"` K /gV*Ranalysis1%Reals#Coq@0&Rlimit%Reals#Coq@)Notations$Init#Coq@%Logic$Init#Coq@*Logic_Type$Init#Coq@)Datatypes$Init#Coq@&Specif$Init#Coq@%Peano$Init#Coq@"Wf$Init#Coq@'Tactics$Init#Coq@%Tauto$Init#Coq@'Prelude$Init#Coq@&Rderiv%Reals#Coq@)Notations$Init#Coq@0&v!D]hwnv %Logic$Init#Coq@0\͉!Ig)Datatypes$Init#Coq@0.i bYN Z*Logic_Type$Init#Coq@0 1jc6&Specif$Init#Coq@0;RWMi\N'Decimal$Init#Coq@0C涳N*ua#Nat$Init#Coq@0eʤģPSR蠠%Peano$Init#Coq@0 jha|ؠ"Wf$Init#Coq@0q+W,J+'Tactics$Init#Coq@0/9m+ a%Tauto$Init#Coq@0̂"&/r'Prelude$Init#Coq@0JqTttֱ'BinNums'Numbers#Coq@0dmk(5Ju<*EqdepFacts%Logic#Coq@0FI$ͼՋ`)Eqdep_dec%Logic#Coq@0u wWIϰ߼&Basics'Program#Coq@0!bs߯? :VU$Init'Classes#Coq@0](p{yOh.'Tactics'Program#Coq@03u%+Equivalence'Classes#Coq@07;ꮹ-SetoidTactics'Classes#Coq@0S_`nOU$&Setoid'Setoids#Coq@0D9AsWE!>$Bool#Coq@0j 2cZ`FW*Equalities*Structures#Coq@0όe얟)H.Ƞ2Relation_Operators)Relations#Coq@0%s鯰s4Operators_Properties)Relations#Coq@0U3y#h&)Relations#Coq@0r砠*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ&NZSqrt&NatInt'Numbers#Coq@0` .%m%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|&NZBits&NatInt'Numbers#Coq@0MlIpKt'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$&NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ)NMulOrder(Abstract'Natural'Numbers#Coq@04> Aat/ j $NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ'NMaxMin(Abstract'Natural'Numbers#Coq@0]v|Qg̟ʠ'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NLog(Abstract'Natural'Numbers#Coq@0KI'BinList+setoid_ring#Coq@0Au,Ring_polynom+setoid_ring#Coq@0gaKw9`UW+ListTactics%Lists#Coq@0,Jcy{+InitialRing+setoid_ring#Coq@0k/T=cN(Ring_tac+setoid_ring#Coq@0x2]%762f)Ring_base+setoid_ring#Coq@0fbU(2cNe$Ring+setoid_ring#Coq@0Msᬠ)ArithRing+setoid_ring#Coq@0ṔCgt?}%Arith#Coq@0I|кX*o4#Max%Arith#Coq@04=;3$>aU堠#Min%Arith#Coq@0Ce-Fѕ(PreOmega%omega#Coq@0\|چBb~w4%Omega%omega#Coq@0t.J'6\ϨrK(Zpow_def&ZArith#Coq@0f蓜DX;V*ZArithRing+setoid_ring#Coq@0{#'[{nm!/,Zcomplements&ZArith#Coq@0ʾq %RIneq%Reals#Coq@0JUڻIu)$w&DiscrR%Reals#Coq@0z41pV.%Rbase%Reals#Coq@0Jܡ\ c6{%R_Ifp%Reals#Coq@0c4+ZŠ,Fourier_util'fourier#Coq@0ϳ> 4`*r0'Fourier'fourier#Coq@0wV9TN*Rbasic_fun%Reals#Coq@0hܒiclE>%R_sqr%Reals#Coq@0X%MԹ%M+SplitAbsolu%Reals#Coq@0M)&qYlݹ5*SplitRmult%Reals#Coq@0sD\rt/$Even%Arith#Coq@0YO%q}d߫%$Div2%Arith#Coq@0n*Áht!,)ArithProp%Reals#Coq@0B+L?>*e˃a j*Rfunctions%Reals#Coq@0d¹d‹@̐0*r0ē([HAE0?KQ;^WU;H:{V+{ 0:~Р*Ranalysis1%Reals#Coq@A(plus_fct @"f1@,Rdefinitions@@!RӀ "f2!x@%Rplus+1CAB@!@,Rdefinitions%Reals#Coq@@!RӀ $@( L+k() 7%'1x@@@@@AA@@>@,Field_theory+setoid_ring#Coq@@&FEeval>@@A@A"s @,Ring_polynom+setoid_ring#Coq@@&PEeval"s @@A@BA@A@'opp_fct @!fn`no@$Ropp΀Z@ @XZo^` @+k() 7$'l@@@@@G(mult_fct @@%Rmult׀@@@wx@@@@@v-mult_real_fct @!aǷ]ɷɩ1@e@ɚ D+k() 7%'Jp@@@@@)minus_fct @򩚠@&Rminus&H@@ۀ݀@‚䀶耚ꀐѐx@@@@@Р'div_fct @" !!"@$Rdiv̀@+@  $@(x@@@@@,div_real_fct @NPBP/@3@8:O>@Fp@@@@@&$comp @xvkwiw`@|@[]u@bdyhj <+k() $'@@@@@M'inv_fct @1@$Rinv8/@9@.l@@@@@t'fct_cte @÷@ (+k()'@@@@@"id @@њ<+k'@@@@@*increasing @!y@@#Rle=D@@耚ꀔA +k+7T' +7T'+ 7!T'  7%'Ld @@@@@֠*decreasing @&&3'@11'*@@ % +k+7T' +7T' + 7!T'  7%'8LdC@@@@@1strict_increasing @I;IVJ@L@#Rlt=TS@@57MK_Ld@@@@@ 1strict_decreasing @pbp}q@''J@ @VXnILd7@@@@@A(constant @%%Logic$Init@"eq @@6@ +k+7T'+7T'  77&'xLd@@@@@p'no_cond @,@$Truey@@ +k6'T@@@@@-constant_D_eq @s߷!D@ַ!c@ѩV꩐E@@πр@ր춐ڀ𐐠 +k() +7T' +  T' 77&'xt@@@@@Š-continuity_pt @"x0&Rderiv@+continue_in : @n' @@  & D+k()7 7&'!pd@@@@@*continuity @J<J*@A?ZLR@@24J T+k+7T'7%']d@@@@@@9continuity_pt_locally_ext @@@@OQ!gi,Rdefinitions%Reals#Coq@@!RӀ,Rdefinitions%Reals#Coq@@fӀ@@@O=@@#IZR/r'BinNums'Numbers@!Z7@AB@C@&*Rfunctions%Reals#Coq@@&R_distͩ%Logic$Init#Coq@@"eq @lGĩFǶ@@?ZL ҩ @@@@@2continuity_pt_plus @@ A@ۀ݀@‚䀶耶@'@,0@&13@@@@@ڠ1continuity_pt_opp @@V@CESI@CA@_[@tj‐۩O@@@@@J2continuity_pt_comp @@J@{}@@ǀ@̀Ѐ@N!~@@@@@z/continuity_plus @@K̶@Ŷ@@@*@Ʃ ΠА@@@@@.continuity_opp @@L@Հ׀@#䩚'@@@@@0continuity_minus @@!M@򀶐 @@E@J NC@@@@@栠/continuity_mult @@HN8@1@ @l+@q0uj@@@@@ 0continuity_const @@oO@>@@MO@@@@@'/continuity_scal @@P @XZ^@ios@@@@@G.continuity_inv @@Q+@xz@ƀ@@/rڀ@$˷@@@@@v.continuity_div @@Rȶ@@@@@К݀S<@ RԐ@@@@@/continuity_comp @@S@ހ@倚瀶@3@8<_2@@@@@Ԡ0derivable_pt_lim @$$!l'#eps*@@"ex @%RIneq6@'posreal̠@%delta !hD@@#notШN4@*Rbasic_funR@$Rabs; wV%@#pos=D.^rEvI]HXZ@@UWl[Y_u H+k() +7T'+ L7 7!T'+ 77%'+7T'+L7 77"7 T'+7 7 7!T' 7! 7!7!7!7 7%'0T@xm𠑑kAS4|HT(0pfT@@@@@j0derivable_pt_abs @N@@W@Đ @+k() 7&'l@@@@@,derivable_pt @y婛&SpecifS@#sig#* @񩚠@C팀6@@ـۀ߀@ t+k() + 77%'7&' t(|`@@@@@Ϡ)derivable @@F8\E'@@ *Ր1d@@@@@@)derive_pt @B4B"pr&_@)proj1_sigYL(M\N755@@24I8n@8\EFHb x+k() + 77&'7&'ix&@}d@@@@@-&derive @}:]@j$"iuc@M$Fnqon@@lnN@$"~z H+k() 7&'t@@@@@a.antiderivative @E=!b$@#andЖw@@ ̠8̩˩J@e@c@.Àِ P+k() 7! + 7T7%' + 7! 7!7!T'+ 7!7%'7" 77&'4P9\Ӑ접ɐhk<}@@@@@,Differential,<@.mkDifferential"d1 )cond_diff @@@AB@ BB@ 2@me@@@@AAB@BA@@@@@@@砠 @!d@4me@@!"@@@@@  D )1 F/ *@ Z@Eme@@ . 0 +k= R '>''+k+7T'6' Y"6ABp@@@@@ L @42-64M@]!s Y X` u^ [@/. +k= R '>''+k7 7$'|L`ABp@*@@ D/Differential_D2,<@1mkDifferential_D2"d2 'cond_D1 'cond_D2#@11 }@@CC@ @# L@@@AACBA@@@@@@@ p  @@6 L@@@@@@@@   5 η3Q1/ @ @I L@@  +k= R '>''+k+7T'6'!2ACp @@@ P @3.5v@a!s  d b`^ @/.m +k= R '>''+k7 7$'HYACp|@@@ ͠w @]X_},@W$   ) @[Z +k= R '>''+k7 7 7!7$'РtACp|I@@@ 0uniqueness_step1 @@ aT @ 0 2 G 6"l1 ;"l2 @@&Rlimit%Reals#Coq@@)limit1_in80 S@ T̀@ &HE@ t+1DAEDAP sMB@<b 20ϐ- Ր v s l @@@@@ 0uniqueness_step2 @@ U g@   ˚  @ @   ͩ  ˠ   ک  ܷ  K@@@@@ 0uniqueness_step3 @@ V @ 䀚 怶  ꀶ蚠 @   &    ' q<   @@@@@ ݠ1uniqueness_limite @@ ?W @   % ޚ ݚ @^DCB@f` J /} N 7@@@@@ ,derive_pt_eq @@ mX @ < > S B@ F&CB@#iffС) { @E$FnDCABDCB@@@@@ H.derive_pt_eq_0 @@ Y ,@ y {  } cKCB@̀DCB瀰 >   @@@@@ y.derive_pt_eq_1 @@ Z ]@     |CB@ 㩚hDCAB    א@@@@@ .derive_pt_D_in @@ [ @ ܀ ހ"df@ 䀚 怶  ꀶʩCA&Rderiv%Reals#Coq@@$D_inEODC 9@ s'B_ 1DBACB@@@@@ 5derivable_pt_lim_D_in @@ Z\ ܶ@ ) +M@ 0 2 G 6耠DCB:ACABA@@@@@ +4derivable_pt_lim_ext @@ ] @ \ ^  u w b @!zE yD |@      @@@@@ [ ҩ Զ@  ݩ  @@@@@ 0derivable_derive @@ _ @ 怚 耶  쀶̩BA H@"ex @  T &DCBA@@@@@ ꠠ7derivable_continuous_pt @@ L` ζ@   2 !@耠BA f 6 2@@@@@ 4derivable_continuous @@ la @ ; =@΀ J L@@@@@ $5derivable_pt_lim_plus @@ b v@ U W o@ \ ^ s b, f+ j@ECB@   } @ 1     @@@@@ c4derivable_pt_lim_opp @@ c G@     @CBA瀰 @ l*'   <@ d΀ @@@@@ 6derivable_pt_lim_minus @@ d @ ŀ ǀ ߶@ ̀ ΀ 㚠 Ҁ ր ڀ@ECB@$   (@ ( 5 2 (  @@@@@ Ӡ5derivable_pt_lim_mult @@5e%@@  "ۚښ@[ECB@c ] G,g  r o è @ ׀ Y z q  wJ@@@@@6derivable_pt_lim_const @@f NcR@ €BA  ِ@@@@@@5derivable_pt_lim_scal @@g$@qs њw{y@DBAȀ@ =3  _ @@@@@s9derivable_pt_lim_div_scal @@hW@OM 7@Ӏ@򀰐DCB kk  婚qΐ@@@@@;derivable_pt_lim_scal_right @@i@׀ـ; {@!DCB(  3 @@@@@ՠ3derivable_pt_lim_id @@7jF<@ W!s-A  B @(positive*@C@@@@@5derivable_pt_lim_Rsqr @@^k=,m%Reals#Coq@@$Rsqr=MWA  €20B4A@@@@@)5derivable_pt_lim_comp @@l{@Z\t@acxg1k0o@ECB@   @:!~   V @@@@@j1derivable_pt_plus @@m@@@o@tx @@@@@0derivable_pt_opp @@nx@ŀǀܚˀ@ة ڐ@@@@@2derivable_pt_minus @@o@〚倶@ꀚ쀶@@ @@@@@ܠ1derivable_pt_mult @@>p.@ '@+@ဠ)'@怠.*ꀠ 2@@@@@2derivable_pt_const @@hq6K:耐BA@@@@@"1derivable_pt_scal @@r@SUYn]@$lj( l@@@@@D/derivable_pt_id @@st: y@!s-@@@@@Z1derivable_pt_Rsqr @@tP z@$Rsqr=MW@@@@@q1derivable_pt_comp @@uö@@@v@{ة 'ǐ@@@@@.derivable_plus @@v@̀΀@ӀՀ@f@k婚o @@@@@-derivable_opp @@#w@򀚠@ @@@@@۠/derivable_minus @@=x-@ &@@ @% @@@@@.derivable_mult @@cyS@24L@9;@̀F@рKՀ @@@@@'/derivable_const @@zW瀐]@€i@@@@@>.derivable_scal @@{"@oqϚu@   @@@@@\,derivable_id @@| @@@@@j.derivable_Rsqr @@} & @@@@@x.derivable_comp @@~ʶ@ö@@ C@ H© L ː@@@@@.derive_pt_plus @@@πр@ր؀횠܀#pr1 CA#pr2 CBB{EDC1@q= АEDCBAECBDCA@@@@@-derive_pt_opp @@Z@ܶ@)+@/S BA]‰CBy@QCBACBA@@@@@7/derive_pt_minus @@A@hj@oqu =CA ECBـ0EDC@>窀АEDCBAFJECBQDCA@@@@@.derive_pt_mult @@B@€ڶ@ǀɀޚ̀񩚠 CA𩚠 CB1 ĀEDC @=AƀАEDCBAɀECBDC؀ECDCA@@@@@/derive_pt_const @@YC'<+Qր݀BAm@>ҥBAÀ@@7@A@@@@@-.derive_pt_scal @@D@^`dyh H 0CAĀ퀠CDB@;=MDCBAWC5DBA@@@@@s,derive_pt_id @@EɩNA@H#$qA7u@B65@@*@C@@@@@.derive_pt_Rsqr @@ F蚠׀+A@f=k耐Ao8B8@B=CA@@@@@ޠ.derive_pt_comp @@@G0@)@-@ 䀠CA? 쀠CDBUڀDECr@=-qАEDCBA􀰐DECAECB@@@@@<'pow_fct @!n)Datatypes@#nat@(Rpow_def@#pow#׀ @)Datatypes$Init#Coq@@#nat@ <+k() 7%'$h@@@@@z8derivable_pt_lim_pow_pos @@HB,@%Peano$Init#Coq@@"lt UxcSL@@T@AA Ѐ[%Reals#Coq@@^#׀橚'Raxioms%Reals#Coq@@#INRr#Nat$Init#Coq@@$pred `<@@@@@ޠ4derivable_pt_lim_pow @@@I SEJABBEAZB=A@@@@@0derivable_pt_pow @@tJ֛WF yN~ACA@@@@@3-derivable_pow @@Kဩ 󀐷kAB@@@@@O-derive_pt_pow @@L׀ .ACA@bBAl€B׀AB@@@@@%pr_nu @@Ms@€ךƀ꩚ BA驚 CB* DCB DCA@@@@@Ơ-deriv_maximum @@(N@W l@ 婚 ̀DA@DB@#:@/@g+@.l@S=J;wY ހr\@@@@@-deriv_minimum @@O@NPT ÚX\<$DA@񀠐DB@z@u@@éWUɩWۀ 2BNA@@@@@t/deriv_constant2 @@PX@{DA@HDB@O@ݚ̀@Yٶ@^*5"2 hA@@@@@ˠ3nonneg_derivative_0 @@-Q@ީA@:@AZ}B"造A ÀA(+*@@@@@@@@ ӳ2@ ӳ2[)Datatypes$Init#Coq@@A@ Գq@ Գq\ @A@AB@cA@A.0TQ+Ring_theory+setoid_ring#Coq@@ABA.U>[J @B@@"O@(PeanoNat%Arith#Coq@#Nat@&of_int"O#Nat$Init#Coq@@ 6@A@A\@&BinInt&ZArith#Coq@!Z@'quotrem\)BinIntDef&ZArith#Coq@!Z@ /@A@\@@+pred_double\@/S@@A@As2@3@&shiftls2*@vY@A@BCs8@8@&shiftrs8/@vY@A@ѓ@>@&squareѓ5@y@A@@D@&to_intϑ;@@A@z@5@&doublez,@/!@A@ABCD/@O@)log2_iter/F@wd@A@NH/@B@&moduloNH/9@1,@A@A\d@G@&of_int\d>@1?A @A@bz@M@&of_natbzD@1?G!@A@#@S@&shiftl#J@1dV@A@#@Y@&shiftr#P@1d\@A@ABCD/x@&BinPos&PArith#Coq@#Pos@)pred_mask/x)BinPosDef&PArith#Coq@#Pos@ )X@A@6@x@&square6o@19@A@AV+L@}@&to_intV+Lt@2@A@V1b@@&to_natV1bz@2 @A@V5=@@&to_posV5=@2@A@ABCl@@)sqrt_iterl@!$:@A@@@6@(sub_mask@-@)@A@ADEF c@@'testbit c@!ć@A@7 B@D@'of_uint7 B;@*`]?@A@AG@I@)mask_rectG@@+ED@A@F˱@O@)add_carryF˱F@+p@A@AB^Ҷ@@'to_uint^Ҷ@#m@A@gL7@@'sqrtremgL7@40@A@Aq@@'testbitq@5)@A@ݎO@@+succ_doubleݎO@6r@A@A p@l@0double_pred_mask pc@0-+m@A@BCD T@&BinNat&NArith#Coq@!N@!t T)BinNatDef&NArith#Coq@!N@ 2@A@ @@#add @3 @A@A l@@#div l@3@A@ Y@%@#eqb Y@3@A@AB #@*@#gcd #!@3n@A@ T@0@#leb T'@3@A@ACEG "@5@#lor ",@3m@A@ q@?@#ltb q6@3@A@A @D@#max ;@3@A@ @J@#min A@3`@A@AB @O@#mul F@3B@A@ ~@U@#odd ~L@3@A@AC =@Z@#one =Q@3@A@ @b@#pow ˑY@3@A@A c@g@#sub c^@3@A@ @m@#two d@3J@A@AB hx@r@$div2 hxi@>@A@ @x@$even o@>4@A@ACD @}@$ggcd Бt@>U@A@ @@$iter }@>:@A@A 3"@@$land 3"@>m@A@ F)@@$log2 F)@>t@A@AB S@@$lxor S@>@A@ @@$pred @?U@A@AC @@$size ܑ@?'@A@ !@@$sqrt !@?@A@A ! @@$succ ! @?\@A@ !7@@$zero !7@@P@A@ *@@%ldiff *@@A@AB g_@1@+pred_double g_(@25\@A@CD m@6@÷ m-@2j@A@S@=@&of_intS㫑4@4}5@A@AS@B@&of_natS9@4};@A@BEFGH\R@G@(mask_ind\R>@4@A@\^@Q@(mask_rec\^H@4@A@A!,@V@&pred_N!,M@4s)@A@B@[@&shiftlR@5X@A@@b@&shiftrY@5X@A@A&@g@&square&ّ^@5,x@A@BC"@l@&to_int"c@5L@A@"@t@&to_nat"k@5L @A@AnTq@y@+testbit_natnTqp@6n@A@B@@(succ_posB@@A@I@@'abs_natI@?n@A@AB.@@'of_uint.@MS@A@3~@@'sqrtrem3~@7]%{@A@ACD,@ @'bitwise,@/v@A@>4'@@'testbit>4'@8g$@A@A{U@@,sqrtrem_step{U@8R@A@u^@9@(div_euclu^0@ @A@Afz@@'to_uintfz@9w@A@Bl@'@'comparel@3R@A@CDEFs8@,@+of_uint_accs8#@5+@A@}@R@,pos_div_eucl}I@&`@A@3x@(@'compare3x@]=@A@A@^@&doubleU@'޺_@A@BCq@@+of_succ_natq@$@A@w@i@&modulowɑ`@)1@A@ADK@n@&of_intKe@)j,I@A@K@v@&of_natKm@)j2_@A@AI@{@&shiftlIr@*O@A@O@@&shiftrOx@*O@A@AB,@@&square,}@*ow@A@Z@@&to_intZ@*81@A@ACE`@@&to_nat`@*9G@A@e@@+testbit_nateđ@+@A@A+{@@'sqrtrem+{ё@,J@A@5z@@'testbit5z@-T|@A@A @@'to_uint ͑@.@A@ @@+succ_double @.^4@A@A#@'@'compare#ݑ@ )Q@A@BCD%t2@,@(size_nat%t2#@ @A@%9@3@+of_uint_acc%9*@ ΋@A@A%V@8@+double_mask%V/@ S@A@%%@>@'div2_up%%5@ "@A@ABEF'ş@C@'Ndouble'ş:@ @A@(b0@K@*shiftl_nat(b0B@9-@A@A(nՖ@P@*shiftr_nat(nՖG@'@A@(@V@0succ_double_mask(M@@A@*W$@\@,compare_cont*W$S@!@A@.0@b@.sub_mask_carry.0Y@΂@A@ABCD.@@!t.@ ;@A@.먩@@#add.먩@ `@A@A.U@@#div.U@ @A@.B@@#eqb.B@ @A@A. @@#gcd. @ @A@.=@@#leb.=@ @A@ABCEGHI. @@#lor. @ @A@.Z@ @#ltb.Z@ @A@A.p@@#max.p@ '@A@B.@@#min. @ @A@.@@#mul.@ @A@AC.g@@#odd.g@ @A@.&@&@#one.&@ @A@A.뾴@+@#pow.뾴"@ k@A@.L@1@#sub.L(@ @A@.@7@#two..@ @A@ABCD.,a@<@$div2.,a3@ @A@.Xz@D@$even.Xz;@ ?1@A@A.@I@$iter.ؑ@@ @A@B. @N@$land. E@ @A@. @T@$log2. K@ @A@ACE.@Y@$lxor.P@ R@A@.y@`@$pred.yW@ `<@A@A.Ʉ@e@$sqrt.Ʉ\@ ;@A@.@l@$succ.c@ @A@.t @r@$zero.t i@ Z@A@AB/@w@.to_little_uint/n@ @A@CDF/@|@%ldiff/s@ H@A@00@@'compare00@?H{@A@A1P%@w@!t1P%n@  @A@B1P@|@#abs1Ps@ @A@1P&@@#add1P&z@ @A@A1P@@#div1Pґ@ y@A@BC1P@@#eqb1P@ f@A@1P@@#gcd1P@ 0@A@A1P@@#geb1P@ T@A@B1P@@#gtb1Pʑ@ q@A@1Pĺ@@#leb1Pĺ@ a@A@A1Pň@@#lor1Pň@ /@A@BCD1P@@#ltb1Pב@ ~@A@1P@@#max1P@ @A@A1P{@@#min1P{@ "@A@B1P]@@#mul1P]@ @A@1P@@#odd1P@ @A@A1Pɣ@@#one1Pɣ@ J@A@BC1P@@#opp1Pԑ@ {@A@1P1@@#pow1P1@ @A@A1P;@@#rem1P;@ @A@B1P@@#sgn1Pˑ@ r@A@1P@@#sub1Pɑ@ p@A@A1Pe@@#two1Pe@  @A@BCDE1[8@@$div21[8ޑ@ @A@1[d@@$even1[d@ I@A@A1[6@@$ggcd1[6@ i@A@B1[U@ @$iter1[U@ @A@1\@@$land1\@ /@A@A1\@@$log21\ @ 6@A@BC1\$@@$lxor1\$@ @A@1\Y@$@$of_N1\YÑ@ >j@A@A1\@)@$pred1\ @ j@A@B1\@.@$quot1\֑%@ }@A@1\@5@$sqrt1\,@ @A@A1\w@:@$succ1\w1@ @A@BC1\k@?@$to_N1\k6@ @A@1]@G@$zero1]>@ eD@A@A2:@L@%abs_N2:C@ @A@21@R@%ldiff21I@ ߵ@A@2=*@X@%quot22=*O@ @A@ABC2kF@@(size_nat2kF@{@A@3@x@(tail_add3o@^q@A@ADEFGH3@}@(tail_mul3t@^@A@5Z@@*shiftl_nat5Z@y/@A@5f}@@*shiftr_nat5f}@4@A@AB5a@@'iter_op5a@ @A@C6w~@@'of_uint6w~@^5@A@8j@@'of_uint8j@'"h@A@9E@@(div_eucl9Eđ@(*k@A@AB:x@6@,Nsucc_double:x-@ ʭ@A@CD@[@&divmod>R@C@A@>@b@&double>Y@NĴ@A@?2@S@,pos_div_eucl?2J@-u@A@AB?;@m@&modulo?;d@"i@A@CEFGIJ@%Arith#Coq@0I|кX*o4)ArithProp%Reals#Coq@0B+L?>*e˃a j)ArithRing+setoid_ring#Coq@0ṔCgt?}*Arith_base%Arith#Coq@0Ĕ}CS&Basics'Program#Coq@0!bs߯? :VU'Between%Arith#Coq@06v*0ur`C0&BinInt&ZArith#Coq@0BpHޞun^)BinIntDef&ZArith#Coq@0ådR4Tuy'BinList+setoid_ring#Coq@0Au&BinNat&NArith#Coq@0K11ڤs+Π)BinNatDef&NArith#Coq@03@1O,[{ 'BinNums'Numbers#Coq@0dmk(5Ju<&BinPos&PArith#Coq@0vyػ0= u)BinPosDef&PArith#Coq@0}H d.%,b$Bool#Coq@0j 2cZ`FW*CMorphisms'Classes#Coq@0qیZBeϠ0CRelationClasses'Classes#Coq@0TL;0RUfw1+Compare_dec%Arith#Coq@0jXF 8=<;@0.i bYN Z)Decidable%Logic#Coq@0ND걸풬/Oߠ'Decimal$Init#Coq@0C涳N*ua&DiscrR%Reals#Coq@0z41pV.$Div2%Arith#Coq@0n*Áht!,%EqNat%Arith#Coq@0AIgՋXRV *EqdepFacts%Logic#Coq@0FI$ͼՋ`)Eqdep_dec%Logic#Coq@0u wWIϰ߼*Equalities*Structures#Coq@0όe얟)H.Ƞ+Equivalence'Classes#Coq@07;ꮹ$Even%Arith#Coq@0YO%q}d߫%)Factorial%Arith#Coq@0@oehJd%Field+setoid_ring#Coq@0J _ȫ)Field_tac+setoid_ring#Coq@0d vDZl^۹H0B~uYٮ٠'Fourier'fourier#Coq@0wV9TN,Fourier_util'fourier#Coq@0ϳ> 4`*r0-GenericMinMax*Structures#Coq@0måj$"Gt%Arith#Coq@0䙛#c:D $Init'Classes#Coq@0](p{yOh.+InitialRing+setoid_ring#Coq@0k/T=cN"Le%Arith#Coq@0d}Omq+$List%Lists#Coq@0>I+ListTactics%Lists#Coq@0,Jcy{0\͉!Ig*Logic_Type$Init#Coq@0 1jc6"Lt%Arith#Coq@0KZ-eJkP܏#Max%Arith#Coq@04=;3$>aU堠#Min%Arith#Coq@0Ce-Fѕ%Minus%Arith#Coq@0LFtR")Morphisms'Classes#Coq@0Imӽ%\$PD.Morphisms_Prop'Classes#Coq@0% :B'.>u%$Mult%Arith#Coq@0햖Qyb0$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI%NBits(Abstract'Natural'Numbers#Coq@0qteo_hɅ $NDiv(Abstract'Natural'Numbers#Coq@0bz$?[p(5$NGcd(Abstract'Natural'Numbers#Coq@08E-S ;j_Ҡ$NLcm(Abstract'Natural'Numbers#Coq@0 ~xZ9L{:$NLog(Abstract'Natural'Numbers#Coq@0K Aat/ j &NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf+NProperties(Abstract'Natural'Numbers#Coq@0unt"kwpYC%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ%NZAdd&NatInt'Numbers#Coq@00h`ZK4*NZAddOrder&NatInt'Numbers#Coq@0e~1>r砠(NZAxioms&NatInt'Numbers#Coq@0] ρ5r&NZBase&NatInt'Numbers#Coq@0^&8yUL&NZBits&NatInt'Numbers#Coq@0MlIpKt%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZMul&NatInt'Numbers#Coq@0ctR~6[Ƞ*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R'NZOrder&NatInt'Numbers#Coq@0 q;Ve7R W,(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x&NZSqrt&NatInt'Numbers#Coq@0` .%m#Nat$Init#Coq@0eʤģPSR蠠$Nnat&NArith#Coq@0$W;s #%M)Notations$Init#Coq@0&v!D]hwnv *NumPrelude'Numbers#Coq@05WUVŦ]xVXԠ%Omega%omega#Coq@0t.J'6\ϨrK+OmegaLemmas%omega#Coq@0TJ#Jes4Operators_Properties)Relations#Coq@0U3y#h&&Orders*Structures#Coq@0$Znl0\͗+OrdersFacts*Structures#Coq@05Mܿ獐ζΖLB)OrdersTac*Structures#Coq@05'4Ԗ+9% 0 jha|ؠ(PeanoNat%Arith#Coq@0O~2$k[#lZ)Peano_dec%Arith#Coq@0Kݢ*k$Plus%Arith#Coq@04tmG$Pnat&PArith#Coq@0,?pr.gZ(PreOmega%omega#Coq@0\|چBb~w4'Prelude$Init#Coq@0JqTttֱ%Quote%quote#Coq@0J@ŹVz-,3%%RIneq%Reals#Coq@0JUڻIu)$w%R_Ifp%Reals#Coq@0c4+ZŠ%R_sqr%Reals#Coq@0X%MԹ%M'Raxioms%Reals#Coq@0S]jnj][L%Rbase%Reals#Coq@0Jܡ\ c6{*Rbasic_fun%Reals#Coq@0hܒiclE>[0(2{Ze$ќ8&Rderiv%Reals#Coq@0?KQ;^WU;H)RealField+setoid_ring#Coq@0 >ʾq /RelationClasses'Classes#Coq@0Gz rA6ՠ4Relation_Definitions)Relations#Coq@0]4Ѐd{n^2Relation_Operators)Relations#Coq@0%s鯰s)Relations#Coq@0-SetoidTactics'Classes#Coq@0S_`nOU$&Specif$Init#Coq@0;RWMi\N+SplitAbsolu%Reals#Coq@0M)&qYlݹ5*SplitRmult%Reals#Coq@0sD\rt/'Sumbool$Bool#Coq@0sB ,$11.]m'Tactics$Init#Coq@0/9m+ a'Tactics'Program#Coq@03#q2 Q@@@@#_11@A@@@@@@@@#_122M접 #_13'`o@C.function_scope'R_scope@AA#t@#32 Q@@@@#_140/@#_152M접 ؠ#_16'`o@B-*@A#@#/2 Q@@@@#_17WV@#_182M접 }#_19'`o@CTVS@AA#@#+2 Q@@@@#_20C@#_212M접 +#_22'`o@Cw~{@#ꠐA#@#)2 Q@@@@#_23 @#_242M접 #_25'`o@C@AA$@#"2 Q@@@@#_26Ӡ@#_272M접 |#_28'`o@C͠Ϡ@AA$?@#2 Q@@@@#_29${@#&)@#_302M접 #_31'`o@C@$dA$i@#2 Q@@@@#_32%$@#_332M접 CAA@#_34'`o@C "@AA$@# 2 Q@@@@#_35NM@#_362M접 !2@#+8#_37'`o@BLI@A$@#_38YS*Rfun_scope!F#_39'`oAJ@  'R_scope@@#_40'`oA@ @@#_41'`oA@$&@@#_42'`oA@02%@@#_43'`oA@</@@#_44'`oAV@F9@@#_45'`oA@ARE@@#_46'`oA@N_R@@#_47'`oA@ik^@@#_48@rrAr@@r@BrA@%_ + _@r @B%_ + _!x!+!y@@@@@AA@" +@A@@B@@@@@#_49%c?@*Rfun_scope%@@#@@@%#@@@@%_ + _%@%x + y#_50@ccA@cAA@#- _@c  @A#- _!-V@@@L@ @A@@AA@@@@#_51%c?@*Rfun_scope%Ϡ@@@%@@@@#- _%@#- x#_52@hhAh@@h@BhA@%_ * _@h @%_ * _!*@@@@AA@" *@A@@B@@@@@#_53%c?@*Rfun_scope&8@@$=:@@@@&)$E@@@@%_ * _&R@%x * y#_54@rrAr@@r@BrA@%_ - _@r @%_ - _𠐐!-@@@@AA@" -@A@@B@@@@@#_55%c?@*Rfun_scope&u@@$@@@&$@@@@%_ - _&@%x - y#_56@hhAh@@h@BhA@%_ / _@h @G%_ / _F!/E@@@D@AA@" /@A@@B@@@@@#_57%c?@*Rfun_scope&ˠ@@$頠@@@Ԡ&ՠ$@@@@%_ / _&@%x / y#_60@ccA@cAA@#/ _@c  @C#/ _!/@@@@ @A@@AA@@@@#_61%c?@*Rfun_scope'@@@ '@@@@#/ _'>@#/ x%p2 Q@@@@#_62Š@#_632M접 BA@@#_64'`o@B@','/@%{2 Q@@@@#_65/렠@#_662M접 AA@@#_67'`o@A@'P@%2 Q@@@@#_68R  @#_692M접 @#_70'`o@A@A@%u2 Q@@@@#_71'@%;-,@#_722M접 !#_73'`o@A'@A@%r2 Q@@@@#_74'@%}/ z/ML@#_752M접 A#_76'`o@AG@A@%k2 Q@@@@#_77'@%v/tml@#_782M접 a#_79'`o@Ag@A@%j2 Q@@@@#_80#E@#_812M접 #_82'`o@A@A@%Z2 Q@@@@#_83@#_842M접 #_85'`o@A@(@%[2 Q@@@@#_86(K@%f$(̠@#_872M접 #_88'`o@CƠȠ@AA(8@%N2 Q@@@@#_89$~@#_902M접 @#_91'`o@B@A(]@%>2 Q@@@@#_92"@#_932M접  #_94'`o@A@A@#_95'`oA$@Š@@#_96'`oA"@@@%K2 Q@@A@#_97(@%VLE@A@@@@K@#_982M접 #_99'`o@GHJGI@Q@@AA%Z%k%OA%@$2 Q@@A@$_100)@%o-(@A@@@@@$_1012M접 $_102'`o@E@@@AA(%7%:@%2 Q@@A@$_103);@% ')@A@@@@@$_1042M접 $_105'`o@C@@A)(%f@% 2 Q@@A@$_106)g@%MB@A@@@@@$_1072M접 $_108'`o@E堐砐@@@AA)Y%%@%2 Q@@A@$_109)@%n@A@@@@@$_1102M접 $_111'`o@E@@@AA)%ˠ%@%2 Q@@A@$_112)@% 5@A@@@@P@$_1132M접 $_114'`o@CMJ@@A)%)@%2 Q@@A@$_115)@%*ooU@A@@@@|@$_1162M접 $_117'`o@Dyvx@@A)ꠐ)&+@%(2 Q@@A@$_118*,@%3'@A@@@@@$_1192M접 $_120'`o@D@@@A*&X%;@% 2 Q@@A@$_121*\@%+&i@A@@@@@$_1222M접 $_123'`o@Bڠ@AA@%2 Q@@A@$_124*@%"''@A@@@@@$_1252M접 $_126'`o@F@@@@AA*v&&%@%2 Q@@A@$_127*@%my@A@@@@<@$_1282M접 $_129'`o@E9;8@@@AA*&렐&@%2 Q@@A@$_130*@% OZ@A@@@@p@$_1312M접 $_132'`o@Dmo@@@AA%'%*@%2 Q@@A@$_133+@%$@A@@@@@$_1342M접 $_135'`o@B@@A%Q@%%2 Q@@A@$_136+E@%0W% j@$_2062M접 AA@A$_207'`o@A@@%@$_208L4x%#%$A%aA%aA%aA@uJ+@$2 Q@@A@$_209/ @$ `@A@@@@ @$_2102M접 $_211'`o@F    @@@A///$נ$@$v2 Q@@A@$_212/Z@$ `@A@@@@ @$_2132M접 $_214'`o@D ؠ ՠ נ@@A/I/L$@$w2 Q@@A@$_215/@$ `@A@@@@ @$_2162M접 $_217'`o@D   @@A/z/}%<@$~2 Q@@A@$_218/@$)@@A@@@@ =@$_2192M접 $_220'`o@F : 7 9 ;@@@A///$$@$2 Q@@A@$_221/@$@A@@@@ w@$_2222M접 $_223'`o@D t q s@@A/堐/蠐'@$~2 Q@@A@$_2240'@$J@A@@@@ @$_2252M접 $_226'`o@E   @@@A00'ࠐ%^@$2 Q@@A@$_2270\@$K@A@@@@ @$_2282M접 $_229'`o@E ڠ נ ٠@@@A0L0O(,@$2 Q@@A@$_2300@$(@A@@@@ @$_2312M접 $_232'`o@D   @@AA0(H@$h2 Q@@A@$_2330@$s@A@@@@ B@$_2342M접 $_235'`o@C ? A >@AA0@$a2 Q@@A@$_2360@$l$ZϬ@A@@@@ n@$_2372M접 $_238'`o@F k m j l s@@AA0⠐0堐A&(@$j2 Q@@A@$_2391&@$u+Cn@A@@@@ @$_2402M접 $_241'`o@I      @ @@AA---1)$A&o@$W2 Q@@A@$_2421m@$b 0@A@@@@ @$_2432M접 $_244'`o@C 렐 @@A1Z) @$N2 Q@@@@$_2451@$Y%f@A@@@@@$_2462M접 $_247'`o@C@@A1)L@$Z2 Q@@@@$_2481@$e\@A@@@@F@$_2492M접 $_250'`o@BC@@A)=@$g2 Q@@A@$_2511@$r;@A@@@@m@$_2522M접 $_253'`o@Gjlikm@@@AA1⠐1堐1蠐')',@$f2 Q@@A@$_2542*@$q$Z*@A@@@@@$_2552M접 $_256'`o@D@@A22']@$f2 Q@@A@$_2572[@$q9@A@@@@@$_2582M접 $_259'`o@G٠۠ؠڠܠ@@@AA2Q2T2W''@$e2 Q@@A@$_2602@$p@A@@@@@$_2612M접 $_262'`o@G@@@AA222'֠'@$X2 Q@@A@$_2632@$c9A@A@@@@X@$_2642M접 $_265'`o@BPR@22@$_2 Q@@A@$_2663@$jh@A@@@@@$_2672M접 $_268'`o@E~{}@@A2񠐑22(8@$b2 Q@@A@$_26936@$m@A@@@@@$_2702M접 $_271'`o@E@@A3'3*$(n@$e2 Q@@A@$_2723l@$p8`^5@A@@@@@$_2732M접 $_274'`o@Eꠐ砐預@@A3]3`/(@$l2 Q@@A@$_2753@$wsT@A@@@@#@$_2762M접 $_277'`o@A@3@$i2 Q@@A@$_2783@$t@A@@@@G@$_2792M접 $_280'`o@A?@3@$`2 Q@@A@$_2813@$kk@A@@@@k@$_2822M접 $_283'`o@Ghjgik@@@AA3ࠐ3㠐3栐)')*@$]2 Q@@A@$_284!@A@@@@@$_2852M접  $_286'`o@E@@@AA4+ߠ+@$f2 Q@@A@$_287!@A@@@@@$_2882M접  $_289'`o@Cؠՠ@@A4G, @$s2 Q@@A@$_290!@A@@@@@$_2912M접  $_292'`o@E@@@AA4w,=,@@$|2 Q@@A@$_293!@A@@@@9@$_2942M접  $_295'`o@E685@@@AA4,p,s@$2 Q@@A@$_296!@A@@@@l@$_2972M접  $_298'`o@Bdf@4ՠ4@$2 Q@@A@$_299!a@A@@@@@$_3002M접  $_301'`o@D@@A55,@$2 Q@@A@$_302!b@A@@@@@$_3032M접  $_304'`o@A@5+@$2 Q@@A@$_305!Q@A@@@@@$_3062M접  $_307'`o@A@5N@$2 Q@@A@$_308!@A@@@@ @$_3092M접  $_310'`o@E @@@AA5{-A-D@$2 Q@@A@$_3115@$m@A@@@@>@$_3122M접 $_313'`o@D;=@@@AA-:-=@$ʠ2 Q@@A@$_3145@$@A@@@@m@$_3152M접 $_316'`o@Bj@@A-d@$נ2 Q@@A@$_3176@$#@A@@@@@$_3182M접 $_319'`o@D@@@AA--@$2 Q@@A@$_3206B@$)@A@@@@@$_3212M접 $_322'`o@D @@@AA--@$2 Q@@A@$_3236q@$#ڒ@A@@@@@$_3242M접 $_325'`o@A@6Y@$2 Q@@A@$_3266@%$@A@@@@@$_3272M접 $_328'`o@C@@A6.@%2 Q@@A@$_3296@%8[@A@@@@B@$_3302M접 $_331'`o@@@@%2 Q@@A@$_3326@% S@A@@@@a@$_3332M접 $_334'`o@@@@%&2 Q@@A@$_3356@%1H@A@@@@@$_3362M접 $_337'`o@D}@@@AA.|.@%/2 Q@@A@$_3387.@%:@A@@@@@$_3392M접 $_340'`o@E@@@AA7 .栐.@% 2 Q@@A@$_3417b@%$ @A@@@@@$_3422M접 $_343'`o@Cࠐݠ@@A7O/@$2 Q@@A@$_3447@% @A@@@@@$_3452M접 $_346'`o@E  @@@AA7/F/I@$Ҡ2 Q@@A@$_3477@$@A@@@@C@$_3482M접 $_349'`o@E@B?@@@AA7/z/}@$2 Q@@A@$_3507@$ ~@A@@@@w@$_3512M접 $_352'`o@Boq@7ࠐ7@$2 Q@@A@$_3538@$@A@@@@@$_3542M접 $_355'`o@D@@A88/@$|2 Q@@A@$_3568P@$@A@@@@@$_3572M접 $_358'`o@A@88@$l2 Q@@A@$_3598t@$w@A@@@@@$_3602M접 $_361'`o@A@8\@$Y2 Q@@A@$_3628@$d~,@A@@@@@$_3632M접 $_364'`o@E@@@AA80P0S@$/2 Q@@@@$_3658@$:,ݛ4L@$_3662M접 BA@A$_367'`o@B)nat_scopeF@$38@$2 Q@@A@$_3688@$$? @A@@@@u@$_3692M접 $_370'`o@Cm,@@8ߠ$`$3@#2 Q@@A@$_3719!@#$Zއ@A@@@@@$_3722M접 $_373'`o@BY@9 $@#נ2 Q@@A@$_374#@A@@@@@$_3752M접  $_376'`o@B@$96@#ޠ2 Q@@A@$_3779r@#[@A@@@@@$_3782M접 $_379'`o@A@$@#2 Q@@A@$_3809@#$g@A@@@@@$_3812M접 $_382'`o@B̠@$9@#Ϡ2 Q@@A@$_3839@#"_"j@A@@@@@@$_3842M접 $_385'`o@D=:@@@A91s1v@#Ƞ2 Q@@@@$_3869@#@A@@@@p@$_3872M접 $_388'`o@Hmjln@@@x@A9䠐9砐9ꠐ16y6|A@#2 Q@@@@$_389:1@#d@A@@@@@$_3902M접 $_391'`o@H@@@@A:&:):,1򠐑66A@#2 Q@@@@$_392:s@#c@A@@@@@$_3932M접 $_394'`o@H@@@@A:h:k:n2467A@#2 Q@@A@$_395:@#z_@A@@@@6@$_3962M접 $_397'`o@D3@@2@A20#:@@#_10HƠ:d@::@ n;qm.L% ̄@F1g{&\] @Ѝx! @Մ sMP(f\1%9=CH!f@,Rdefinitions%Reals#Coq@@!RӀ !g!x!a"a0@#Rlt=!@#IZR/r'BinNums'Numbers)@!Z7@AB!q!y:@"*Rfunctions>@&R_distACD%Logic$InitL@"eq @WG'F"cf*Ranalysis1`@-continuity_pt?ZL!#epsm"epq@#Rgt=<0WȐ!e3I52@"ex @#alp=@#andЖw@&Rlimit@$Base /h @%R_met Րs@&Rderiv@#D_x> HL@'no_cond'Hk$@$dist 3^!t  %LhIEHBBB@@@@D@RзLѩJcD@N5-'CĠ+GMJjdb{\@fME ؠ?[©ܠC_K"a'!H2{BBB@@@@D@@%#ΩdNé#ũ @|hvlzO٩Rq퐷#a'p*#Pa',@F(J,APQʠDĶ@Πw@{*DǩP J*Rbasic_funf@$Rmin; 〠&AVg@TaRRȐ!s%RIneq@'Rle_dec3&SpecifA@'sumbool7̂K@@#Rle=.Q@#notШ BAAAA@@@@@D,!2A*!^t!r!n j{|CQ6"cyQ~@&eq_ind Joѩ;r שv٩'CQsB:͠4P@'and_ind14ۀ ؠ <"H0ߠFb|@,Rlt_le_trans9#$©@&Rmin_rWݩ/@(eq_ind_r!2#\[ޠ;;@)R_dist_eq>x܀)'ЩG6?G::&橚@&Rmin_l|{CԠ쐑"f1="f2@"x0BB@)limit1_in8Y    !@*limit_plus]Iz ,C&a$b"b@@+continue_in "#@%: `pq@%Rplus+1+,1C@{>|<|@78@!:O#%@(plus_fct1BCQOaJbHN@*limit_RoppZ)TKIiUC^@<nZ>@$Ropp΀c_yCn@P5QS@'opp_fct*'}r1@+limit_minusfmCɶʶʶ@h@aiϩ@&Rminus&H_)C׶ضض@\@Z{}@)minus_fctX[@)limit_mul8ἀC@@@%Rmult׀SC@@@(mult_fct)?ĐͰo&@{uyשnB@(positive*@CҠ$5@15 @'Rlt_0_14CJʷ"H1"H2c Re5fM#\oOpW+)5DDWFC]İJJ4K#C@@l@(limit_in=@7U5CJ@v^\ YYQZo:6[$";@Bq$@oaape*`uyxjjCB++$t}C&vCɶɶʶ@hhΩՠX$CҶҶӶ@Wuw@-mult_real_fct=33GA߷署@$Rinv8~C @'inv_fct˷ 6HGx@)limit_inv8۝KmeȩNChCͩTѐ3(Ԑ%&&&2Ω-  )-@2continuity_pt_multn΀"𩚠@1continuity_pt_inv'瓀{ @'div_fct R@*div_eq_inv&iRSCSS_@BBd@gh[k@堩@#Dgf (UӠՠͩI3a@$Rabs; w>-Rl ɐ5̐&ͷ'4#Ȑ"H3+@1^+ڠdx1ࠩ͐[А󩚠l@&ex_ind 5{:8Q¶@<W%'QWݐߐ`޷ZߩXq@\淐"H4*ge~@i٠x'ũߠ~-RЩ@>*ǩDV6X /  @w>yJe"H5"H6,@8<SC?"x1:4Р@"or @BAAAA@@@@@D@NUm7֐u>zY@'Req_dec3{g9Qd eL됩Q=pT"_rRsZ)exXy`"\@'Rabs_R00-ߐ/'Raxioms@+Rplus_opp_r {G Cuà>>MlGЩ'y@/qr\)ؠbN/ޠPPc"H7"H8@4O`a|IqOnyq۩ilzàbt^@$Truey@Q-j W AЩ]U=%"H9 #H10=]$)tȰ#H110#H12~Ұ@mC@ @ש;/(CH8%HH"& C@(@+,/@ĩt9@ʩ<=϶0@@*- C@K@ܩРNOȠB¶@̠<Р@,Metric_SpaceC@@FF@@@@@@@@@!m@"@qאܔQB@@ö@6@K~(dist_posrOK;@#Rge=-j(dist_sym~FWFEIJMa)dist_reflOaթN@#iffС)V(YJr^(dist_trirO!zUX/@[5\!0_-M@I=75N/@9 mpC@_ʶ@[OͷIΩG`A@Kf">&BQNrݶ@nb\ZsT@E̠3O85%C@iRR*NF.s\\7C@ @g_©`ĩogORА@*limit_comp[ˀ$}u  ]C@$comp!~fϩhC.//@Ͷ@ΰаC78(8@@۠#ݠCDC5EȷP7G@2continuity_pt_pluso-(CPQ@@*continuity*@֠ca`RbSc@1continuity_pt_opp')"#Cnl@ :u8vu23hx@3continuity_pt_minusMB1CEC@0@11*OMGH}\ACUS@@@AA: N=@3continuity_pt_const 5[\pC@ TgM@2continuity_pt_scalooUjklC@eer^ʶ%yyƩ|4Cʶ@^@ zӷԷ{ש;0ܩ}@1continuity_pt_div''8OC@@@a󩚠@2continuity_pt_compmy6C@@&"l1 "l2  !h@$Rdiv̀JXط ذ$/([Ґl@,single_limit1, )9'l搩Ϡ"!CԩF7G)0:.B\<C!@-@ 'Rmult_integral_contrapositive_currified 5y "n;Nq)r?R+TT)@)False_induُ0@%Falsee@@*Rlt_irreflnQhAC@1Rinv_neq_0_compat1jC@'IZR_neq%Hq;PtNw Q*z@@AA@AA@@@@@@DAf3@uʷ@7k7>9mCC^AO{u|{y ƩS˩ҠQuRhѩt@&eq_sym X ru@*Rabs_right |TyAvȩʩh@0Rinv_0_lt_compatDo@1Rplus_lt_0_compat-P@"R1Ȁ16 E 頩  5 ,é1ũ,ǰ ɰ  L η[ !X@.Rmult_lt_reg_l>eթ*4 '.۷m * 3j 079 k 6z 7 @ ) <+ >Π A (Ȑ(hyp_list)Datatypes@$list]@A @$prodt@,Ring_polynom+setoid_ring ]@%PExprk@  Ȑ'fv_list'B s, u @2RField_ring_lemma1!7𚠐(Ring_tac @0ring_subst_niter! > R+E0DV5C m N@$boolZ'@A@ V Ȑ#lmpI@.mk_monpol_list( x&BinInt&ZArith  @#add1P&)BinIntDef @ ̀@#mul1P] @ @#sub1P@ p@#opp1P@ {%Zbool!@(Zeq_bool0߀*@'quotrem\$@/ŀ tF@#Monf@@#Polj@@#Peqj*Z(@*norm_subst7:d0a QA;5/' x0c SC=71) ub     : nJ   ©  @1Rplus_lt_compat_l ]߀ N  N  N C  ֩ ͩ@&double {# 쩚@)Rmult_1_r+1&򩚠@*Rinv_l_sym9`g~@+Rmult_assoc& 8@*Rmult_comm83 k B թ@)Rabs_mult)C *ɐ 驚@)Rplus_0_rH€Ԛ@&Ropp_0 GU`C ;ڐ &CC @%adhDa րA @ -  g e U e!l h h  j@ R 𠛠@'posreal̠@%delta h x@Y@ a@#pos=D. iv ʐ  H& H 8 5 (  $:  )#* @z@! !РԠ 7  a   b  O>8? @@6 6堩頩 L  v   w  g C  = © ; T  5@ ?   2      6 f  /  ' }k{-  ܷ X ݩ V o  P@ Ƞ / KӠ *{   .    =r    Ӷ  d@ nש ޠ/} ࠩ G c렩0   G  B  @(cond_pos 1y  {  F  , M   S' a ̷> [ i    f 1 u 2    9 s >9  ? &̩  ~, */  C 7 G@ * 1Щ 3 , C\ C  B2 1 CDC U S C S T@ @0derivable_pt_lim  ) O f d T d e e  g@   j  k   ^ n@ Q X( @ Z 8e ː  ' LO L $          w @ o Mz ΐ "  a* a <  U ;    @S  _  C "2,3 @@* *٠ݠ  @  j j  T    @ / o qn oNHO @@F F  \       ꩜cA   ַ      m Bϩ Ǡ     ŷ )  ͠l 8    /  Ӡy =  ~ߩ CC @Ҷ@ ڠ(y( ĩ ߠ~ -젩 1 !  F  %    D  C     @  @         @      X  @C "    !@  #@   &  '    @e  y   kC 3 1 ! 1 2@  & 6$ i       !C A ? / ? @@ $  #    K I 9 IC JA K K  W    @0uniqueness_step2 `    $ !:  9     ) O _M      7 H  Gԩ @0uniqueness_step1 `     < ( % q   * w u e u v"pr @,derivable_pt8\E  @ 8  %@)derive_pt$Fn B C D X6  D E@K D  C I  8 @)proj2_sigV 5  <@0derivable_pt_abs팀 G  [ o  @)proj1_sigY P    J  Z W k j k i  Y  k m r [# X X@1uniqueness_limite)@Ӏ c  u [ l z  { x  {  $ ʷe ˩v  u   C  ϩ+ ѷl ҩ7  C  թQ  |    ۷  ۷v ܷfd  ж@S/@X  a  #  Y  @    @,derive_pt_eq .         w p      "df     @ h@$D_inEO   e ީ ǰ  Q   @ ̰     ǩ X  p Ե !  #@   &  '    *@    b    g& k z ĩ n    { @.derive_pt_eq_0J      H Sީ K  L Š ޶ ? O@ ɠ    ک ;ڐ H Ω  -    T d@E@ M쐩 Z  v ) %alpha t )  i h x@  ٩ b 5 d  q ѩ  V  . } @n@ v  Ġ Ƞ   R  <    @  ɩ  Y  ( נ ۠ ѩ ݠ {  V cB<C @@:  : 頩    w  ϩ@ > %  ũ  O   w  U à   k      ,yvt  voni  FOfQccSe[@ [PNY'0[  K;5/)!z 0]  M=71+#|  \   I   0   ?  ?M  d \ ש      ?  +  h  y Ͱ  C @3Rminus_not_eq_right8K2耰  # ȷ g$ ` C & ˷ j' .   %!v    ϩ   ۩  h  > (;  <@$ Ð r1 vT ڠR S 8 א E U  { } aK ꐩ X    #  é) Z.  /  * *0v2 C$ 3 C@}@  t@  bnL WqOV |C@$@  %@ t~ c k C@  Ҡ + F ^ Sq QC@ b  V TtC  J@.derive_pt_eq_1K h R}i7L ]H LFM@@D D     nM˷G̩E^϶@I0 -Ucg w طT٩Rkܶ@V Ơ Ƞ g ՠ      ~@jڠ (yܠS  e ЩYQʩ䠩 U   ݩ꠩  8ީ Щ`  pİPǩ  E I   L]l  k װ#A_ m oܰ( Y  @4Rminus_diag_uniq_sym C   ; l  <թӰCհE gЩ°\c^ P@r_SZ0+ |  T     Z [@C ␩ P   NP  ] z {&E t^  k 2  =  ?Ű3B <VBC@  @ QyWC+@', @ީ IC7@3'!8@ +C -    m C s  oC_qP@|}o} s@r_Ͷd϶@`TҷNөLeֶ@P  _(Ġ c Ѡ  7   l %  5ȩr|@Ӷ@z۠ z )蠩 -r o  ک@~ @@Sb  @w tҩũ!@@   X \+ ,(I_/ I > @=  mC% Đ s2 w.  I |Gh  RpnT    X  y E H 琩 L А$pU wCWXbuR.CdwQ.0 ĩ۰Ng  Uu׷@q  ~ àE&&Q$g  ͠ Ѡ[4ZYWD  - ܠ ࠩfCSjUq XrBmms uBCC@S@OC=©;TŶ@?    C@eж@aUӷOԩMfG@Q  à*F C@ `IIҠ= ϩ VU%C@ X(C+& >ӷ wu@0@}    Щjb]۩    - IW0԰ ;ש U Yk - P\Ho| # 38o  8iz\C  Fwf( ްNP R9;XY@A  NLN 퐩 ["xyC \  i Q! <T>İ4A;UAC C@@ nz >%c} AbC CCC9"fg Y-Q1<?Ȑ"e031A;B @ @9 9^@?OIP @ @G G2oK[U\ ˶@ @S!de"pdjdk ڶ@ @bà ߩ"s)@ _@ϠѠ p ޠ#&41+ :@ p@ࠩ . 2*C@oES  #U$C{    !b#axb:Dx n@۩թ԰ ̰r۵%| +@ @ byNn@ɷʶ )9@ @" p /t䐩נ.N͠ݷ޶ =M@ .@թ6 Ր C,(Ȑ#d'h@(Rmin_pos |uk @*Rlt_RminusЩbdh<ҩũ    Vةpk&#B!" @ r@zȠ ̠R/Y-YҠ>)@ؠǩڠd #hn0 #cmp PRtQa{ĩJ ZѩW Š m ٩~5./0񩚠p@,Rle_lt_trans*GӀЩU~@'Rle_abs1 H8+  ("ĩ *(U|  1@*Rmin_assoc'h42!@)Rabs_Ropp&#B*:.2 WJ,++ %ƠȠ ( 1̠w4go:ՠנ7  +: @)Rmin_comm"en.#2oݠ6署@.Rplus_lt_reg_l5=ӀB{      ^ `    / ة ݰ ȩ H |~ o @      ~   r y0 J=       * ԩ's'(w'x_ L-6@.Rplus_lt_reg_r5=ـ75<8. E C "  5 ?    J^-      3  @N       ϩ 0 xk       "X 0 zm       $Z W3 !+c:Pfe>6 PjA,CeZn83jU] t r Q N La/ G F Aw 4 9 $ ; & 8^ ȵ .@y . # !   ,  ˩ 0 .       M  -\Juѩc)e$'C ض@ @  `+Ǡf Ԡ3'C;zxw sT `rC} !X  V ư̩  !/Cа驚@'fct_cte€_ /۰'ߩ ϩa, -/n5ڶéy 4[$~C`)]ж@ LȰSi2k@SϰpK\;'suu@SCe<@*cont_deriv"LN$C 'p(@.derive_pt_D_in([a+1@0derivable_derive 0 $}uv'@7derivable_continuous_pt%f #C@/@)derivable$"G C][  P>@0uniqueness_step3 ` NK6 LMXRawg  ࠩ tk iTYW!  s q P M K  N  P  R  Tĩl R P O J mG 0 2 I 4 F 6A L <   O ?   W B D F X  H J  R@ R G E   P  0 R B 2 , &   q' 0 T D 4 . ( "  s SC ࠩ%K:o 4 u 8 ¶  x  ð BVҩ5f sթ Q l۩ U  }ߩF.@12Ķ%5@  '!oР 0u吩ؠ/ 8}R-UVϠIY@$A P977 X <Vstgw@B_ lS·G_2=~@YvĠ Ƞ)L-lT00.o2Kp@   c1ࠩA 栩lIY  Pf:Ķ@K _ax Ʒֶ@P   aq ѠLu ՠLwI|} @i ҩ٠ 0۠z) 蠩-ѩԩWշ   AߩEZL֩A\%C@!@$%(@ h-@01ö$4@ ƩtC@:@˩=>ж1@ .)F@שˠIJàܶ=@ :5C@S@ؠVWРJʶ@ B`@cdݠW׶@ OC@շ`p`/dv 3[Z $omB EmlRC@K!qpMsr? "h'&#zAyPQLCVϠO\3_ C U e UT _hi~j q o N K IbKb Om J I Dz'ݰ)4aa+-ϵ 5@ 5 * (  3  05 %      T 07 '      V 6Cթà579 ӠEGI@|vt@ɩ栩4a "c$D vS  @۩FsL<a }(^$%(@^b 1s8R,;<ζ/?@ 'Ɛu4yeCBR@:ِIE0 0 ݠXWg@O\ΐА CQiOiy@aܐ84*u@m z$a1b^1"Ѡ[)\)C@:@6*$";@ >rF@B60.G@ J~C@S@OC=©;T5@ q_ʶ@[OͷIΩG`A@ }C@l׶@h\ڷV۩TmN@ Ơ-Iy@uicaz[@ &Ӡ:V,C@pYYP u^^砩,Y[zC@搩r EC ?^`󐑷u& ϩBz[Pyw  Ƶ%*o,v.j0 \°2  Noo Rdajs V Xj Z UirH@jWzR0#|tT0%~vCNO=]WFV ĶIY[?JMGj@mnaq@<Y8zU }~q@Li(Ʃ@[xƠʠjٷ^v!T4@p,۠ߠZ@<렩 b6@Grж@Wi۶@àbР7!1ՠt#%2{h{C@@|vt@ 栩>@ @ xJC@@@ W@ @  cC@)@,- @kq6@ǩ9:̶-@x%~C@6Fw('xͩ;K9~̩ 21C@65 87 CL\JCC,g*hXhbi`jjŷv @5derivable_pt_lim_D_in=uܠ m!$#eж@ uзJ''-,)@0,é }ƷR2252? J5@ aTv/۩  ߩM ж@ sƩV@Y {^GѩF  @ ߷ UiW ȩXѠ}Ӡk5   &}ж@ ܩl^6ǩ @  { 8 <E _@ ٷ  R̐_@%DmultG \   ,YCÐ @@L PppƩRϷ$/˩ [ - q. "ڵ%8|9 ͠.A!B)3F&ʩ֠(ΩP+\m@)Rmult_0_l+€C:ِ砩G; -CE䐩RGCM#Jpn[n_o pp Y}@6derivable_pt_lim_const9A$_~4\"qq(C9v,.|M59I5:8OM,)' )A+$#Thְذ  @X ɩ ٩0 u,b0w.d a=~D (d^ev^@5derivable_pt_lim_multmi|{4}knʷʷe˷̷ n@4derivable_pt_lim_ext$ZϬթܠ`ةƠcZ1ܩީi$Ѡ)10@5derivable_pt_lim_scalh779C,&ĩ:  5ũeVɰΩ2-  #daɰ!(*_ܩ/aCѰ+-$HepsũķŶ$4@@k*o@"id!s-נ {з<L-5ԐTEXշ]_?-1Re   Vi#\oOp&rRbY-ex0{I|2~^9R#d#?<@*Rinv_r_sym9lU CCoKK2@)Rplus_0_rH€.@+Rplus_opp_l73L:@+Rplus_assoc ^KN!@*Rplus_commqS<>G(Vi*Cg䠩 ^qIf>i_@(Rabs_pos+FPN`zzCXƠ 0C䵵|}|v}@Ͷ@tՠt#⠩':߷שpErGtv%Kx''.zO|--Q~ @Ѱ{yB/R*0vf`ZTL,0xhb\VNڰ&/13^68(i4Ġ==?}:<xm,F1DԠMUOWKM~>QXXZ bV XceqJ"PcjlVip"l"ny&{ũ}19zH{1}5KE@>ĩEY ɰ˰bϰѰ@Q©0{n%[OH[y\\T{YOTa}`w)@2Rmult_plus_distr_r~|zChk堩o頩urvz{ C^ɶ@_N^X_ζ@@VVĠ X@$Rsqr=MWC G,|uoҠFϷ{feae֩fHejVLNmPж@`^/LI@4^Q_e /eSd@9Zoe©")dBB |FӰ H Aж@$ з3:S఩[@ !2?F @9"iHO򵵵U@ڠXYҠL\@֠Rb۠}}Kꐩ#"7Q^VW !L#19y@-2GuàM8a{ɠ͠'XI+1נu3bN.(&?@*Zo("w2m64M@8K|IQOYZ; =khqԶ@]D3sϠnyՠt#⠩'X'[*0@g#Y@o̩PLη3-, @{~ةTa Z^Y[ک]che@MO:.>@o*ɐxu0ϐ~="\&*dL됩" Ґ&r)zzЩ԰/ sea(搩:T+o#H13B86G[FC+++}KJJC@)@%*@?c8nf5:@6*$";@&twC@L@H<64M.@8bl[oX]ȶ@YM˷G̩E^?@I}B?C@oڶ@k_ݷYީWpQ@[ˠ2NϠ6R|m(@~rljd@nDޠEaȩ⠩IeeW;C@hh6=0lѩxxFȐʐΩLѩ{jAAC@ FC@(!~~ȩ -.5Q ֶ@(ưX,9=D/BI ;D:G쐩Kݰ@%Dcomp$U Vx q(# C!\]M] W@#sig#* @fgO"X0 m s@'sig_rec5Ԁtuڰ.0 qz|} 8@!pַ(٩*%  S6GW"p0⩜5A2 BT+ɩ=@5derivable_pt_lim_plus;KZp[\[pCjh@@//& QLXF  KXS su}= é,[&q} e@4derivable_pt_lim_opp$Z*C̶̶@ ܩTӷԷԷ wmkid a{۷vܩA߷_ks3z]K  [;YS @"@6derivable_pt_lim_minus9VC@@#        q jKȷ  d  | ӷ l   q۩+-kC + ,  ,@'@*  2 # 3 6 7 [  C  B / B 3 C = F G   C L N O   R  U V _ 'f   )  C ` ^ K ^ O _@Z U e g hͰ) 7 #8 @3derivable_pt_lim_idsT#C a q2 , g w y z߰ I 5 @5derivable_pt_lim_Rsqr5C s   >O M  {  .$/ *  I5 K%   7 2 w T\ (0 :  J [:E G B   S dt   J   m  m W@5derivable_pt_lim_compk t C    @@HI ȷ ɷ ¶  ķb  ̩ m@1derivable_pt_plus= C Զ ն@ G }@ I  ݷ  Y  ީ @0derivable_pt_oppQ{C  @ X Xy   $%  署 @2derivable_pt_minus>窀C  @#@$ kw ! 78 ! @1derivable_pt_mult=AƀC! ! @6@7 ~z !!! @2derivable_pt_const>ҥ C!!  ϐ!#!!!!! Y!!# @1derivable_pt_scal=MwC!-!+!!+@W v!!!1 @/derivable_pt_id#$qC !-!= @1derivable_pt_Rsqr=kC j!J !K D!=!M @1derivable_pt_comp=-qZC!U!V@@ X!!\!]!M!]#pr1Z#pr2 c Q !g!h!!j!!#!$!%w   !p !q!'!s!,   ! ! !/!0 !z!{!1!} !% !*!' !9!;!!!;!!A!>! !  !,!!H!  !>!O!L!    !D!A,  !H  !G!!A!!]!%'      !g!d!,.D Ω    !E3   5 U!a!!c !!u!=?    ! ˩V!D   ϩ!! !ͩ!!jЩM b!b  !  BC!طs!٩>  ! 9K !=!~!I  !!&!!!K !!V!!Q  !!.L  )!P!!\  !!!!!^  !_  !!L!!y!!?!!{ !A!!=!=!!""!"!     ^!©,ǩ!" "!İ"W!ɩ4!̩\""!̰"f!ҩ!ϰ" w "! h"!""!ذ"$t!ϩI !!ް"*z!ҩO!!!k)"3 > #"6! z"7!"9!X!y^ Щ!!Dd"F"G! "N"P"Q!X!n" !" !" !p!!!\!r!"("""$ "[ "\"L"\W!^ j  E!t!"f"g""i尩 "}"&"o"%"ql"s!s"v","x!ɩ߷s"} """7"!"@"="!٩ط)"5 ""7 ""I"!ԩө ""S ""S" :aЩ 3! p"b!!"a"b s" q"""RP8!NM FEY;!@";"T""p"8 2"c>"x"="w" S̠;uΠ"ʷ!F"<""ϩK" 7 b۠8lݠH8"ٷ H#"ܷw"ݩ""ߩ[8!6"""a 2"4 x5.5" ""!6"""q 1"3  ". !6 #"!D#"#  "9 !"©Щ  "L  "  "ɩ?>96//-(0%Z""T"T""А### #"" 䐑#$#"##"###"$ "#(#)"߰#+"!6X" ?"#2#3"#5"""u"""#;#<"#>""|"""#B  I"ڷ>#E"E #H#I"#Kǰw9"+""""# ##Rΰ~_"2"""" ^#ͷP#Z!e!J#]#!#^##`ܰ""i"A"k""" m(Щ" q"##I"""#۩ܰ#q #rװ"y"#-#!#zְ#|#}""#8"#8"#6""""""#(#<#;#;#P#v#GG#A VW#{#L#FP!V#!T###53"10!##4##P##C#V#W D&"ݩT+#&#?##[###N\)#c#(#b# ,#Z#i&#"/#Q##m#5"#c#t#q#9 #r% Ǡ>#4#i&#ŷ!#ȷc#ɩ##˩G"ө"###ѩM"  ۠R r#ط ~!##"#ܩ##ީZ" 蠩_"""#!##"+###  gЩ#. ##^_  a##\"%##9W"4#[$$g"&O##"###i"2#P #'#$# #E#E###$ "M@#nat@#%Peano#@"lt UxcA#ک@'nat_indJз"i#)հ#$-(Rpow_def$.@#pow#׀##r!=@#INRr##|#Nat#@$pred `<##I6..ؠ$$Q$$ 5$ !Z9*$(PeanoNat%Arith$\@)lt_irrefl>jSI"Z%HrecnA#jWObB$"|"}Р_@"le UxT@A@B@B@@@@@@D"t@1$@@$>}$W tC$C$4q{s$6$J"$I(""$N- !A$Q@'f_equal=$,@@A@A@@@@D"$e"$g($$g$d#쩷!W$h$Y!V$n$k$_""r$r$wݰ$vx ٠$$}"w"w\"D!l$}\?!p$8`!{"٩3ķ$Z.($$':g!$$$$"$$$*!}$$$$"##!Զ"`$$&ȩҠ$(!ge$B$#ԩޠ#@+lt_le_trans ŵu$@)lt_0_succ5%$$$"n@$oo$$$$Đ!#tƠ$ư$$̩# $@&or_ind"$Ӱ$[ $]̰$%$$Y$u"-${!###q$ܰ$%4$$Q"="$X!!W%3% %C"J$"$%8"A - #%=#%>%$T"V""! %W$\%%&԰ɩd@%sn0%?"2% p0%A"4%! C%%j""s"<R">$"w 2$%S$ #%u#"~"G]"I$" =$%^#%*:$%:  B:$"Q%c$  6%>C%>C0%P%[%C$ǩ"Ta$ͩP%6%J"7s"4!%^%%%_%j%Rũ%O%d%"%Wq! # %j%"%]w #Q%a$"r?"B$o"R!Ƞs%k%_#%#e%%"Ġ%x %"ǠW%%%"i!%%%̩"Ӡ% C%%©"ˠ %% $ %ǩ"Р %%$%˩%$"㠩s$%$% O""%}% "Lt@&S_pred<=À%%3%%$0%$?%&## "өؠ$%#  5#$é$ީ$Ʃ#ڐ$$&#%!"$_&%Ұ&##'"$#-$#/%&/$&1$ð&3'%&p rNsunQwr   H@%jWzR0&##|t&T0&%#~v&C&&N#ޠ#W# %%9Y#[%;#]>+%?]#aD $%e$@%S_INR=s%kC&&g##p +%#s%s&'C&$&p$#y#B#{ 6%D#~A%M%C&2&~$##P&<%P$&$##W&W%&!$&6# N&G%^&H  P&^%v#_;'%.%#AC?&c%{@#<k%%&S&S&S&c&n&V&V&V$P&j&V&&$$O&o&z &`#r$^~&em$a$&&$&]&}&#&m&n%"͠&@&#&o&r$&t%&i&y&w& M#&z &{#ɠ&# x cCpw&#Πt&r% e)&n@8derivable_pt_lim_pow_pos? &g&|&%˷&&ٵH&ܷw&ݩB&&&&#&&@4derivable_pt_lim_pow$Zއ XCr&%0㵷&&򩚠&@0derivable_pt_pow&}CjT%=&&&''&'BBB@@@@D%&ư'&P&&&͐$'%!$%&Ѱ'&&ĩ'!P&&٩q&ې!'$#un&v&&c&&&'-'+''+',!c'/&1%=#ٶ'%'5@'Ѷ@'%&W%]&X$ "@!'('#&&&!&'I')&''LȰ&&&'.%@,Rtotal_order%w#"é &ܠ'Z'['']ٰ&z'''"'a'b''d&k&''''h 'H'i"$ %'m&&&%'p'''=')'W"K&&'+&'@&&'-"M%@1Rmult_lt_0_compat='5'KC'e'`n'94"['k'ft&:"|'@m@'u#$à$ǠQR''R&&N'R'&>&&',3!!쵩->%''%'@''e%<%Щ% ''!''%D&T'o%F&"3!䩚&7@1Rplus_lt_compat_r8׀&&^'C''v"''|!!ɵVg#C''!ө''Ơ!ש'Ġ'&zϠѠ%!ԩ''&۠ݠ%"'!&+'&蠩%- ''''C&cC@''&9)'é=+'&@6Rmin_stable_in_posreal(( %ɩ&z'ΰ(&J *'"&'ذ($&N %Y( "%&&@)Rcase_abs7U&(Y(!&&&($T(!('&(4&(-R((!(I(&%&蠩 ='  @%   & (#Hlt"VZ$vC(G(Bj"^(K(F"T(P(K' [' " ^%   & (]%Ԑ' j' 1 m%   5 (e#@)Rlt_transC(l(l(E(CC@(t(o'*Ġ((NȠ)(A# &O#Hge``&t W%f ?f&(% Cj&(( ˩% b_&(%% h Nu&(((r &(%&((%Š(yo&( "(ũ%̠ y&W(('(ϩ&_'(ҩ(e(' (ש&g('(ک((&l (&(r(   OC(ˠ8(%%#c@)Rmult_1_l9$: g  _ (˵" Z" V z CC A% NͰ  TPC(C(㠩$"(蠩$"(((($&= &A r&  v !'!' ## = 4C#))U(ߩW(w&۩)) ݩ#  X &  'i)4&Ġ )'z)7)(&ɠ g'֠!+' !.&s m p 9 )&(   lC). )0 t ũ)4 Ȑ#H14'J!C(%! !F& * !'Ơ' Ȑ#H15'@1Rplus_le_compat_l? 7(!Y( ! !\&  @!$)+'ܠ' D ' F Щ'  &(!l#!3!o&] 0!8' 2)A l!< Ȑ#H16'})' &!F >&!H&!0'))O)'+^)W')& L!T'))Y) '5)`&![&&ܠ(!E')&!c'))h)'D&3!j)q')&9  ')&())u)&'Q &ʠ)~')D   ` ] [)F ])0 Z X W R)) J!5 !7 I é#ڵ @@) @ 5 3!> 0!@)& 0      _)0!B)& 2 "     a) A&]&_ !!S!)]!NȐ#H17!L!p!9C!7<j!!YY\\&!' ]$n@2Rmult_plus_distr_l0ylɀ! dC))' y'!z(7*g(F*))' !_~     *     ))ܩ  $ |@)ǰ | q o 8 %!z H 0!|)& l \ V P J B )  "0!~)& n ^ X R L D )  })а*''%!(W*"'(h*%* '"`)q%% ')'3!'"!)*'Ġ _ * ۩ ))(9ǩ; (}*H'O''}&˩('ϩ(']!&j(*\**^*'e'a'ʩ)'p"'s'i"թ& (*v'}.(*z'#'.0(**5*''ߐ'%*@)@.Rmult_eq_reg_lA:(*''@;J(**K**P'2');(*' #(**V*''?4#*_(*'v(**_*'*f*'*hO(*g(**h**m''V(*<(**o*8*t!w!u!T!Q!O*O!Q*_!N!L!K!F*|*_")|$˵!1@*|!1!&!$  "/  0"1*'!!!! !  !P*  0"3*'!#!! !! !R*!2'֠'UW'ڠ'EPP***$Ʃ)*yq***"lC)D'j j'r 'p r w(J')p@9Ropp_mult_distr_l_reverse/MvC**(V"꠩(/ؐ()"""(; )C+(j"(C({)#"Ω# ")b+)*)W+" Է)f+#)(#(Zb'(+)͠#" "#%(j4" *)@4Ropp_ge_le_contravar>ŀ2+")@&Rle_ge @ H+)9)@,Rmult_le_posN85ߩ)@+S+3)+T@)+(.(0(X)(h-"(j,")Ϡ+G(cC(G* (y # (|(P#)+\) (ڐ+9) %*@1Rplus_le_compat_r? (+W"+s+n+D++p"++:C)+t+t!E#(Ǡ(+Q*+z* +~)+!S)++) o+^*#@4Ropp_lt_gt_contravarY+ 7+!]+)  +ȩ++Ȑ#H18)+!j)++)K#)Oe)T*a#!NO#}#)]e)+#)-)0 +#"""q"n"l+ "n+!"k"i"h"c++|#F"]#H"Z"_#JU%"R@+"R"G"E"!#P"!0#R+("B"2","&" ""q+!0#T+("D"4"."(""""s+ "SC++)N))R#栩)+d)*#!Y##)ީ)f# )#))o )q &*M,)t) )x$ )QaO\*f,#, 橚*@4Ropp_gt_lt_contravar!Y, *@4Rplus_lt_le_0_compat^*i,4!*x,5*+)$')lf)Рة*ݠ$2!#$5)٠N)# ,024,2, ,2", ,2",9G,4,=,8Ȑ#H19+@,B'ᐩ)$O)()%)&$Vȩ*?)$^*g*|+$i"$0$l*)ސ$6))9*,q,l& *++,x*#$*'h*,ܩ+9$"&$U$*5i*$[**<,&*@,+,+(,*G$*Ki*P+]$"J$y$*YV*'$*)*,,&N,,+*0*f$Ơ*jj*ol+|$Ѡ"i$$Ԡ*xP*Fw$*H*K+4 $ߠ$,, q,,h#####,թ#-(####,, $h ' #p@,#p#e#c#,#$n#<#0$p,)#`#P#J#D#>#6#,*#0$r,)#b#R#L#F#@#8#, #q,İ-* *n[*p_+M-**vD+`-@-,٩%$ԩ,ذ-$ li-ϩ-%$ީ+c-.**(ϩ*%"*Ơk*ˠ+ؠ%-"m$%0*Ԡ*$*+-L@-4-*ߠ%?'%- -U Ѱm{-8+G-Z-:+-[@-C*-*%P*A*,%Z"-%!%]+*ϐ%'*ѐR)%+g-zH/Ȑ#H20+m-+bb+--9-*6+ L8$E$C$"$$-<$$$$-H-\$ $-$$ '#@-J#####$##0$-t*g######$-T #8,@*double_var?C-W-*+5+-$+-@-+ %+A]+Eک,R%#?m%n%+N+%t+n-~-{-ǩ!Cn-P-mH+- ,-ж@-a-+/+1%Š%--۩!Wo-+-%Πx%,&-@-t%Ԡ+x"+|,%ޠ#v%%ᠩ+ѩ+S%+U3-##H21-R!#H22--!%0%-, -%+5+,&#%̩&+ǩ+z%ҩ+|F.--.O@-ߩ++J,@/Ropp_involutive"2+ --+Š.(@)Rplus_0_l 6ʀ 4+Ϡ7+Ѡ;$:='.s..0Zѩ,@&Rge_le 6/R}.3. ,.5%ᠩ. .Y!հ".;%ڠ.=k.?+-W.A..C@.I)&S..h!m.J,,,,,,,,,,.#&Z.& .',!.'+* Y.'.s.S'..U)+)%.x.X.1))-.}).$..6..;.8. .d$.)`),."---ȷ,..&.D.Z.F..o)g#;-w-.J((൩%rC.L.& Y&L+,.&H&R1*K&;,.$W,...a!-..b.$[Ȑ#Hyp%..&a%C..,..m..)..*$N$H$O&.@&@$F.*F+&+ o,\ . s .-,+7..ө"O,--.$a$h()!b&s,..-!.޶@.Ơ.,q-3.ʠ.ũ,  )1.Ϡ.ʩ,z-h.,| j)i 6m --GC.ؠ.ө&&)@.ޠ.٩&砩,,- &((-6/$-E/.頩&,7  &.-?/ ,f,h&,A  &m.)-M/,,v &-`/.Ӱ/,&,R  &.ܩ-/%@-i/&.ܰ/( &+?/*,1G&-@0Ropp_minus_distr!,,;&&ΩDC./9''V&/-r/='+&/ ,=.35/"$/)6/$)@/-D/()4-/K$-/L/3,c/ /2q$&$P,C/=/8w/8% /?,{/<)I/E/@-@6Rmax_stable_in_negreal [-@'negrealzcD@A,̐z/+ 'b,'*/0-+-+/_.@$Rmax; U,ݐu/c)/l ,/k)w)y/D/8',Š!!N'H/v)-/M',Π'!C'Q-///+/n//Z'-C.). /]//).,4@<.%//)1..7.,/A-p',K'u/)@ /.#/.=/R-*c'-3'/)Q //. -3_-7a'ˠ- '.% s/+)Ω.P-/n../@)i/-Jv-N'⠩-'!'/ߠ-V-Z'-3'})0.sΩ/Ʃ&''.G0-'.X0/4-'.P0-"iƷ.a00/ .W0",.f0#0 -,/.0) .0+-ַ.q0.0/鵩.h03-à0.y060/- &.0.*0=Ω%8/  C0'-I'&.-L-_ '''0%''''C'-V(?&'('-Z'&"CC0=-_(  o0-5.@4Ropp_le_ge_contravar(IJk0 /@&Rmax_l?>*X.0r&$.0s0Z0.а0W   (%u/C[0[&,0b0]*g.0&3.00i0=.0-␩-h0l*u.0--(,.00K0--ʠE(30T.0-Πm.00V0 ',0- (>zǩ.-(CC0b0((b(.0((f E/.0o٩.0&h00*00600s0K.#^(-0w(0o/90W./W(à.T((e0 c.;۩(Ϡ.H((d0ǩ0 00000C@0Ԡu/o@#neg=D30 500ީ0/ ..C0꠩,Y%*0,Q0,.C).G琩.{PBQ/.y) /(ҩԩ/IMȩ/.U8.W>/0.2. 8(((EȐ(list_hyp''Ȑ+field_lemma/@3RField_field_lemma1(Mk'ǩ'ְ1F'ذ1H'1,Field_theory'@%FExprs@E( D'ʩ#kG(©CQ( J(ͩ!F+s''@1%''1*$nfe1+@&linear@(@12 4@%Fnormw$(1^.Q'''''=1>$nfe2@1? $(1f.Y'''''41F@1D''('ĩ'0(1m.`''''''(19Ͱ(L@#num:u)1TS@%denum0)1q'0) 1.r''''''()1K߰)  ( @a@%PCondS<11./A../ 1h(?)1 &BinNat&NArith1!N@&to_nat`)BinNatDef @*9G (V1(X1^(U(@#appʀ(t@)condition.):1)<111ک@&FEeval>@11./p.//<)-)E1 . (s1(u1(r @11./v.//B)-)K1 4 Ȑ#res(((Ȑ&res_eq.(1@1((N()Y1.(I(9(3(-('(11Ȑ$res0A)a$i((Ȑ'res_eq0.1@Ȑ$res1)n()pE)r$!"z((Ȑ'res_eq1@1 11R1111ϵ(@0@-RField_lemma55vZV(ũQR$lock (*)}(lock_def1182/2.//5/_/})2"|N0 8242///:/d/)2'(ư26(Ȱ28v(ŷ1>,BC<2>2/ //D/n/)21 A2 1@2 @$Fapp{F)@&Fcons2w$)2'/((((((x()12U22T/R/\* '02Y/02[2BX20L2_C02`2G2/(XG(O/m*/2#2# y}2&1 @&Rmax_r?D2[D0 *0i2|02}@2eN292g0. 52l[ WW32B02k2(2n262ud^ B2yb> 52| 1s0- Q020./0W/*G022f2/0/砩0JB0W/Ǡ/a*\2}/ˠ.א 02ʩ/Ѡ/l0` 5)b+12ө222.2 /ޠ0561Y@-Rmult_opp_opp;-.0?<1b@0Ropp_inv_permute>)B2(C22/%1&2/?/0Q/1:21a*qF022ܷ1@2@1h200^0ߩ0f00?*1z20n0E00x0%0Q* :)))))3'#)3)))))22h-1)@2))))S)@*)c);0*3 /))w)q)k)e)])2h)2350Š01p3;;13<@130Ϡ0-713% \13'G300zG30۠ %3*o3934a3 3V36c*lc13Z) 13[3B30W3A23A)3C1ˠ3C+Q0 0   1נ3O+]0H1 p0Րa+i+/Rʩ13)2133h3<ߩް3e3e)63l3g٩թ3p3k32 @4Rplus_le_lt_0_compat&_+1%֐1)o!0+11+U3[3\3315P331;+1?t1CK;1+1Kr+oXC23/D1R+1VT1ZϩR1*+1bR+Pm10n2Y 1k+ˠ1oH1s#k1Cn+נ1{xF+Df2b3֠3ѩ-n2O2t2i3ݠ1+蠩1A1ĩ1`f+1p?+=^3-@32k4231,1>11|^,1h<+:V4-4'3࠷2l11,11à1V,'1ˠ`+N21O3 L+Π@4,15 +Ƞ4+ 4-94-44 Dԩ46=2@4S1(1h .24X@4@41  2L4_4?24`@4H1,S1D11ː2,_2<,'4."2d4wJ {2h4{2 SS24~444`24;+>+<+++4f++++ 4A4U*++  {.*@4A*****+***0+4k1^******+4K * i (C4I4k2%1o p24{24@4,21M25ʩ-2?,2=,a4h24224*h244264t 4g4*n44ũ4s4©4,2Y2]U2-,2e,#H234 ,ˠ2o2sk2C,נ2{$,4ͩ,y44(mp4ԩ,s4֩"4ة,栩2+ 22^,27+, 434Ð 0644424Ʃ24|x 2 u'  ] 4C@50B2x4԰5 (d `52222ՐP4422ؐ4d\442222۩4ᠩ242ߐ&44444J44萩  4ꐑ57555"55#)56 57(48##3D#%15,5<@@33w5B2235G-%3@0Ropp_eq_0_compat8! 35P(̰,4t 15E5U15= \0ĩ5?' 4b3~4c1 5*C3ˠ2)24k45W5g@@2 5\5l@5T V@5V'3ڠ2)n2445@-deriv_maximum A445$454563095@-derive_pt_opp$ ?@Y?555u5#|5]5)[4#v3#x2355@Z@Y5G5XW 45=5:45L5M5b5528A1@5@?5R5BA>55)+!45D@*increasingZ}5P553!25d5f3a515+J55f5).4525m05+Q55m5)55`5s3^5t4%5 +X52d3550@0{50}5}555<43p|52n5,착5v555552t5e| 1C착555555551J 0'6555%5*5 550452"-zr"-4i@.Rplus_lt_reg_l5=Ӏ5.5"355շ4955ݠ35553558]5+i135;"0z1C5+-3^3 5B- COO0551T+++-6@-@+513F.3J4*Q4E55!3x. 5%-ҩ465ʷ++00q445߰6+.+?-6 56661 +G-+J-Щ06!6+N0;56@+6 04x6C+&66#5E-C4+A----6#0-0---C-C&4 +d-+M-hC#0-6U"*-{,-v506;2 66]2*46_.M+.46b6I6+G-I.3n+.+-x4X6k3r.46n6U6)3w.$+U4a6t3{+-D 46x3F46y6`3+`66 4l6,4n64,,466k 464,6j466r6F4+r+r,,6q,+4,,C6{,3.J,,3,3i,} -j,xV2,s,#.7.Q3.S:,nC6E,(2(G6_6{06#56d6Q66)66U6,:16p6056q666662E@+'_TmpHyp6?5,6666E62TG+4Щ576666P62_+5F651( 0ݩ6Y6ɠ66ˠ2j+46Р2o{+5V6500۩6נ2v50 4)4(4.(315<74(65M7 5t6ũ4(Ʃ4. (6.1666̰766(ȩ(C5(15(1 5 4(˩4. .57+7 5o7,@5644]6^4Ơ4? .ҩ574m 4Р4I .(537F4֠u4ڠ4{57P@Zʩ5747 4 4    7):75.~7H7Cb77e7Ed.{i74C5Ѡ7I/W44)!q 1p5ݠ7U/c45 )5#1g5@4Rplus_le_le_0_compat 9/u5됩5)3R4{T#ᵩ H5$s3q1575,)B7~576 7ZW?)G7|.°777]777`)M.C6)P16;f*657757@6"7s5J5ij5Q m6-75UC5Y b5'It57Щ5`5.67ն@6A7 75i 55l ©E }7Bl75/7͠7R777T/7C6V7g/ 7נ7$B777$D6+7-6:77ޠ7$M T)767-C6e7ݩ5./52x)16o758/5<:5)ɵ6搩5F05JE5)é688166685[05_5 81 @868*68#5o0.5s5֠t B B8(1 8I8655~0=5ϐ5 = =6 50H06Ơ8>88/젶@8J5) /8I%w8K-8K8#8$88T1"6b8u60e0+68z808|0j0065ܐ8;/>/<///8 // C8=8656868@8x6#6%06)6-I0 -0S5b 8\7 8s686706;6? }6   6D 68@88s00n68878@86R-8} !68w8 Mk88C368878ҩ88*x..8.620Ơ06887 8ݶ@8n86<Ʃ8ɠ0ҠI08Ʃ68 7,8@ ^`8{8 86I 6L. 3x N.!88ܠ8שn8 8۩07g8z0~8|8 8886&8069okP8Y8é6c8yeZu٩66j o?tl qA6C8C@86{78Jf8C@9 461*0۩79 66ސ8j8888668砩61 80868,882:882%D+ݼ62[