"` ^ Br_*Ranalysis2%Reals#Coq@()Notations$Init#Coq@%Logic$Init#Coq@*Logic_Type$Init#Coq@)Datatypes$Init#Coq@&Specif$Init#Coq@%Peano$Init#Coq@"Wf$Init#Coq@'Tactics$Init#Coq@%Tauto$Init#Coq@'Prelude$Init#Coq@)Notations$Init#Coq@0&v!D]hwnv %Logic$Init#Coq@0\͉!Ig)Datatypes$Init#Coq@0.i bYN Z*Logic_Type$Init#Coq@0 1jc6&Specif$Init#Coq@0;RWMi\N'Decimal$Init#Coq@0C涳N*ua#Nat$Init#Coq@0eʤģPSR蠠%Peano$Init#Coq@0 jha|ؠ"Wf$Init#Coq@0q+W,J+'Tactics$Init#Coq@0/9m+ a%Tauto$Init#Coq@0̂"&/rk0JqTttֱ'BinNums'Numbers#Coq@0dmk(5Ju<*EqdepFacts%Logic#Coq@0FI$ͼՋ`)Eqdep_dec%Logic#Coq@0u wWIϰ߼&Basics'Program#Coq@0!bs߯? :VU$Init'Classes#Coq@0](p{yOh.'Tactics'Program#Coq@03u%+Equivalence'Classes#Coq@07;ꮹ-SetoidTactics'Classes#Coq@0S_`nOU$&Setoid'Setoids#Coq@0D9AsWE!>$Bool#Coq@0j 2cZ`FW*Equalities*Structures#Coq@0όe얟)H.Ƞ2Relation_Operators)Relations#Coq@0%s鯰s4Operators_Properties)Relations#Coq@0U3y#h&)Relations#Coq@0r砠*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ&NZSqrt&NatInt'Numbers#Coq@0` .%m%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|&NZBits&NatInt'Numbers#Coq@0MlIpKt'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$&NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ)NMulOrder(Abstract'Natural'Numbers#Coq@04> Aat/ j $NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ'NMaxMin(Abstract'Natural'Numbers#Coq@0]v|Qg̟ʠ'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NLog(Abstract'Natural'Numbers#Coq@0KI'BinList+setoid_ring#Coq@0Au,Ring_polynom+setoid_ring#Coq@0gaKw9`UW+ListTactics%Lists#Coq@0,Jcy{+InitialRing+setoid_ring#Coq@0k/T=cN(Ring_tac+setoid_ring#Coq@0x2]%762f)Ring_base+setoid_ring#Coq@0fbU(2cNe$Ring+setoid_ring#Coq@0Msᬠ)ArithRing+setoid_ring#Coq@0ṔCgt?}%Arith#Coq@0I|кX*o4#Max%Arith#Coq@04=;3$>aU堠#Min%Arith#Coq@0Ce-Fѕ(PreOmega%omega#Coq@0\|چBb~w4%Omega%omega#Coq@0t.J'6\ϨrK(Zpow_def&ZArith#Coq@0f蓜DX;V*ZArithRing+setoid_ring#Coq@0{#'[{nm!/,Zcomplements&ZArith#Coq@0ʾq %RIneq%Reals#Coq@0JUڻIu)$w&DiscrR%Reals#Coq@0z41pV.%Rbase%Reals#Coq@0Jܡ\ c6{%R_Ifp%Reals#Coq@0c4+ZŠ,Fourier_util'fourier#Coq@0ϳ> 4`*r0'Fourier'fourier#Coq@0wV9TN*Rbasic_fun%Reals#Coq@0hܒiclE>%R_sqr%Reals#Coq@0X%MԹ%M+SplitAbsolu%Reals#Coq@0M)&qYlݹ5*SplitRmult%Reals#Coq@0sD\rt/$Even%Arith#Coq@0YO%q}d߫%$Div2%Arith#Coq@0n*Áht!,)ArithProp%Reals#Coq@0B+L?>*e˃a j*Rfunctions%Reals#Coq@0d¹d‹@&Rlimit%Reals#Coq@0*r0ē([HAE&Rderiv%Reals#Coq@0?KQ;^WU;H*Ranalysis1%Reals#Coq@0 n;qm.L%f ]9 ztven!SOР*Ranalysis2%Reals#Coq@A'formule @@@!x,Rdefinitions%Reals#Coq@@!RӀ!h"l1"l2"f1@!"f2@')@%Logic$Init#Coq@@#notШ@"eq @3E,Rdefinitions\[@@#IZR/r'BinNums'Numbersi@@!Z7@A@1'@,Field_theory+setoid_ring#Coq@@&FEeval>@@A@A"s @,Ring_polynom+setoid_ring#Coq@@&PEeval"s @@A@BA@A@)maj_term1 @@A#epsÀ&alp_f2Ȁ&eps_f2@'posreal̠@'alp_f1d @ۀ݀@‚䀶@n@#Rlt=G@ȀJ@؀΀(KЀȶ@ @񀐩%Logic$Init@"eq @E@!RӀA @/r@V*Rbasic_fun%Reals#Coq@@$Rabs; w驚%RIneq%Reals#Coq@@#pos=D.֩v р΀ـ됩OL:䀠M!G@BE@(positive*@B   C@!a@Àm|q@$Rmin; 〠j Ԁƀ`PVg2G9se@+^@ND@LǀCdQP+Q2Q@󀐩S@@7@B_@@*@B B@C@@@@@͠)maj_term2 @@xBhg]ko`sw(alp_f2t2|_@@KCF@h^7[S@wm$54nf@@Ԁ~[܀7XNoP@ѩ b c@N@ɩMT̀%|؀Jހ3@뀐@L@UR8@̩pȀunQqQZဠ|QQh耠DQBJBOBCC@@@@@)maj_term3 @@C'alp_f2d@ǀɀ@΀Ѐ@쀠G@驚@$~}@@؀@"̀,րƐnbؐxÐԶ@N@j#axj& ր28@TJE=@PF@[)U,@{qQogπy'RАRӐYRQDAL琩mRQRQyU٩BBBC@@@@@|)maj_term4 @@'D ` "_&'alp_f2c+cb@46@;=@YG@V @-#$됩ꀠUi$@Țn@4C򩚠<퀠%L̀ЀĀ̐ΐ+܀j#J@@Ҁ|v@ɩҀl\bs> ~p@i@ @T@တ׀ߩQՀͶ@񀐩瀰‐کB쀐hp"ĐSwk7S:ԀSRFSRNSǀQ$1B*B/B#C@@@@@+D_x_no_cond @@E皠@dZ AVN&Rderiv%Reals#Coq@@#D_x> H*Ranalysis1%Reals#Coq@@'no_cond'@>DU@@@@@-&Rabs_4 @@F!ǀ!b̀!cр!dր_@#Rle=jnrDCBAz~DÀCȀB̀A@@@@@%Rlt_4 @@0GyX#W'V+!e0!f5!g:0>@ZHG@av@f{@koဠ倠造h퀠񀠩` ǐ@@@@@䠠)quadruple @@H~F  @@ӀÀMZBSBXBLCA.26AAAA@@@@@)-quadruple_var @@IĚÀAQUY;ABBBCVABBBCqA΀BBBCA逐BBBC@@@@@0continuous_neq_0 @@ _J@ O Q"x0 V@@-continuity_pt?ZLBA@ 7 -  * " F@"ex @ q @ET; & ` VC -  4 Wc@A@@@@@@@@ ӳ2@ ӳ2[)Datatypes$Init#Coq@@A@ Գq@ Գq\ @A@AB@cA@A.0TQ+Ring_theory+setoid_ring#Coq@@ABA.U>[J @B@@"O@(PeanoNat%Arith#Coq@#Nat@&of_int"O#Nat$Init#Coq@@ 6@A@A\@&BinInt&ZArith#Coq@!Z@'quotrem\)BinIntDef&ZArith#Coq@!Z@ /@A@\@@+pred_double\@/S@@A@As2@3@&shiftls2*@vY@A@BCs8@8@&shiftrs8/@vY@A@ѓ@>@&squareѓ5@y@A@@D@&to_intϑ;@@A@z@5@&doublez,@/!@A@ABCD/@O@)log2_iter/F@wd@A@NH/@B@&moduloNH/9@1,@A@A\d@G@&of_int\d>@1?A @A@bz@M@&of_natbzD@1?G!@A@#@S@&shiftl#J@1dV@A@#@Y@&shiftr#P@1d\@A@ABCD/x@&BinPos&PArith#Coq@#Pos@)pred_mask/x)BinPosDef&PArith#Coq@#Pos@ )X@A@6@x@&square6o@19@A@AV+L@}@&to_intV+Lt@2@A@V1b@@&to_natV1bz@2 @A@V5=@@&to_posV5=@2@A@ABCl@@)sqrt_iterl@!$:@A@@@6@(sub_mask@-@)@A@ADEF c@@'testbit c@!ć@A@7 B@D@'of_uint7 B;@*`]?@A@AG@I@)mask_rectG@@+ED@A@F˱@O@)add_carryF˱F@+p@A@AB^Ҷ@@'to_uint^Ҷ@#m@A@gL7@@'sqrtremgL7@40@A@Aq@@'testbitq@5)@A@ݎO@@+succ_doubleݎO@6r@A@A p@l@0double_pred_mask pc@0-+m@A@BCD T@&BinNat&NArith#Coq@!N@!t T)BinNatDef&NArith#Coq@!N@ 2@A@ @@#add @3 @A@A l@@#div l@3@A@ Y@%@#eqb Y@3@A@AB #@*@#gcd #!@3n@A@ T@0@#leb T'@3@A@ACEG "@5@#lor ",@3m@A@ q@?@#ltb q6@3@A@A @D@#max ;@3@A@ @J@#min A@3`@A@AB @O@#mul F@3B@A@ ~@U@#odd ~L@3@A@AC =@Z@#one =Q@3@A@ @b@#pow ˑY@3@A@A c@g@#sub c^@3@A@ @m@#two d@3J@A@AB hx@r@$div2 hxi@>@A@ @x@$even o@>4@A@ACD @}@$ggcd Бt@>U@A@ @@$iter }@>:@A@A 3"@@$land 3"@>m@A@ F)@@$log2 F)@>t@A@AB S@@$lxor S@>@A@ @@$pred @?U@A@AC @@$size ܑ@?'@A@ !@@$sqrt !@?@A@A ! @@$succ ! @?\@A@ !7@@$zero !7@@P@A@ *@@%ldiff *@@A@AB g_@1@+pred_double g_(@25\@A@CD m@6@÷ m-@2j@A@S@=@&of_intS㫑4@4}5@A@AS@B@&of_natS9@4};@A@BEFGH\R@G@(mask_ind\R>@4@A@\^@Q@(mask_rec\^H@4@A@A!,@V@&pred_N!,M@4s)@A@B@[@&shiftlR@5X@A@@b@&shiftrY@5X@A@A&@g@&square&ّ^@5,x@A@BC"@l@&to_int"c@5L@A@"@t@&to_nat"k@5L @A@AnTq@y@+testbit_natnTqp@6n@A@B@@(succ_posB@@A@I@@'abs_natI@?n@A@AB.@@'of_uint.@MS@A@3~@@'sqrtrem3~@7]%{@A@ACD,@ @'bitwise,@/v@A@>4'@@'testbit>4'@8g$@A@A{U@@,sqrtrem_step{U@8R@A@u^@9@(div_euclu^0@ @A@Afz@@'to_uintfz@9w@A@Bl@'@'comparel@3R@A@CDEFs8@,@+of_uint_accs8#@5+@A@}@R@,pos_div_eucl}I@&`@A@3x@(@'compare3x@]=@A@A@^@&doubleU@'޺_@A@BCq@@+of_succ_natq@$@A@w@i@&modulowɑ`@)1@A@ADK@n@&of_intKe@)j,I@A@K@v@&of_natKm@)j2_@A@AI@{@&shiftlIr@*O@A@O@@&shiftrOx@*O@A@AB,@@&square,}@*ow@A@Z@@&to_intZ@*81@A@ACE`@@&to_nat`@*9G@A@e@@+testbit_nateđ@+@A@A+{@@'sqrtrem+{ё@,J@A@5z@@'testbit5z@-T|@A@A @@'to_uint ͑@.@A@ @@+succ_double @.^4@A@A#@'@'compare#ݑ@ )Q@A@BCD%t2@,@(size_nat%t2#@ @A@%9@3@+of_uint_acc%9*@ ΋@A@A%V@8@+double_mask%V/@ S@A@%%@>@'div2_up%%5@ "@A@ABEF'ş@C@'Ndouble'ş:@ @A@(b0@K@*shiftl_nat(b0B@9-@A@A(nՖ@P@*shiftr_nat(nՖG@'@A@(@V@0succ_double_mask(M@@A@*W$@\@,compare_cont*W$S@!@A@.0@b@.sub_mask_carry.0Y@΂@A@ABCD.@@!t.@ ;@A@.먩@@#add.먩@ `@A@A.U@@#div.U@ @A@.B@@#eqb.B@ @A@A. @@#gcd. @ @A@.=@@#leb.=@ @A@ABCEGHI. @@#lor. @ @A@.Z@ @#ltb.Z@ @A@A.p@@#max.p@ '@A@B.@@#min. @ @A@.@@#mul.@ @A@AC.g@@#odd.g@ @A@.&@&@#one.&@ @A@A.뾴@+@#pow.뾴"@ k@A@.L@1@#sub.L(@ @A@.@7@#two..@ @A@ABCD.,a@<@$div2.,a3@ @A@.Xz@D@$even.Xz;@ ?1@A@A.@I@$iter.ؑ@@ @A@B. @N@$land. E@ @A@. @T@$log2. K@ @A@ACE.@Y@$lxor.P@ R@A@.y@`@$pred.yW@ `<@A@A.Ʉ@e@$sqrt.Ʉ\@ ;@A@.@l@$succ.c@ @A@.t @r@$zero.t i@ Z@A@AB/@w@.to_little_uint/n@ @A@CDF/@|@%ldiff/s@ H@A@00@@'compare00@?H{@A@A1P%@w@!t1P%n@  @A@B1P@|@#abs1Ps@ @A@1P&@@#add1P&z@ @A@A1P@@#div1Pґ@ y@A@BC1P@@#eqb1P@ f@A@1P@@#gcd1P@ 0@A@A1P@@#geb1P@ T@A@B1P@@#gtb1Pʑ@ q@A@1Pĺ@@#leb1Pĺ@ a@A@A1Pň@@#lor1Pň@ /@A@BCD1P@@#ltb1Pב@ ~@A@1P@@#max1P@ @A@A1P{@@#min1P{@ "@A@B1P]@@#mul1P]@ @A@1P@@#odd1P@ @A@A1Pɣ@@#one1Pɣ@ J@A@BC1P@@#opp1Pԑ@ {@A@1P1@@#pow1P1@ @A@A1P;@@#rem1P;@ @A@B1P@@#sgn1Pˑ@ r@A@1P@@#sub1Pɑ@ p@A@A1Pe@@#two1Pe@  @A@BCDE1[8@@$div21[8ޑ@ @A@1[d@@$even1[d@ I@A@A1[6@@$ggcd1[6@ i@A@B1[U@ @$iter1[U@ @A@1\@@$land1\@ /@A@A1\@@$log21\ @ 6@A@BC1\$@@$lxor1\$@ @A@1\Y@$@$of_N1\YÑ@ >j@A@A1\@)@$pred1\ @ j@A@B1\@.@$quot1\֑%@ }@A@1\@5@$sqrt1\,@ @A@A1\w@:@$succ1\w1@ @A@BC1\k@?@$to_N1\k6@ @A@1]@G@$zero1]>@ eD@A@A2:@L@%abs_N2:C@ @A@21@R@%ldiff21I@ ߵ@A@2=*@X@%quot22=*O@ @A@ABC2kF@@(size_nat2kF@{@A@3@x@(tail_add3o@^q@A@ADEFGH3@}@(tail_mul3t@^@A@5Z@@*shiftl_nat5Z@y/@A@5f}@@*shiftr_nat5f}@4@A@AB5a@@'iter_op5a@ @A@C6w~@@'of_uint6w~@^5@A@8j@@'of_uint8j@'"h@A@9E@@(div_eucl9Eđ@(*k@A@AB:x@6@,Nsucc_double:x-@ ʭ@A@CD@[@&divmod>R@C@A@>@b@&double>Y@NĴ@A@?2@S@,pos_div_eucl?2J@-u@A@AB?;@m@&modulo?;d@"i@A@CEFGIJ@%Arith#Coq@0I|кX*o4)ArithProp%Reals#Coq@0B+L?>*e˃a j)ArithRing+setoid_ring#Coq@0ṔCgt?}*Arith_base%Arith#Coq@0Ĕ}CS&Basics'Program#Coq@0!bs߯? :VU'Between%Arith#Coq@06v*0ur`C0&BinInt&ZArith#Coq@0BpHޞun^)BinIntDef&ZArith#Coq@0ådR4Tuy'BinList+setoid_ring#Coq@0Au&BinNat&NArith#Coq@0K11ڤs+Π)BinNatDef&NArith#Coq@03@1O,[{ 'BinNums'Numbers#Coq@0dmk(5Ju<&BinPos&PArith#Coq@0vyػ0= u)BinPosDef&PArith#Coq@0}H d.%,b$Bool#Coq@0j 2cZ`FW*CMorphisms'Classes#Coq@0qیZBeϠ0CRelationClasses'Classes#Coq@0TL;0RUfw1+Compare_dec%Arith#Coq@0jXF 8=<;@0.i bYN Z)Decidable%Logic#Coq@0ND걸풬/Oߠ'Decimal$Init#Coq@0C涳N*ua&DiscrR%Reals#Coq@0z41pV.$Div2%Arith#Coq@0n*Áht!,%EqNat%Arith#Coq@0AIgՋXRV *EqdepFacts%Logic#Coq@0FI$ͼՋ`)Eqdep_dec%Logic#Coq@0u wWIϰ߼*Equalities*Structures#Coq@0όe얟)H.Ƞ+Equivalence'Classes#Coq@07;ꮹ$Even%Arith#Coq@0YO%q}d߫%)Factorial%Arith#Coq@0@oehJd%Field+setoid_ring#Coq@0J _ȫ)Field_tac+setoid_ring#Coq@0d vDZl^۹Hɐ0B~uYٮ٠'Fourier'fourier#Coq@0wV9TN,Fourier_util'fourier#Coq@0ϳ> 4`*r0-GenericMinMax*Structures#Coq@0måj$"Gt%Arith#Coq@0䙛#c:D $Init'Classes#Coq@0](p{yOh.+InitialRing+setoid_ring#Coq@0k/T=cN"Le%Arith#Coq@0d}Omq+$List%Lists#Coq@0>I+ListTactics%Lists#Coq@0,Jcy{0\͉!Ig*Logic_Type$Init#Coq@0 1jc6"Lt%Arith#Coq@0KZ-eJkP܏#Max%Arith#Coq@04=;3$>aU堠#Min%Arith#Coq@0Ce-Fѕ%Minus%Arith#Coq@0LFtR")Morphisms'Classes#Coq@0Imӽ%\$PD.Morphisms_Prop'Classes#Coq@0% :B'.>u%$Mult%Arith#Coq@0햖Qyb0$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI%NBits(Abstract'Natural'Numbers#Coq@0qteo_hɅ $NDiv(Abstract'Natural'Numbers#Coq@0bz$?[p(5$NGcd(Abstract'Natural'Numbers#Coq@08E-S ;j_Ҡ$NLcm(Abstract'Natural'Numbers#Coq@0 ~xZ9L{:$NLog(Abstract'Natural'Numbers#Coq@0K Aat/ j &NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf+NProperties(Abstract'Natural'Numbers#Coq@0unt"kwpYC%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ%NZAdd&NatInt'Numbers#Coq@00h`ZK4*NZAddOrder&NatInt'Numbers#Coq@0e~1>r砠(NZAxioms&NatInt'Numbers#Coq@0] ρ5r&NZBase&NatInt'Numbers#Coq@0^&8yUL&NZBits&NatInt'Numbers#Coq@0MlIpKt%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZMul&NatInt'Numbers#Coq@0ctR~6[Ƞ*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R'NZOrder&NatInt'Numbers#Coq@0 q;Ve7R W,(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x&NZSqrt&NatInt'Numbers#Coq@0` .%m#Nat$Init#Coq@0eʤģPSR蠠$Nnat&NArith#Coq@0$W;s #%M)Notations$Init#Coq@0&v!D]hwnv *NumPrelude'Numbers#Coq@05WUVŦ]xVXԠ%Omega%omega#Coq@0t.J'6\ϨrK+OmegaLemmas%omega#Coq@0TJ#Jes4Operators_Properties)Relations#Coq@0U3y#h&&Orders*Structures#Coq@0$Znl0\͗+OrdersFacts*Structures#Coq@05Mܿ獐ζΖLB)OrdersTac*Structures#Coq@05'4Ԗ+9%%Peano$Init#Coq@0 jha|ؠ(PeanoNat%Arith#Coq@0O~2$k[#lZ)Peano_dec%Arith#Coq@0Kݢ*k$Plus%Arith#Coq@04tmG$Pnat&PArith#Coq@0,?pr.gZ(PreOmega%omega#Coq@0\|چBb~w4'Prelude$Init#Coq@0JqTttֱ%Quote%quote#Coq@0J@ŹVz-,3%А0JUڻIu)$w%R_Ifp%Reals#Coq@0c4+ZŠ%R_sqr%Reals#Coq@0X%MԹ%M*Ranalysis1%Reals#Coq@0 n;qm.L%'Raxioms%Reals#Coq@0S]jnj][L%Rbase%Reals#Coq@0Jܡ\ c6{*Rbasic_fun%Reals#Coq@0hܒiclE>ߐ0(2{Ze$ќ8&Rderiv%Reals#Coq@0?KQ;^WU;H)RealField+setoid_ring#Coq@0 >ʾq /RelationClasses'Classes#Coq@0Gz rA6ՠ4Relation_Definitions)Relations#Coq@0]4Ѐd{n^2Relation_Operators)Relations#Coq@0%s鯰s)Relations#Coq@0-SetoidTactics'Classes#Coq@0S_`nOU$&Specif$Init#Coq@0;RWMi\N+SplitAbsolu%Reals#Coq@0M)&qYlݹ5*SplitRmult%Reals#Coq@0sD\rt/'Sumbool$Bool#Coq@0sB ,$11.]m'Tactics$Init#Coq@0/9m+ a'Tactics'Program#Coq@03נ2 Q@@A@#_10@H)@A@@@@@@@@#_112M접#_12'`o@I'R_scope.function_scope@@@@ AA㠐栐@(Rmin_pos9D{(@@@(Rmin_pos Bw2 Q@@A@#_13=@ҕ@A@@@@W@#_142M접 #_15'`o@QUWY[]@@XZ@@@_a@@@@^adgjAAMPAAW@.2 Q@@A@#_16@9ҕ@A@@@@@#_172M접 #_18'`o@QàŠǠ@@@@ƠȠ@@@@@Ơɠ̠ϠҠՠ AAA@U2 Q@@A@#_19@`ҕ@A@@@@(@#_202M접 #_21'`o@R&(*,.@@)+@@@02@@@@@0369<ruAAa"AA)qt2@T2 Q@@A@#_22z@_ҕ@A@@@@@#_232M접 #_24'`o@S@@@@@@@@@@㠐AAϠAAߠ⠐@R2 Q@@A@#_25@]2埝@A@@@@@#_262M접 #_27'`o@C@@@A2 Q@@A@#_28@L.@A@@@@2@#_292M접 #_30'`o@D0246@'*-0@2 Q@@A@#_31K@'"j@A@@@@e@#_322M접 #_33'`o@Lcegikmoq@@@@@filorux{@&Rmin_29D{(@@M@+Rmin_glb_ltzGq2 Q@@A@#_34@*1~@A@@@@@#_352M접 #_36'`o@A@@2 Q@@A@#_37@ **@A@@@@@#_382M접 #_39'`o@A@@2 Q@@A@#_40@v!@A@@@@@#_412M접 #_42'`o@D@@@A@@@2N헛W@Ug1?'H@ʥ>mA rQ7@jZ11H'XP kk,!x,Rdefinitions%Reals#Coq@@!RӀ!h"l1"l2"f1@"f2!H%Logic$Init @#notШ @"eq @3E5@#IZR/r'BinNums'Numbers=@!Z7@A"H0+!NBG"H16,YC]@%Rplus+1H0F@(eq_ind_r!2#lo@%Rmult׀EI}@$Rinv8D  $@$Ropp΀"`!ro@A3G7DuJ!>]F4D  XZ\L@dGfVj @O9CG_anUe.y0NOln0 r&[?]y{?o=1 a{eetRo jװDPAd.Hwa "Ơʠz|РҠԠĠxؠji^O8ܠ̠Π@B 栩蠩꠩ڠɐzrqZGza6cA  w b b~S^$&(*!%0 "A&(oz@BDFH8Z:Z" AéEP@B  zD+]_acSUީ`ǩk[]6ΩtvKz:juܩprfvccxQɩ2f![iifӰycj`l'R).|{ɠˠ͠Ϡà\٠۠ˠ̩͠Ϡ̩Ѡ[5CՠNɷFH/젩⠩Dϐ  puqFsZ+  ϩ Ȑ"H2Ȑ(hyp_list)Datatypesh@$list]@A @$prodt@,Ring_polynom+setoid_ring@%PExprk@j"Ȑ'fv_list)BP2%RIneq@2RField_ring_lemma1!7𚠐(Ring_tac)@0ring_subst_niter!.}4G+-;D2@(positive*@C ; BBDA "J$L &N@$Truey@AAz@$boolZ'@A@߰ Ȑ#lmpu@.mk_monpol_list(p۩B5&BinInt&ZArith@#add1P&)BinIntDef@ ̀@#mul1P] @ @#sub1P@ p@#opp1P@ {%Zbool!@(Zeq_bool0߀*@'quotrem\$@/ŀ@#Monf@@#Polj@@#Peqj*(@*norm_subst7:d00UQA;5/'02WSC=71)fBo"ߩ|X@&eq_ind J~prZ+-?5K*.N $ I 9 =J?SUWY[K'M.&O+Q8%,U1<3jZ\Q^.:,`G<Hwyik=mGFoqXAKt xz?|?XV~ omkHECxEaGUIYB@?7]/W,1Y,[ "7_9a4;c *!@߰ éiө0kMs0mOu ]ɩ"$ȠʠʐҠLǠˠِ  栩֠ؠ ڠ  ܠÐ-4,1ې+27 ͩƩ4@@鐩  A KJEO )==\Z  YeiMHհװҩٰ @cP sK0 v{umM0 x}wo,IK@M')F6S}U.Ʃȩln^`VvMYu\kRoe e [z|Y ~  gK-4,1+27n>'u>>JJIDN ̠<<[Y  7X9X;c=f?j}uwt]yHt_H~{q Sj^W@(TIG 0D@0*$0!FB2,& U1^).dk@m͐Nܐ   /!a #  % )+?ACEG7-94,;1=$+2A7(vVFH>'/L-NBD5df&VXDZDP\CFP_ ésce>g>][i ZXV30.Z0f2e4\6`/-,$JLDF H"J$LVN @ʰT0V8^0X:`Ӱw)30 {àO|  נǠɠe ˠ  ͠ѠӠ砩頩렩ߠ-4,1堩̐+27z>'א-BDݐ FK ҩHHTũ  ==\ZRةְVذ\ڰ\ܰhްlթAİưQOȰʰǩ̰ΰU@rVCf>0iztnh`@0k|vpjb{:<>((ݩ7BDFwR]_OQgPJ6M\C` VB L{kmd o  qXuw-4,1p+27ty>'{-BDFK LVS?PP\ɩƠEEdX0\2b4b6p8d~vprAtZvxuzIVO@ LA?0<8("0>:*$M)V͐꠩:#ީ^Րg<i QI  U +l   !%';=?AC3-54,719 +2=7$RBD>'+H-JBD1`bRTFK ;XZ\LVS?^`PbP\թvfhjGXX"<cܩȷGߩxZy^KZRAU?j9p5_1+v-g+pݰ 6{j@7ĠƠdbN^ΠX /V6ũ8©:<>@BE g xqCJƠ©~j$$'ǩ)ɩ+˩-ͩ/ϩߠ&9٩۩,(2CEJ4Űǰ:ɰ˰5WѰӰհ?\\Hٰ۰N@cP sK0 v{ummM0 x}woH@*Rinv_r_sym9lU䀠WݩADQũ@/Rinv_mult_distr--ttB @ 'Rmult_integral_contrapositive_currified  -97J~/_sN'Raxioms@2Rmult_plus_distr_l0ylɀX- -o/-3/uUQOYSQoЩ}q u $n9@2Rmult_plus_distr_r~wuy {  C  @&Rminus&H @$Rdiv̀   1'l@$Rsqr=MWР ԠĠ&!*̠'0Ѡ,509۠6Nߠ) T R F S#eps V G W&alp_f2 Z&eps_f2@'posreal̠@'alp_f1d  Q O N P L j@#Rlt= <  ) R H u ' B $ X N { " H q ~@ ` V  O@*Rbasic_fun @$Rabs; w A@#pos=D. - > F J Bx Ku ;ש [ xϐ"H3!a @P56@$Rmin; 〠3 1 [ JB z p  ѩM*"H4    "H5v[]"H6|a,ZLȐ"H7 k+ R vn |)s {Ȑ"H8 Q } }y R~ S pm_@,Rle_lt_trans*GӀЩ   ̠S!  %o Ơ!h(ʩ +  D ֠$   I J@#Rle=  ⠩=ΐ'TӐMHQ  ;<񩚠@1Rmult_le_compat_r2'7@(Rabs_pos+F7  u S  y0 ) ^@"or @AP [ R 9B@)Rabs_Rinv&i ,o @)Rabs_mult)r@,Rlt_le_trans9h .h 4/jg@1Rmult_lt_compat_l`up @1Rmult_lt_0_compat= 7}@1Rplus_lt_0_compat-P @"R1Ȁ@'Rlt_0_14C @0Rinv_0_lt_compatDG@+Rabs_pos_lt YCk  8[BrA  C {  t^D` l> S     ! u U  y   u{ķ e  Ұ    e    q  ް     t  h }    *    )      ! 4   ?4Ȑ(list_hypȐ+field_lemmas@3RField_field_lemma1(Mkp 6 8) ,Field_theory@%FExprs@G CyID}y %"oW@ :X ɶ$nfe11@&linear@̶@ G :@%Fnormw$ @eaQKE?C ݶ$nfe2@ T $ HmiYSMG& @ Y)L$0 Otp`ZTNF ۩橚R@#num:u Y@%denum0 K60 arlf`X а @g@%PCondS<  t K 9  }  t "@#nat@&BinNat&NArith !N@&to_nat`)BinNatDef @*9G(Rpow_def @#pow#׀  ʩD[ ! ѐY  K@#appʀ @@)condition. :  <   䩚@&FEeval>@    | a n E B<+ = g\ D Z >@     m z Q NH7 Ȑ#res uȐ&res_eq  c@ ְ( _   gȐ$res0A g A i 1 c z @ e |  ~Ȑ'res_eq0  @Ȑ$res1 | C u Ȑ'res_eq1@   |      0@ r@-RField_lemma55vka \]$lock"le (A(lock_def   8 G k  8   \ 8 L p  =     NȐU]  V     F@*Rabs_no_R0 9C< e 1  V   0   @ -@$Fapp{F ȩ4@&Fcons2w$  : _ [ K E ? 9 1 ީ  Dd~@+Rabs_pos_equ  @&Rlt_le A S ݩ @&IZR_leN  U⵷"H9 i @*comparison;f@ @'compare3x }@]= iCȐ#H10 ~B@@@@@D!y@ ! @ $ k @%Falsee@ ".0Ȑ#H11 P3-!e66@@@@@@@@@@@D!c? 7  4 : @)False_induُ% A ˶@ L>>( E PBC @1P,HcA 3@'IZR_neq%F d ˰ RJ Q  UM2 V @@AA@AA@@@@@@D!z a iN@ 05@R   nR4C *l q+C7        (alp_f2t2 ·     t ܩ   (    ש   .  p  { 1@ɠy ˠ*  j  _, ՠ   ٠  K@  ֩蠩 אϐ   Fא ۷ B 8 e 5 1  ۷s > #   d  /  |r Ʃe} nvЩ  %ҩ )gh ,  4/~t 8k C  <&  f  C-B ITX3 O\ SN @1Rmult_le_compat_lڀ.,]. T ͩG F# 9 ѩ 5 n  > ֩]qV@  B B &@0Ropp_minus_distrN:`@)Rabs_Ropp&#?[]YXU k %2 [ ?@1Rmult_lt_compat_r ?rbd3b?  dEf      x   x  @` `@*Rlt_irreflnQ C] { { j@1Rinv_neq_0_compat1jfh@ ;m9xZC& C 6 Ƞ0C< ? Ѡ  Ɛ Eܠ ۠ Ő ߠ ܩ Ր  W  Z֐    ߐ  k 1 q թ퐩  }@A  #"; *')9: 814L ;8 C<--DA%+ @&eq_sym X-驚3@*Rabs_right |TE@#Rgt=<A V8ЩgdéfP\ bVb hvHxשz~YY"[#WN t r O L J L& E C B :` 2 Z - 4 \ # 6 ^ % 8 ` : b 5   @ް    ©  h ҩ 0 j        Lr 0 l        Nt J.  JLR# V ۠ *gn. icrii EɐiIݠ#}OӐyS꠩ِ$ \_ ݩ@*Rmult_comm8 ( ٩Щ Щ퐩 9 >^ST C N`P)9f%0)+H81( w63 : E"A+EGϩ;7ũS#O̩Z*©ĩVөaȩZDƩF/7ϩѩceI7pשiީS[C۩ݩo qC[.~waCQ}So~`Ͱ)|Ce pݰ tt0a%(%+8-·02ĠƠ8Ƞ3E;@Ʃȩ°} 3 CH E6FHڠܠޠ=⠩SܐI2g_X氩1:g3 &DiscrRm@)Rlt_R0_R2Al  Lyr {Ϸ|Q~] \5!vl%=˩ ȷn-/1K4(  䐐W=?^A  C˩7Gf64 m  ʵ @    x e  `0        (  b0"       * ʩ\  U7ϩѩcegQj^V jXsuw  yΩm}ue[Ȱ$]TzxURPЩR T-VX,Z 0\ USRJpBjDlFn Hp Jr LtNv Px6RzɩT|V~QXZI )4-@*    0   l" 0   n+4ƠȠʠ̠ΠРҠrQԠ֠vؠڠ[ Lޠࠩ⠩im|~Y.[h _ `5b̩搩`2 t uJw   $ ?$ W   /ްשCưȰʰ̰ ? ? ? ?@pTAd<0gxrlf^>0iztnh`d֩mq6 tC[שW a [hVKMکO!C ְ#S&.C("0B000٩F vH&SJ+E5F GЩQk<L;kNjieԩ _]CR'alp_f2dѷҷ{vn@q@mm砩⠩렩[Q ̩v頩/ /YaSQ1/+)&$됩   q     ]xwЩ ʩ۩Щ $  ( éʠ )Ҡ 4ՠ 08I۠ŐN⠩̐ ?|蠩 ~ yԐ G : 8,*,착  /@m"1DB8쐩 a $$>5@B @  uC y 44ᵷaZrg~a]{yCroR 2j=Cxn-]iC~tcm=6*R+x A &@ *DFܩ:JbbUN' V ;UWKgLq D^ iЩbЩ L0=թ l9 Qk mozs ]? _@P |Nd j8]  u6 w7a }In b ))u  'j`G D}     -à88 c4 ˠ;="A?ѠӠHՠJ uG٠۠0ݠ2 }N 堩䠩 ΐڐ 8 Ӑߐ =1éJ72LGLEL;m Mq թ! w \{  $(     - &o !k ih ! b.   (  ǩ  . 9 #) &u  Pu+C =n6Ұ A<g>iJF 0JL @\dYR`+éũW A[-qf߷6ΩЩb4 Lfh~sٷC۩ݩo9 z׷Jvz dj f.WİiW sZcа c {-  pݰ r .{}& Ʃ" 1#% IYթ1 ,24ƠȠʠ̠Р%ҠlDEG٠۠0N = ? A հ E )V G EX .Y.[ө٩˩ fn ·oDqѩ  %1 i ] "  )+-  m/ ة)ط x79 ٩;?=1 ) =CDFH  J J_Uͷ%QSU'UjDB  ש #"f$d8 2 46Ʃ8:ѩ<>@BND @J0L.T0N0Vɰln 4vm. egԷ}y9 $ ?   80 T13ŠǠɠˠ$ _ _$= a>@ҠԠ  h-Hhީ ީ: /g  O/ Π  ru Р n b r ک א _rީ ChfZg hVi j'alp_f2cm  YWVXT *    u@     n'  m b  Z / ܶ @ ( ة נ  ѷ    .   1  ࠩ o  xq V $ ? $   t ( DF  ~ }BIK   l : UD < q Щ ?Y ] _ov xyc M  O  km} o} Щ ʠ  |u _P L| f ٠ ĩ ѩ o ⠩   U ש>0. 0  #3ݰ %5E {C v<  E  =<B8DF  LD Xk H `  bqѩ d h/ 2 ^CY q ) s ` M  y HȐ#H12 H  iC 5C"Eנn$C(KtNࠩԐS ꠩ ϐi Ӑ  53heh  䐩~~P 쐩Jکz   2  *[n& ~> '$ (1* L 413| >7 ! #=H EBD .FQJ. # R O! 9:\éUt ?b0ȩ _\^B0iЩb8׷;ө j%g iQ; (c Eݩ tqsB=u _k |~PMJ  .qoLIGVISKMFDC;a3[.5]$7_9a ;c=e 8?g.@ǩmש0oQw0qSykԩ Ss )J0 ǠĠƠ_ZȠ  Ð}e JsLpNPIY`Y@*VKI0!FB2,&  MU1^d2iͩ ? 쐩Pǩ    J     8ک U  < WR   W mWCwm^f5 _7+= <+#7Q W8C !K2H& U5 1%B~ 3|OQ  # 5# 2\ 3 4>X 9K :{N ;E_ @Tt|CyF]} 4Ct Щ xz4#S}i }h fӰ|کlw R x/$N%': 2ĠȠ ^ʠ]s;=ϠӠPՠנ _ IJLޠʐ:T А Y.[ʩ_ېhd9f)թj9k@mZ6w \qUao%o if%'V4-t35@}<(>@B9MF0!M9OQS\J"%0^.ƩȩZF\ ^0H=k;өթgi kSm?o qs  P~ Nz| ~fy3X (c aΰ@3nlٰKny H [  V Q  ~+}{ l34 6Ƞʠ̠ eΠbРҠԠ֠ ؠڠ/pa_   M}N#P⠩䠩젩|  ij?lʩM oS   o^u'd#%%')m 0~|/3_  R   ݩ!#%')+-mmm/ 1 3@9{0;C3}0=E$ܩwy{})ϷxtC:]df2V35Ǡɠˠ͠ϠѠ/e /CgDFؠڠܠޠt >RvS(U砩頩렩Ka  sl@=i^\!1 04YUE?93+ h / 8 7  CiàTǠT Tsˠ$  ^˩M MS R  C   ۩ l    \@     z# }1$AMkpn9sru1C̐5@#andЖw@A hfjuЩ @-Rminus_not_eq. q gΩrGxID<ԩة|V<cܩIb|LŐL 2@1Ropp_neq_0_compat9U#$@)Rplus_0_l 6ʀ*+@+Rplus_opp_r {G163@+Rplus_assoc ;9KS@/Ropp_plus_distr:PC WC&Rderiv@#D_x> H*Ranalysis1#@'no_cond'ix.!b1_2!d5{@)Rle_trans"Щ⠩䠩蠩Yːϩ8Y&[ש]_ g!#jun@?k`^#3 06[WGA;5- 08]YIC=7/lHu5-9yJ~5ũ$(S@@+Rabs_triang9026A[N6ELI@1Rplus_le_compat_r?SULY7BODOZ ZIKM%z\Z'HSbU-kZ \i4Vancn@1Rplus_le_compat_l?w( wDǰ|zɰI=˰~Էշַ׷ط!f۷!g޷߷éwy5|ag~l@)Rlt_transCЩLFhJl̩E@1Rplus_lt_compat_r8׀Ww aw }ayu$p    ƠȠʠ*ΠР]@1Rplus_lt_compat_l ]߀ M ۠ ;ߠ/>ՠA4 >F Gޠ2=.c?k1O"7N7[PY#JRJcT_]A!#un@?k`^#3 06[WGA;5- 08]YIC=7/lxvx ;e=}R0ᵩ G ! @.Rinv_r_simpl_m= RRXx N C ʩ(Y*@+Rmult_assoc&bCv+GIK////*Ranalysis2@)quadruple1~9"x0@-continuity_pt?ZLηyũl7@&ex_ind 5{ͷ#alpЩ8٩&Rlimit@$Base /h @%R_met Րs@аM@$dist 3^V jEt.@"ex @@P{}퐩eF@'and_ind14ۀЩ["I@Q v:Hzϩ>Lߩc5طٶ*7@/< $El@t-%ߠ]kȩ㠩ao©̩̐?YAP]@U?5bА2 A_lߐ @)@bZ ҩ+/w@'Req_dec3{p~@&or_ind"{L&@D° NHưԩ␩[~4éWհ IM/ǩ^ܰHGo?שn tDܩs@ˠj S Z BE @3C >Cΐİkl@'Rabs_R00qCy!!}%C*Rfunctions@&R_dist C%322BgǷ+mXeJ 3ANynO)U5C @?MݩŠCQ"i[BDsFnznYR@#ODB0?;+%0A=-'!P,YթKȩ]*^@@ސXHMCp<@  jhy  )f$~ |D_*em(Eo=",  F+#ǩ</. "Q6#;  ZکOȩB\  ۷5ͩdIz44dNP Ip wGߩvCs]Hx .@)Rmult_1_r+1  $b'hȩv$XF@.Rmult_lt_reg_l>eЩ`.4l06HȐ!s@)Rcase_abs7@&Specif@'sumbool7̂K@3𩚠%@#Rge=-BAAAA@@@@@D$5 9 7cJJ#HltȐ#Hyp٠twVޠ MN@)Rmult_0_r+Ȁɩ$[\r& $ Ȑ#H13 C 4?l3{R:<<ҷ#HgeOwuCJw97ө}~ D+I K$O'R T.U-ʩa: Ȑ#H14 C 8 d@<_IZR%̀ @"lt1P-BBB@@@@D@꠩@`'\ڰ+v`ް쩐b@aLu@ İAvE^{c[f٠ RGA]@ɰ`ZGY@ͰdeBC`԰k dȐ#H15r?s=8lQQ5mQ3@xTq|C]vC@@hdc !lC@@РO@,Metric_SpaceC@@FF@@@@@@@@@!m@e)@g ?^cQBk@@X@@ L(dist_pos R -b (dist_sym Zթ . [j٠ )dist_refl d޶ 0 D@#iffС) ? l :{ 9 B ѷ(dist_tri u @Ŷp $, '  * "ީ ,  J# ZdcC@dm 3p i V @CC u k  dxu0YCV1bè