A@AnTq@y@+testbit_natnTqp@6n@A@B@@(succ_posB@@A@I@@'abs_natI@?n@A@AB.@@'of_uint.@MS@A@3~@@'sqrtrem3~@7]%{@A@ACD,@ @'bitwise,@/v@A@>4'@@'testbit>4'@8g$@A@A{U@@,sqrtrem_step{U@8R@A@u^@9@(div_euclu^0@ @A@Afz@@'to_uintfz@9w@A@Bl@'@'comparel@3R@A@CDEFs8@,@+of_uint_accs8#@5+@A@}@R@,pos_div_eucl}I@&`@A@3x@(@'compare3x@]=@A@A@^@&doubleU@'޺_@A@BCq@@+of_succ_natq@$@A@w@i@&modulowɑ`@)1@A@ADK@n@&of_intKe@)j,I@A@K@v@&of_natKm@)j2_@A@AI@{@&shiftlIr@*O@A@O@@&shiftrOx@*O@A@AB,@@&square,}@*ow@A@Z@@&to_intZ@*81@A@ACE`@@&to_nat`@*9G@A@e@@+testbit_nateđ@+@A@A+{@@'sqrtrem+{ё@,J@A@5z@@'testbit5z@-T|@A@A @@'to_uint ͑@.@A@ @@+succ_double @.^4@A@A#@'@'compare#ݑ@ )Q@A@BCD%t2@,@(size_nat%t2#@ @A@%9@3@+of_uint_acc%9*@ ΋@A@A%V@8@+double_mask%V/@ S@A@%%@>@'div2_up%%5@ "@A@ABEF'ş@C@'Ndouble'ş:@ @A@(b0@K@*shiftl_nat(b0B@9-@A@A(nՖ@P@*shiftr_nat(nՖG@'@A@(@V@0succ_double_mask(M@@A@*W$@\@,compare_cont*W$S@!@A@.0@b@.sub_mask_carry.0Y@΂@A@ABCD.@@!t.@ ;@A@.먩@@#add.먩@ `@A@A.U@@#div.U@ @A@.B@@#eqb.B@ @A@A. @@#gcd. @ @A@.=@@#leb.=@ @A@ABCEGHI. @@#lor. @ @A@.Z@ @#ltb.Z@ @A@A.p@@#max.p@ '@A@B.@@#min. @ @A@.@@#mul.@ @A@AC.g@@#odd.g@ @A@.&@&@#one.&@ @A@A.뾴@+@#pow.뾴"@ k@A@.L@1@#sub.L(@ @A@.@7@#two..@ @A@ABCD.,a@<@$div2.,a3@ @A@.Xz@D@$even.Xz;@ ?1@A@A.@I@$iter.ؑ@@ @A@B. @N@$land. E@ @A@. @T@$log2. K@ @A@ACE.@Y@$lxor.P@ R@A@.y@`@$pred.yW@ `<@A@A.Ʉ@e@$sqrt.Ʉ\@ ;@A@.@l@$succ.c@ @A@.t @r@$zero.t i@ Z@A@AB/@w@.to_little_uint/n@ @A@CDF/@|@%ldiff/s@ H@A@00@@'compare00@?H{@A@A1P%@w@!t1P%n@  @A@B1P@|@#abs1Ps@ @A@1P&@@#add1P&z@ @A@A1P@@#div1Pґ@ y@A@BC1P@@#eqb1P@ f@A@1P@@#gcd1P@ 0@A@A1P@@#geb1P@ T@A@B1P@@#gtb1Pʑ@ q@A@1Pĺ@@#leb1Pĺ@ a@A@A1Pň@@#lor1Pň@ /@A@BCD1P@@#ltb1Pב@ ~@A@1P@@#max1P@ @A@A1P{@@#min1P{@ "@A@B1P]@@#mul1P]@ @A@1P@@#odd1P@ @A@A1Pɣ@@#one1Pɣ@ J@A@BC1P@@#opp1Pԑ@ {@A@1P1@@#pow1P1@ @A@A1P;@@#rem1P;@ @A@B1P@@#sgn1Pˑ@ r@A@1P@@#sub1Pɑ@ p@A@A1Pe@@#two1Pe@  @A@BCDE1[8@@$div21[8ޑ@ @A@1[d@@$even1[d@ I@A@A1[6@@$ggcd1[6@ i@A@B1[U@ @$iter1[U@ @A@1\@@$land1\@ /@A@A1\@@$log21\ @ 6@A@BC1\$@@$lxor1\$@ @A@1\Y@$@$of_N1\YÑ@ >j@A@A1\@)@$pred1\ @ j@A@B1\@.@$quot1\֑%@ }@A@1\@5@$sqrt1\,@ @A@A1\w@:@$succ1\w1@ @A@BC1\k@?@$to_N1\k6@ @A@1]@G@$zero1]>@ eD@A@A2:@L@%abs_N2:C@ @A@21@R@%ldiff21I@ ߵ@A@2=*@X@%quot22=*O@ @A@ABC2kF@@(size_nat2kF@{@A@3@x@(tail_add3o@^q@A@ADEFGH3@}@(tail_mul3t@^@A@5Z@@*shiftl_nat5Z@y/@A@5f}@@*shiftr_nat5f}@4@A@AB5a@@'iter_op5a@ @A@C6w~@@'of_uint6w~@^5@A@8j@@'of_uint8j@'"h@A@9E@@(div_eucl9Eđ@(*k@A@AB:x@6@,Nsucc_double:x-@ ʭ@A@CD@[@&divmod>R@C@A@>@b@&double>Y@NĴ@A@?2@S@,pos_div_eucl?2J@-u@A@AB?;@m@&modulo?;d@"i@A@CEFGIJ@((Alembert%Reals#Coq@0I͗Huz&)AltSeries%Reals#Coq@0d US^%Arith#Coq@0I|кX*o4)ArithProp%Reals#Coq@0B+L?>*e˃a j)ArithRing+setoid_ring#Coq@0ṔCgt?}*Arith_base%Arith#Coq@0Ĕ}CS&Basics'Program#Coq@0!bs߯? :VU'Between%Arith#Coq@06v*0ur`C0&BinInt&ZArith#Coq@0BpHޞun^)BinIntDef&ZArith#Coq@0ådR4Tuy'BinList+setoid_ring#Coq@0Au&BinNat&NArith#Coq@0K11ڤs+Π)BinNatDef&NArith#Coq@03@1O,[{ 'BinNums'Numbers#Coq@0dmk(5Ju<&BinPos&PArith#Coq@0vyػ0= u)BinPosDef&PArith#Coq@0}H d.%,b(Binomial%Reals#Coq@0]JrHr#E$Bool#Coq@0j 2cZ`FW*CMorphisms'Classes#Coq@0qیZBeϠ0CRelationClasses'Classes#Coq@0TL;0RUfw1+Cauchy_prod%Reals#Coq@0K*ߞ4q.ClassicalFacts%Logic#Coq@0$RzqIF\(43Classical_Pred_Type%Logic#Coq@0m[6BZ5.Classical_Prop%Logic#Coq@0Yh޿JdI1ƽ'Compare%Arith#Coq@0OM v먣5L:+Compare_dec%Arith#Coq@0jXF 8(Cos_plus%Reals#Coq@0IWEGն'Cos_rel%Reals#Coq@0%}ֺ|3J-tWK@0.i bYN Z)Decidable%Logic#Coq@0ND걸풬/Oߠ'Decimal$Init#Coq@0C涳N*ua&DiscrR%Reals#Coq@0z41pV.$Div2%Arith#Coq@0n*Áht!,%EqNat%Arith#Coq@0AIgՋXRV *EqdepFacts%Logic#Coq@0FI$ͼՋ`)Eqdep_dec%Logic#Coq@0u wWIϰ߼*Equalities*Structures#Coq@0όe얟)H.Ƞ+Equivalence'Classes#Coq@07;ꮹ$Even%Arith#Coq@0YO%q}d߫%(Exp_prop%Reals#Coq@0D:L-)Factorial%Arith#Coq@0@oehJd%Field+setoid_ring#Coq@0J _ȫ)Field_tac+setoid_ring#Coq@0d vDZl^۹H 60B~uYٮ٠'Fourier'fourier#Coq@0wV9TN,Fourier_util'fourier#Coq@0ϳ> 4`*r0-GenericMinMax*Structures#Coq@0måj$"Gt%Arith#Coq@0䙛#c:D 'Hurkens%Logic#Coq@05[gNk2up$Init'Classes#Coq@0](p{yOh.+InitialRing+setoid_ring#Coq@0k/T=cN"Le%Arith#Coq@0d}Omq+$List%Lists#Coq@0>I+ListTactics%Lists#Coq@0,Jcy{ 0\͉!Ig*Logic_Type$Init#Coq@0 1jc6"Lt%Arith#Coq@0KZ-eJkP܏#MVT%Reals#Coq@0cq통 gZ#Max%Arith#Coq@04=;3$>aU堠#Min%Arith#Coq@0Ce-Fѕ%Minus%Arith#Coq@0LFtR")Morphisms'Classes#Coq@0Imӽ%\$PD.Morphisms_Prop'Classes#Coq@0% :B'.>u%$Mult%Arith#Coq@0햖Qyb0$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI%NBits(Abstract'Natural'Numbers#Coq@0qteo_hɅ $NDiv(Abstract'Natural'Numbers#Coq@0bz$?[p(5$NGcd(Abstract'Natural'Numbers#Coq@08E-S ;j_Ҡ$NLcm(Abstract'Natural'Numbers#Coq@0 ~xZ9L{:$NLog(Abstract'Natural'Numbers#Coq@0K Aat/ j &NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf+NProperties(Abstract'Natural'Numbers#Coq@0unt"kwpYC%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ%NZAdd&NatInt'Numbers#Coq@00h`ZK4*NZAddOrder&NatInt'Numbers#Coq@0e~1>r砠(NZAxioms&NatInt'Numbers#Coq@0] ρ5r&NZBase&NatInt'Numbers#Coq@0^&8yUL&NZBits&NatInt'Numbers#Coq@0MlIpKt%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZMul&NatInt'Numbers#Coq@0ctR~6[Ƞ*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R'NZOrder&NatInt'Numbers#Coq@0 q;Ve7R W,(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x&NZSqrt&NatInt'Numbers#Coq@0` .%m#Nat$Init#Coq@0eʤģPSR蠠$Nnat&NArith#Coq@0$W;s #%M)Notations$Init#Coq@0&v!D]hwnv *NumPrelude'Numbers#Coq@05WUVŦ]xVXԠ%Omega%omega#Coq@0t.J'6\ϨrK+OmegaLemmas%omega#Coq@0TJ#Jes+OmegaTactic%omega#Coq@0@{4-EܭEUBW4Operators_Properties)Relations#Coq@0U3y#h&&Orders*Structures#Coq@0$Znl0\͗+OrdersFacts*Structures#Coq@05Mܿ獐ζΖLB)OrdersTac*Structures#Coq@05'4Ԗ+9%+PSeries_reg%Reals#Coq@0䝠|%n͠'PartSum%Reals#Coq@0j&2"(>S y0 jha|ؠ(PeanoNat%Arith#Coq@0O~2$k[#lZ)Peano_dec%Arith#Coq@0Kݢ*k$Plus%Arith#Coq@04tmG$Pnat&PArith#Coq@0,?pr.gZ(PreOmega%omega#Coq@0\|چBb~w4'Prelude$Init#Coq@0JqTttֱ7PropExtensionalityFacts%Logic#Coq@0 +_.ɓoFؘ%Quote%quote#Coq@0J@ŹVz-,3%%RIneq%Reals#Coq@0JUڻIu)$w%RList%Reals#Coq@05g2NaA:%R_Ifp%Reals#Coq@0c4+ZŠ%R_sqr%Reals#Coq@0X%MԹ%Ma0 n;qm.L%*Ranalysis2%Reals#Coq@02N헛W*Ranalysis3%Reals#Coq@0Gz魸NJ,:7'Raxioms%Reals#Coq@0S]jnj][L%Rbase%Reals#Coq@0Jܡ\ c6{*Rbasic_fun%Reals#Coq@0hܒiclE>)Rcomplete%Reals#Coq@0{ڸ4q _0(2{Ze$ќ8&Rderiv%Reals#Coq@0?KQ;^WU;H)RealField+setoid_ring#Coq@0 >ʾq /RelationClasses'Classes#Coq@0Gz rA6ՠ4Relation_Definitions)Relations#Coq@0]4Ѐd{n^2Relation_Operators)Relations#Coq@0%s鯰s)Relations#Coq@0-SetoidTactics'Classes#Coq@0S_`nOU$&Specif$Init#Coq@0;RWMi\N+SplitAbsolu%Reals#Coq@0M)&qYlݹ5*SplitRmult%Reals#Coq@0sD\rt/'Sumbool$Bool#Coq@0sB ,$11.]m'Tactics$Init#Coq@0/9m+ a'Tactics'Program#Coq@03٠2 Q@@A@#_14I@A@@@@@@@@#_152M접 #_16'`o@D.function_scope'R_scope@@@A砐@w2 Q@@A@#_17@ @A@@@@4@#_182M접 #_19'`o@F243@@@@AA.蠐렐@c2 Q@@A@#_20S@n5 @A@@@@l@#_212M접 #_22'`o@Fjlk@@r@AAg!$A@b2 Q@@A@#_23@m5A@A@@@@@#_242M접 #_25'`o@C@@AAg@X2 Q@@A@#_26@c9@A@@@@@#_272M접 #_28'`o@D̠͠@@@AĠ~@2 Q@@A@#_29@*qA-@A@@@@@#_302M접 #_31'`o@B@@@2 Q@@A@#_32@*qA.@A@@@@'@#_332M접 #_34'`o@B"@@E@2 Q@@A@#_356@8D@A@@@@O@#_362M접 #_37'`o@BJ@@?-@2 Q@@A@#_38^@=BF@A@@@@w@#_392M접 #_40'`o@@@@2 Q@@A@#_41}@)@A@@@@@#_422M접 #_43'`o@B)nat_scope@A@Π2 Q@@A@#_44@=@A@@@@@#_452M접 #_46'`o@D+@@AF@s2 Q@@A@#_47@~,@A@@@@@#_482M접 #_49'`o@C\@A堐v@2 Q@@A@#_50@&,3H@A@@@@@#_512M접 #_52'`o@C@A@2 Q@@A@#_531@.ag@A@@@@J@#_542M접 #_55'`o@BH@A@ 2 Q@@A@#_56Y@y@A@@@@r@#_572M접 #_58'`o@Am@a@2 Q@@A@#_59}@>T@A@@@@@#_602M접 #_61'`o@A@@2 Q@@A@#_62@A@@@@@#_632M접  #_64'`o@A@@2 Q@@A@#_65@A@@@@@#_662M접  #_67'`o@A@@)2 Q@@A@#_68@A@@@@@#_692M접  #_70'`o@A@@72 Q@@A@#_71 @B5<@A@@@@#@#_722M접 #_73'`o@@@@A2 Q@@A@#_74)@L5D5@A@@@@B@#_752M접 #_76'`o@@@@M2 Q@@A@#_77H@X6@A@@@@a@#_782M접 #_79'`o@@@@Y2 Q@@A@#_80g@d5 @A@@@@@#_812M접 #_82'`o@A{@o@X2 Q@@A@#_83@c@A@@@@@#_842M접 #_85'`o@A@@W2 Q@@A@#_86@bP@A@@@@@#_872M접 #_88'`o@A@@V2 Q@@A@#_89@a5Ͳ @A@@@@@#_902M접 #_91'`o@C砐@@ru@@@kp+PAz@Sga]m܌f@vR7qL̄@G3`S4xׄZ@ ?h!f@,Rdefinitions%Reals#Coq@@!RӀ !x!H%Logic$Init@#notШ @"eq @&BA+@#IZR/r'BinNums'Numbers3@!Z7@A!X*Ranalysis1A@,derivable_pt8\EC$Ȑ"H0FST@$Rdiv̀0,B0@(positive*@CEB Р&SpecifX@#sig#* @BBB@@@@D!s!lC@0derivable_pt_abs팀~83Gg&fO@$Rinv8 0p"x0!p9A&$I #epsh@#Rlt=@&ex_ind 5{Л%RIneq@'posreal̠@%delta !hѶ@@#*Rbasic_fun@$Rabs; w!@#pos=D.6@&Rminus&H M@%Rplus+1L HF@"ex @RISG@E@AdA.ˠ2)"x1g"H1^!Aofpd3@b@^^K蠩OOFNJB%~M"H2~"H3|rDG@&eq_ind J`a@%Rmult׀ Ր$o!rn搩9~8'U)4u&!)@?֠0k4<OK@Nqo'Raxioms@)Rmult_1_l9; =C͐W+Gd eCp@0derivable_pt_lim&C8C|C@@'div_fct R@'fct_cte€ux@'inv_fct˷o"X0@x|*Ranalysis3@0derivable_pt_divQ)@2derivable_pt_const>ҥА!g#pr1  涐#pr2@@)proj1_sigY#$ܩ () -"p0#!34+ ̷:@>3?#AB:F*HIưA"$"&M"p1'A3TIA@(eq_ind_r!2#[^\.ٰ5Щ@`DbcK=h^?LjkhDoBhg2@1uniqueness_limite)@Ӏ.̩]{|3UWd -:[:9[CzH@a{K@n%7pP@)derive_pt$Fn@M0Br6(@}{B4v@ugoo{@0uniqueness_step2 `wY&Rlimit@)limit1_in8ͩzᠩmՠ(q* .ީ~>@#Rgt=<ͩ<#alp@#andЖw@@ 6T1Y6#'P '!%3$@qN;ؠ?Q ɷ"x25:$@'and_ind14ۀЩM3@@Eq;n[_ S;,$=.JIW^X\jN[@VrvSk;D=Fh߷"H43"H5gt@yào"Š,R_Z@٠@U5u7wXGAN{@שBԐ^ŠT68"x3"H6oĩ^ZƩܠy4#}ҩlhԩ ꠩){54(~(.-6C4@ڠ@;*Rfunctions@&R_distөF CM@C@$Base /hI@%R_met Րs@B`РU@,Metric_SpaceC@@FF@@@@@@@@@!m@(@*N0$)QBq@@$dist@@>(dist_pos5!yF@#Rge=-"(dist_symC3S-/)dist_reflM򩚠I@#iffС)Dd;G\@>(dist_tri^)a!zᩚp@#Rle=.y&TǠgTC@ty@ՠ@U 3^hgjݠjJ,C@(limit_in=J@|B~}>C @][ mqgx@0uniqueness_step1 `yt1hv3CöĶĶ=@ȩ#b<η@)derivable$"ة*Ranalysis4@0derivable_pt_inv8(>C귐"pr?"naߐհ穚@*pr_nu_var25 =-9ک+޷7Ȑ(hyp_list)Datatypes@$list]@A @$prodt@,Ring_polynom+setoid_ring!@%PExprk@"Ȑ'fv_list)B91Z1>}@2RField_ring_lemma1!7𚠐(Ring_tac%@0ring_subst_niter!%'0G'5C,:D1L@$Truey@AHA]@$boolZ'@A@U Ȑ#lmpX@.mk_monpol_list(SN#&BinInt&ZArithM@#add1P&)BinIntDefS@ ̀@#mul1P] @ @#sub1P@ p@#opp1P@ {%Zbool!@(Zeq_bool0߀*@'quotrem\$@/ŀ@#Monf@@#Polj@@#Peqj*(@*norm_subst7:d0tQA;5/'0vSC=71)zbCBnCةq sީNPߩT ÷Ͱĩ@$Ropp΀f6@$Rsqr=MW)xB"}ũG'(Ġ+)W)(3#$&Ӡ:ʠ64?.!/1ޠEz<G7H,:<FQ٠@ 2D @)Rplus_0_l 6ʀC-Ma'DAF@)Rmult_1_r+1!1Q@)Rmult_0_l+€PCCcw\W'_'@/derive_pt_const ~@-derive_pt_div #  P-Nmzkǵ}2ʩR@@Р7HJ:ABOqɷNũ 9O9ΐX֐\\Y`)mLᐩΠkҠkhoĩƠ|8tɩˠ͠?ސAdЩ֠ Ωpܩ(⠩۩8ʷAзG$՚%@'Rabs_R00.n@+Rplus_opp_r {G>ĩ|&M@*Rinv_r_sym9lUCa>ȠE]@)Rplus_0_rH€<ZX(d[@+Rplus_assoc bC{XE⠩Iu@*Rplus_commqfh@*Rabs_right |T@&Rle_ge @ H%֩w@)Rcase_abs7m@'sumbool7̂K@AB BAAAA@@@@@Dȩ'ɩEqH#Hlt (xzƠS56@)Rabs_left)aӠ }@"or @AnO|rIU5@.Rplus_lt_reg_l5=Ӏ V@$MYmMhR  ]oy Ơ{@+Rplus_opp_l73Ϡ'1)Ӡ+-==#Hgtm@4Rplus_le_le_0_compat 93wS.7ư9ܩ$@&Rge_le 6/Rĩ bcfʩְhCFHNLש?@6Ropp_0_gt_lt_contravar oSߩXNEOC@A@=`=*Ǡ.E"ةI<٩C],[ݩzWME7Hb9bO젩SjG$=IZMNwdh/ir6OȐ(list_hypR/Ȑ+field_lemma@3RField_field_lemma1(Mk!3i5k/B,Field_theoryM@%FExprs@CKF FPJU WH\Ea"D5g3B7m .ov>&@'v$nfe16@&linear@~@ ?@%Fnormw$W4$H$nfe2@ $_<,& D@T0fC3-'!|tW@#num:ut^@%denum0 0xUE?93+ɩ h@l@%PCondS<@#nat@&BinNat&NArith!N@&to_nat`)BinNatDef @*9G(Rpow_def@#pow#׀̰ ҩΰ ȩ@#appʀ쩚@)condition.ʩ @&FEeval>@ .-<6%  ! @ #$43B<+Ȑ#reswxȐ&res_eqƠ~ @ (  Ȑ$res0A /Ȑ'res_eq0۠ @Ȑ$res1)F "0H'5E,ǩ / 1 *A&Ȑ'res_eq1$@ [  ? =@@-RField_lemma55vnjQef$lock"leJ>A(lock_def `  W8  X (!V We08  ] -&[ \S "U O d0C<  g 70e f 3 j h@ k&@$Fapp{Fn-@&Fcons2w$u p E" y5k   } Vdv cT  D  _  I     )ɠ f͠zfg u>v Hrlb J[ Ƞc _  W_ @.Ropp_lt_cancel#m  ~  h ԩ  琩ڠϩ ܩޠ9_? @1Rplus_lt_0_compat-Pf۩ # '@/Ropp_plus_distr:(򚠐 -@&Ropp_0 GU`   F ө j s  ' N  !r*g 2     Y "           g      l $   &    (  Eb ! ,,T. ) # 00 2 Y] C \  , 9 * h @-total_order_T=ҖX @%sumor$|@  . N ' $ BAAAA@@@@@D ݩ = ]  3m@    7    H h  > (   A  o  p   g IO@-Rabs_derive_2*qA.C#Heq i@)False_recu唀 , ['       ! a 0@-Rabs_derive_1*qA-C2  BAAAA@@@@@D@  ϩ a@-continuity_pt?ZL   @'Req_dec3{  ܵ   lȩ   Ͷ  @à&Rderiv @#D_x> H @'no_cond'       !    r =  ޶@㠩  z  /      5       Ƿ V    ʷ   A   "    Է   K (      ޷   U 2     7   ]   <   b/ЩXP   g D 1   ʩ m J ̷   ԩ q N ;e  ک  - # ! . z W DX      \ I -   ;L  <  e B 7  8  R  k H      K M B # $ B. j a F ' ' w y y@,Rabs_Rabsolu v Z  0; lkC   q ca U C  a@r V dk eiw [ h@m |r G  C  r@ g u| vz lt@~ Ƞt W u Y ̠x  Czz Š a a C   cC@+continue_in   jC   R@7derivable_continuous_pt%f  r@1Rderivable_pt_abs8D C _@*continuity* ̐"An@ ͵  @'nat_indJ שx @(sum_f_R0Yc!k e     @3continuity_pt_const 5 ѩ q }A ~  ? ڷ ۩v ݩ } w  C @(constantVCF /*   ( ƷC%HrecN;     =8  p6B    @(plus_fct1 P ÷       ^Y;  dW Ƿ   & Ω-  1@ @2continuity_pt_pluso-(   ˠ< > @-mult_real_fct=3+ < H  AJ F m OJ @2continuity_pt_scalooU ,  橚 @0derivable_pt_pow3  W  P 2 \C; 5 7C a  ? ] j \%Peano Z@"lt Uxc Mз j ʰ: } d 5 Ġ " $ @#INRr f O#Nat ~@$pred `<  .ǩ @)False_induُ c  Qʩ K M) $֩!ީ(PeanoNat%Arith &@)lt_irrefl>jSI޷G U  y zРZ@T UxT@A@B@B@@@@@@D!n@ @  A °  v    Ȱ멷  ̰  é @'f_equal=!e@@A@A@@@@D, ֠+.  ' ة ".  ۩ &2   ߩ )5 | +7:,p 0 < 4@@{6B    7 C  ;Y٩  ?## = ֩5CC0D.(  '*Z  I    M  $   P &  R aS _ X 4d͠f 6 fd 󩜠B %d p٠r ⩚@+lt_le_trans ŵyt 驚@)lt_0_succ5% +  + ,@ 7vZZ ;z   5>Ġ E    W@&or_ind" R   İ 4 w   U] s   " : - ^ 5 ۰ K Ӡ 1  l I٠ 7 9   R; `   E C N H Fҩ L  T  ꐩ T l ] o z@(mult_fct)? @"id!s- $ mҩŠ '$ c٩   l q s { + |    @ Ͱxv?,O'0  sc]WQI )0  ue_YSK  C ְ   Ω P    6   B  ٩   ]      8    I   U p   g S  $L Ʃ젩 'xi   @5derivable_pt_lim_plus; b ̠ *[ թ\w & @6derivable_pt_lim_const9A  ө @5derivable_pt_lim_scalhj 2 @5derivable_pt_lim_mult ~  @3derivable_pt_lim_idsT ;|$ N P$ })C  Uw  V3 }  ܩ שl  Z< <  u )l n   M MTCYmz |  WY >Ơ,\Ce E F   0 KӠ  N 1 o - r 6࠷ > @   X Y"Lt@&S_pred<=À$Cө$B' l., lĐ3 ǩ ɠ  l nJ Eڠ C  t   yU "  㠩(#  d _(  i2  5 ٰ 2 ' y2 ީE@1Rplus_eq_compat_l+  = &!* 6F8G5 ˩ =?s  A ׷PB% Š 搩,  ʠ[` $ "   0  2  5>             A        @*      !  0 #       & 0 %        ( {))o'PartSumU@%tech5gyF45?_aᐩlt"qs~٩ ۷ а Bʠ(Ic@ I,ggm Pؠ6Sq W:u 9+)R ; p d Nu iA O۩Q-fh[7ʠvk{ ʩӠ jzE' کs}Y@4derivable_pt_lim_pow$Zއ C: kiY˷ :gbΐQOOLROG V"ڠڷ2$J]w  7 \  @@M #QH&lMַ@!Bɩ Ct=zF7) P@3derivable_pt_lim_fs=lNS(5' _@;derivable_pt_lim_finite_sum,񹋀 AWLBseh頩ǩ©W Ʃg C@'nat_recOзwI \d7g]66֩hi氷 )lHb° 2uPMyz :} d(VUV)rҰ Bʠl0̠&ȩ   N֠4 Sm۠9;vUvC_axĵ @7derivable_pt_finite_sum,3HC O OW*Rtrigo_def@#exp3  5o:٩Π@$comp!~@'opp_fct*' -z612 )    ©   °  İ3    թ ҩ  ԩ    ǩ  ͩ  ܩ  @    ^ K  n F0    | v p h  H0    ~ x r j   C`:c 1?Y\à"kTǠ; d-/Ϡ3GӠH mpנ6h<oo_oV(Exp_propC@4derivable_pt_lim_exp(]2b @5derivable_pt_lim_compkx /e@4derivable_pt_lim_opp$Z*Z@#IPR.ws0,z99CXe>{C@$coshQgH@$sinhBOmzm  dʠF@)minus_fct 3 #߰hG1   i f d f hש jY g e d _|~R { Y }bm \  T  v a ^t T M@ J ? =     0 ] : * $    s 0 _ < , &    u  KC_b>e oʩ̠loKgө#Q~Q @6derivable_pt_lim_minus9|L^C-y{C0pw浩Fig01C3ƐRus @5derivable_pt_lim_coshyCאc' 1@5derivable_pt_lim_sinh>TCϠ萑 ;@0derivable_pt_exp8#RC I_ E@1derivable_pt_cosh?l\^C S O@1derivable_pt_sinh?n9C ]%2@.derive_pt_eq_0J}~&N0= Ω"H6Cc=<IJ"xyZ#MVTP@(MVT_cor2"20!c\Ma  { 9YWe fjJj|(v iBBB@@@@D@s(f)6$  ݠ &j;BBB@@@@D@4©F=ǩBHB "Pc$_tmp   v  ӐS 2r\ȩ̠ ݐ] |ѩӠ  3թulL :@1Rmult_lt_0_compat=  栩+, " @'exp_posM 0@0Rinv_0_lt_compatD0)RealField @'Rlt_0_2+CM,A@*Rlt_Rminus|9 JY MK HMdEa#S;e <#