"`"z"^Q&R_sqrt%Reals#Coq@()Notations$Init#Coq@%Logic$Init#Coq@*Logic_Type$Init#Coq@)Datatypes$Init#Coq@&Specif$Init#Coq@%Peano$Init#Coq@"Wf$Init#Coq@'Tactics$Init#Coq@%Tauto$Init#Coq@'Prelude$Init#Coq@)Notations$Init#Coq@0&v!D]hwnv %Logic$Init#Coq@0\͉!Ig)Datatypes$Init#Coq@0.i bYN Z*Logic_Type$Init#Coq@0 1jc6&Specif$Init#Coq@0;RWMi\N'Decimal$Init#Coq@0C涳N*ua#Nat$Init#Coq@0eʤģPSR蠠%Peano$Init#Coq@0 jha|ؠ"Wf$Init#Coq@0q+W,J+'Tactics$Init#Coq@0/9m+ a%Tauto$Init#Coq@0̂"&/rk0JqTttֱ'BinNums'Numbers#Coq@0dmk(5Ju<*EqdepFacts%Logic#Coq@0FI$ͼՋ`)Eqdep_dec%Logic#Coq@0u wWIϰ߼&Basics'Program#Coq@0!bs߯? :VU$Init'Classes#Coq@0](p{yOh.'Tactics'Program#Coq@03u%+Equivalence'Classes#Coq@07;ꮹ-SetoidTactics'Classes#Coq@0S_`nOU$&Setoid'Setoids#Coq@0D9AsWE!>$Bool#Coq@0j 2cZ`FW*Equalities*Structures#Coq@0όe얟)H.Ƞ2Relation_Operators)Relations#Coq@0%s鯰s4Operators_Properties)Relations#Coq@0U3y#h&)Relations#Coq@0r砠*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ&NZSqrt&NatInt'Numbers#Coq@0` .%m%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|&NZBits&NatInt'Numbers#Coq@0MlIpKt'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$&NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ)NMulOrder(Abstract'Natural'Numbers#Coq@04> Aat/ j $NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ'NMaxMin(Abstract'Natural'Numbers#Coq@0]v|Qg̟ʠ'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NLog(Abstract'Natural'Numbers#Coq@0KI'BinList+setoid_ring#Coq@0Au,Ring_polynom+setoid_ring#Coq@0gaKw9`UW+ListTactics%Lists#Coq@0,Jcy{+InitialRing+setoid_ring#Coq@0k/T=cN(Ring_tac+setoid_ring#Coq@0x2]%762f)Ring_base+setoid_ring#Coq@0fbU(2cNe$Ring+setoid_ring#Coq@0Msᬠ)ArithRing+setoid_ring#Coq@0ṔCgt?}%Arith#Coq@0I|кX*o4#Max%Arith#Coq@04=;3$>aU堠#Min%Arith#Coq@0Ce-Fѕ(PreOmega%omega#Coq@0\|چBb~w4%Omega%omega#Coq@0t.J'6\ϨrK(Zpow_def&ZArith#Coq@0f蓜DX;V*ZArithRing+setoid_ring#Coq@0{#'[{nm!/,Zcomplements&ZArith#Coq@0ʾq %RIneq%Reals#Coq@0JUڻIu)$w&DiscrR%Reals#Coq@0z41pV.%Rbase%Reals#Coq@0Jܡ\ c6{%R_Ifp%Reals#Coq@0c4+ZŠ,Fourier_util'fourier#Coq@0ϳ> 4`*r0'Fourier'fourier#Coq@0wV9TN*Rbasic_fun%Reals#Coq@0hܒiclE>%R_sqr%Reals#Coq@0X%MԹ%M+SplitAbsolu%Reals#Coq@0M)&qYlݹ5*SplitRmult%Reals#Coq@0sD\rt/$Even%Arith#Coq@0YO%q}d߫%$Div2%Arith#Coq@0n*Áht!,)ArithProp%Reals#Coq@0B+L?>*e˃a j*Rfunctions%Reals#Coq@0d¹d‹@'Compare%Arith#Coq@0OM v먣5L:'Rseries%Reals#Coq@08]$u+?'SeqProp%Reals#Coq@0Lt2|9D }SSԻ)Rcomplete%Reals#Coq@0{ڸ4q 'PartSum%Reals#Coq@0j&2"(>S)AltSeries%Reals#Coq@0d US^(Binomial%Reals#Coq@0]JrHr#E&Rsigma%Reals#Coq@0䟄WCJҦ<%Rprod%Reals#Coq@0gȀn_}!W+Cauchy_prod%Reals#Coq@0K*ߞ4q(Alembert%Reals#Coq@0I͗Huz&)SeqSeries%Reals#Coq@0Npc$5|T ٠&Rlimit%Reals#Coq@0*r0ē([HAE&Rderiv%Reals#Coq@0?KQ;^WU;H*Ranalysis1%Reals#Coq@0 n;qm.L%)Rsqrt_def%Reals#Coq@0eA~%&Y?_=]bEaQJ_#ZqР&R_sqrt%Reals#Coq@A$sqrt @!x,Rdefinitions@@!RӀР&Specif$Init @'sumbool7̂K@BAAAA@@@@@D!@#Rlt=A)@#IZR/r'BinNums'Numbers2@!Z7@A<@#Rge=-A*Rbasic_funB@)Rcase_abs7$!r/'!a)Rsqrt_defS@%Rsqrt,q%RIneq_@*nonnegreal *@AB @&Rge_le 6/RHI@s,Rdefinitions%Reals#Coq@@!RӀ +k7 = R%'>G7$'>L7 7" :7$''+k6'ࠒ蠒 AABAAD@AUXq`@@@@@AA@@>@,Field_theory+setoid_ring#Coq@@&FEeval>@@A@A"s @,Ring_polynom+setoid_ring#Coq@@&PEeval"s @@A@BA@A@(sqrt_pos @@@ŚR,Rdefinitions%Reals#Coq@@#Rle=ՠ@@/r@ E؀A@@@@@I/sqrt_positivity @@A@.$͐A7-֠ՠ@@7@A1@@@@@w)sqrt_sqrt @@0B @\RA%Logic$Init#Coq@@"eq @srq@@Ӏ|@%Rmult׀k婚o@@@@@&sqrt_0 @@nC0ᩚbAiA@@@@@ՠ&sqrt_1 @@DP@B^]@@(positive*@CĀBC@@@@@)sqrt_eq_0 @@E>@퀠【A@C【]CA@@@@@9*sqrt_lem_0 @@F⚠o!yt@#B@-#@р"D8ڀϩǀ  E@@@@@r*sqrt_lem_1 @@+G9@[QB@e[˶@ oo8©b7@@@@@@(sqrt_def @@aHQހ@,A1&@@@@@Р+sqrt_square @@Iy@TAY J(((@@@@@)sqrt_Rsqr @@J*@ـπxA}.΀R%Reals#Coq@@$Rsqr=MWUU@@@@@!)sqrt_pow2 @@Kʚ@PӀ@A](Rpow_def%Reals#Coq@@#pow#׀)Datatypes@@#nat@B@ @B A@@@@@l-sqrt_Rsqr_abs @@%L뀰<nA%Reals#Coq@@$Rabs; wA@@@@@)Rsqr_sqrt @@NM>ˀ@zpA,Rdefinitions%Reals#Coq@@!RӀ@@@@@Š-sqrt_mult_alt @@~Nn@MBRC!Gĩ-@@@@@)sqrt_mult @@O/3@†؀B@쀠‐R@쀐ʩ@@@@@6*sqrt_lt_R0 @@Pߚl@@#Rlt=A A@@@@@`,sqrt_div_alt @@Q '@.?A퀰>Z@$Rdiv̀ZMbQː@@@@@(sqrt_div @@PR@̀^р@vB@o)𩛠-ީ~@`Dh@@@@@Ԡ-sqrt_lt_0_alt @@S} @BA-@@@@@)sqrt_lt_0 @@T/3@†؀B@쀠‐R@ڀတ倐怠ǐ@@@@@/-sqrt_lt_1_alt @@Uؚei@%Logic$Init#Coq@@#andЖw@'ƐBBA"7&@@@@@l)sqrt_lt_1 @@%V3@UKB@_UŶ@M.eQX-\:@@@@@)sqrt_le_0 @@[WK؀i܀@*B@4@hgp@@@@@ؠ-sqrt_le_1_alt @@X@BAǀȩ1@@@@@)sqrt_le_1 @@Y3Ě7@怠܀B@怐V@逐퀐ː@@@@@3(sqrt_inj @@Zܚim@B@&@ʀ{4ր*@@@@@i-sqrt_less_alt @@"[@3DB@*@CAGNȐ@@@@@)sqrt_less @@M\=ʀ@yoA@hyBC񩚠x@@@@@Š)sqrt_more @@~]n@IA@f@@@@@+sqrt_cauchy @@^E$!b)!c.!d3ဠ@%Rplus+1pDBvCA|䀐DC-,B1A@@@@@J%Delta @@+nonzeroreal%+X@_\@&Rminus&H@$Rsqr=MW @׀鐩B@'nonzeroU@ӛt@+nonzeroreal%+X@ +k() 7 77 7!7! 7 7%'ࠒ1THABB@tLpHd2h(|@@@@@,Delta_is_pos @mg_f`a@=>f@ bHG@LښٚA \+k() 7"L7 7%'l%H`|@@@@@&sol_x1 @F@$Rdiv̀@+1@$Ropp΀E@ E؀K@g"J!NP +k()7 77 7! 7"7 7 7!7%'$hĐD+x;p\:AB@pɐdx@@@@@N&sol_x2 @_VI@؀feD$bhDnx~\!AB@p dx@@@@@/Rsqr_sol_eq_0_1 @@J_蛠ˀπFӀ@Y@#jDCB@'@"or @/o@W`9#y@~ajC8ǀˀ8%RIneq%Reals#Coq@@jF܀éNA@@@@@/Rsqr_sol_eq_0_0 @@`V9=A@nDCB@Pé lp 1]䩛9e@@@@@T@@@ ӳ2@ ӳ2[)Datatypes$Init#Coq@@A@ Գq@ Գq\ @A@AB@cAUTS@A.0TQ+Ring_theory+setoid_ring#Coq@@ABA.U>[J @B@@"O@(PeanoNat%Arith#Coq@#Nat@&of_int"O#Nat$Init#Coq@@ 6@A@A\@&BinInt&ZArith#Coq@!Z@'quotrem\)BinIntDef&ZArith#Coq@!Z@ /@A@\@@+pred_double\@/S@@A@As2@3@&shiftls2*@vY@A@BCs8@8@&shiftrs8/@vY@A@ѓ@>@&squareѓ5@y@A@@D@&to_intϑ;@@A@z@5@&doublez,@/!@A@ABCD/@O@)log2_iter/F@wd@A@NH/@B@&moduloNH/9@1,@A@A\d@G@&of_int\d>@1?A @A@bz@M@&of_natbzD@1?G!@A@#@S@&shiftl#J@1dV@A@#@Y@&shiftr#P@1d\@A@ABCD/x@&BinPos&PArith#Coq@#Pos@)pred_mask/x)BinPosDef&PArith#Coq@#Pos@ )X@A@6@x@&square6o@19@A@AV+L@}@&to_intV+Lt@2@A@V1b@@&to_natV1bz@2 @A@V5=@@&to_posV5=@2@A@ABCl@@)sqrt_iterl@!$:@A@@@6@(sub_mask@-@)@A@ADEF c@@'testbit c@!ć@A@7 B@D@'of_uint7 B;@*`]?@A@AG@I@)mask_rectG@@+ED@A@F˱@O@)add_carryF˱F@+p@A@AB^Ҷ@@'to_uint^Ҷ@#m@A@gL7@@'sqrtremgL7@40@A@Aq@@'testbitq@5)@A@ݎO@@+succ_doubleݎO@6r@A@A p@l@0double_pred_mask pc@0-+m@A@BCD T@&BinNat&NArith#Coq@!N@!t T)BinNatDef&NArith#Coq@!N@ 2@A@ @@#add @3 @A@A l@@#div l@3@A@ Y@%@#eqb Y@3@A@AB #@*@#gcd #!@3n@A@ T@0@#leb T'@3@A@ACEG "@5@#lor ",@3m@A@ q@?@#ltb q6@3@A@A @D@#max ;@3@A@ @J@#min A@3`@A@AB @O@#mul F@3B@A@ ~@U@#odd ~L@3@A@AC =@Z@#one =Q@3@A@ @b@#pow ˑY@3@A@A c@g@#sub c^@3@A@ @m@#two d@3J@A@AB hx@r@$div2 hxi@>@A@ @x@$even o@>4@A@ACD @}@$ggcd Бt@>U@A@ @@$iter }@>:@A@A 3"@@$land 3"@>m@A@ F)@@$log2 F)@>t@A@AB S@@$lxor S@>@A@ @@$pred @?U@A@AC @@$size ܑ@?'@A@ !@@$sqrt !@?@A@A ! @@$succ ! @?\@A@ !7@@$zero !7@@P@A@ *@@%ldiff *@@A@AB g_@1@+pred_double g_(@25\@A@CD m@6@÷ m-@2j@A@S@=@&of_intS㫑4@4}5@A@AS@B@&of_natS9@4};@A@BEFGH\R@G@(mask_ind\R>@4@A@\^@Q@(mask_rec\^H@4@A@A!,@V@&pred_N!,M@4s)@A@B@[@&shiftlR@5X@A@@b@&shiftrY@5X@A@A&@g@&square&ّ^@5,x@A@BC"@l@&to_int"c@5L@A@"@t@&to_nat"k@5L @A@AnTq@y@+testbit_natnTqp@6n@A@B@@(succ_posB@@A@I@@'abs_natI@?n@A@AB.@@'of_uint.@MS@A@3~@@'sqrtrem3~@7]%{@A@ACD,@ @'bitwise,@/v@A@>4'@@'testbit>4'@8g$@A@A{U@@,sqrtrem_step{U@8R@A@u^@9@(div_euclu^0@ @A@Afz@@'to_uintfz@9w@A@Bl@'@'comparel@3R@A@CDEFs8@,@+of_uint_accs8#@5+@A@}@R@,pos_div_eucl}I@&`@A@3x@(@'compare3x@]=@A@A@^@&doubleU@'޺_@A@BCq@@+of_succ_natq@$@A@w@i@&modulowɑ`@)1@A@ADK@n@&of_intKe@)j,I@A@K@v@&of_natKm@)j2_@A@AI@{@&shiftlIr@*O@A@O@@&shiftrOx@*O@A@AB,@@&square,}@*ow@A@Z@@&to_intZ@*81@A@ACE`@@&to_nat`@*9G@A@e@@+testbit_nateđ@+@A@A+{@@'sqrtrem+{ё@,J@A@5z@@'testbit5z@-T|@A@A @@'to_uint ͑@.@A@ @@+succ_double @.^4@A@A#@'@'compare#ݑ@ )Q@A@BCD%t2@,@(size_nat%t2#@ @A@%9@3@+of_uint_acc%9*@ ΋@A@A%V@8@+double_mask%V/@ S@A@%%@>@'div2_up%%5@ "@A@ABEF'ş@C@'Ndouble'ş:@ @A@(b0@K@*shiftl_nat(b0B@9-@A@A(nՖ@P@*shiftr_nat(nՖG@'@A@(@V@0succ_double_mask(M@@A@*W$@\@,compare_cont*W$S@!@A@.0@b@.sub_mask_carry.0Y@΂@A@ABCD.@@!t.@ ;@A@.먩@@#add.먩@ `@A@A.U@@#div.U@ @A@.B@@#eqb.B@ @A@A. @@#gcd. @ @A@.=@@#leb.=@ @A@ABCEGHI. @@#lor. @ @A@.Z@ @#ltb.Z@ @A@A.p@@#max.p@ '@A@B.@@#min. @ @A@.@@#mul.@ @A@AC.g@@#odd.g@ @A@.&@&@#one.&@ @A@A.뾴@+@#pow.뾴"@ k@A@.L@1@#sub.L(@ @A@.@7@#two..@ @A@ABCD.,a@<@$div2.,a3@ @A@.Xz@D@$even.Xz;@ ?1@A@A.@I@$iter.ؑ@@ @A@B. @N@$land. E@ @A@. @T@$log2. K@ @A@ACE.@Y@$lxor.P@ R@A@.y@`@$pred.yW@ `<@A@A.Ʉ@e@$sqrt.Ʉ\@ ;@A@.@l@$succ.c@ @A@.t @r@$zero.t i@ Z@A@AB/@w@.to_little_uint/n@ @A@CDF/@|@%ldiff/s@ H@A@00@@'compare00@?H{@A@A1P%@w@!t1P%n@  @A@B1P@|@#abs1Ps@ @A@1P&@@#add1P&z@ @A@A1P@@#div1Pґ@ y@A@BC1P@@#eqb1P@ f@A@1P@@#gcd1P@ 0@A@A1P@@#geb1P@ T@A@B1P@@#gtb1Pʑ@ q@A@1Pĺ@@#leb1Pĺ@ a@A@A1Pň@@#lor1Pň@ /@A@BCD1P@@#ltb1Pב@ ~@A@1P@@#max1P@ @A@A1P{@@#min1P{@ "@A@B1P]@@#mul1P]@ @A@1P@@#odd1P@ @A@A1Pɣ@@#one1Pɣ@ J@A@BC1P@@#opp1Pԑ@ {@A@1P1@@#pow1P1@ @A@A1P;@@#rem1P;@ @A@B1P@@#sgn1Pˑ@ r@A@1P@@#sub1Pɑ@ p@A@A1Pe@@#two1Pe@  @A@BCDE1[8@@$div21[8ޑ@ @A@1[d@@$even1[d@ I@A@A1[6@@$ggcd1[6@ i@A@B1[U@ @$iter1[U@ @A@1\@@$land1\@ /@A@A1\@@$log21\ @ 6@A@BC1\$@@$lxor1\$@ @A@1\Y@$@$of_N1\YÑ@ >j@A@A1\@)@$pred1\ @ j@A@B1\@.@$quot1\֑%@ }@A@1\@5@$sqrt1\,@ @A@A1\w@:@$succ1\w1@ @A@BC1\k@?@$to_N1\k6@ @A@1]@G@$zero1]>@ eD@A@A2:@L@%abs_N2:C@ @A@21@R@%ldiff21I@ ߵ@A@2=*@X@%quot22=*O@ @A@ABC2kF@@(size_nat2kF@{@A@3@x@(tail_add3o@^q@A@ADEFGH3@}@(tail_mul3t@^@A@5Z@@*shiftl_nat5Z@y/@A@5f}@@*shiftr_nat5f}@4@A@AB5a@@'iter_op5a@ @A@C6w~@@'of_uint6w~@^5@A@8j@@'of_uint8j@'"h@A@9E@@(div_eucl9Eđ@(*k@A@AB:x@6@,Nsucc_double:x-@ ʭ@A@CD@[@&divmod>R@C@A@>@b@&double>Y@NĴ@A@?2@S@,pos_div_eucl?2J@-u@A@AB?;@m@&modulo?;d@"i@A@CEFGIJ@(Alembert%Reals#Coq@0I͗Huz&)AltSeries%Reals#Coq@0d US^%Arith#Coq@0I|кX*o4)ArithProp%Reals#Coq@0B+L?>*e˃a j)ArithRing+setoid_ring#Coq@0ṔCgt?}*Arith_base%Arith#Coq@0Ĕ}CS&Basics'Program#Coq@0!bs߯? :VU'Between%Arith#Coq@06v*0ur`C0&BinInt&ZArith#Coq@0BpHޞun^)BinIntDef&ZArith#Coq@0ådR4Tuy'BinList+setoid_ring#Coq@0Au&BinNat&NArith#Coq@0K11ڤs+Π)BinNatDef&NArith#Coq@03@1O,[{ 'BinNums'Numbers#Coq@0dmk(5Ju<&BinPos&PArith#Coq@0vyػ0= u)BinPosDef&PArith#Coq@0}H d.%,b(Binomial%Reals#Coq@0]JrHr#E$Bool#Coq@0j 2cZ`FW*CMorphisms'Classes#Coq@0qیZBeϠ0CRelationClasses'Classes#Coq@0TL;0RUfw1+Cauchy_prod%Reals#Coq@0K*ߞ4q'Compare%Arith#Coq@0OM v먣5L:+Compare_dec%Arith#Coq@0jXF 8jih@0.i bYN Z)Decidable%Logic#Coq@0ND걸풬/Oߠ'Decimal$Init#Coq@0C涳N*ua&DiscrR%Reals#Coq@0z41pV.$Div2%Arith#Coq@0n*Áht!,%EqNat%Arith#Coq@0AIgՋXRV *EqdepFacts%Logic#Coq@0FI$ͼՋ`)Eqdep_dec%Logic#Coq@0u wWIϰ߼*Equalities*Structures#Coq@0όe얟)H.Ƞ+Equivalence'Classes#Coq@07;ꮹ$Even%Arith#Coq@0YO%q}d߫%)Factorial%Arith#Coq@0@oehJd%Field+setoid_ring#Coq@0J _ȫ)Field_tac+setoid_ring#Coq@0d vDZl^۹H60B~uYٮ٠'Fourier'fourier#Coq@0wV9TN,Fourier_util'fourier#Coq@0ϳ> 4`*r0-GenericMinMax*Structures#Coq@0måj$"Gt%Arith#Coq@0䙛#c:D $Init'Classes#Coq@0](p{yOh.+InitialRing+setoid_ring#Coq@0k/T=cN"Le%Arith#Coq@0d}Omq+$List%Lists#Coq@0>I+ListTactics%Lists#Coq@0,Jcy{0\͉!Ig*Logic_Type$Init#Coq@0 1jc6"Lt%Arith#Coq@0KZ-eJkP܏#Max%Arith#Coq@04=;3$>aU堠#Min%Arith#Coq@0Ce-Fѕ%Minus%Arith#Coq@0LFtR")Morphisms'Classes#Coq@0Imӽ%\$PD.Morphisms_Prop'Classes#Coq@0% :B'.>u%$Mult%Arith#Coq@0햖Qyb0$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI%NBits(Abstract'Natural'Numbers#Coq@0qteo_hɅ $NDiv(Abstract'Natural'Numbers#Coq@0bz$?[p(5$NGcd(Abstract'Natural'Numbers#Coq@08E-S ;j_Ҡ$NLcm(Abstract'Natural'Numbers#Coq@0 ~xZ9L{:$NLog(Abstract'Natural'Numbers#Coq@0K Aat/ j &NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf+NProperties(Abstract'Natural'Numbers#Coq@0unt"kwpYC%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ%NZAdd&NatInt'Numbers#Coq@00h`ZK4*NZAddOrder&NatInt'Numbers#Coq@0e~1>r砠(NZAxioms&NatInt'Numbers#Coq@0] ρ5r&NZBase&NatInt'Numbers#Coq@0^&8yUL&NZBits&NatInt'Numbers#Coq@0MlIpKt%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZMul&NatInt'Numbers#Coq@0ctR~6[Ƞ*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R'NZOrder&NatInt'Numbers#Coq@0 q;Ve7R W,(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x&NZSqrt&NatInt'Numbers#Coq@0` .%m#Nat$Init#Coq@0eʤģPSR蠠$Nnat&NArith#Coq@0$W;s #%M)Notations$Init#Coq@0&v!D]hwnv *NumPrelude'Numbers#Coq@05WUVŦ]xVXԠ%Omega%omega#Coq@0t.J'6\ϨrK+OmegaLemmas%omega#Coq@0TJ#Jes4Operators_Properties)Relations#Coq@0U3y#h&&Orders*Structures#Coq@0$Znl0\͗+OrdersFacts*Structures#Coq@05Mܿ獐ζΖLB)OrdersTac*Structures#Coq@05'4Ԗ+9%'PartSum%Reals#Coq@0j&2"(>S%Peano$Init#Coq@0 jha|ؠ(PeanoNat%Arith#Coq@0O~2$k[#lZ)Peano_dec%Arith#Coq@0Kݢ*k$Plus%Arith#Coq@04tmG$Pnat&PArith#Coq@0,?pr.gZ(PreOmega%omega#Coq@0\|چBb~w4'Prelude$Init#Coq@0JqTttֱ%Quote%quote#Coq@0J@ŹVz-,3% %0JUڻIu)$w%R_Ifp%Reals#Coq@0c4+ZŠ%R_sqr%Reals#Coq@0X%MԹ%M*Ranalysis1%Reals#Coq@0 n;qm.L%'Raxioms%Reals#Coq@0S]jnj][L%Rbase%Reals#Coq@0Jܡ\ c6{*Rbasic_fun%Reals#Coq@0hܒiclE>)Rcomplete%Reals#Coq@0{ڸ4q 0(2{Ze$ќ8&Rderiv%Reals#Coq@0?KQ;^WU;H)RealField+setoid_ring#Coq@0 >ʾq /RelationClasses'Classes#Coq@0Gz rA6ՠ4Relation_Definitions)Relations#Coq@0]4Ѐd{n^2Relation_Operators)Relations#Coq@0%s鯰s)Relations#Coq@0-SetoidTactics'Classes#Coq@0S_`nOU$&Specif$Init#Coq@0;RWMi\N+SplitAbsolu%Reals#Coq@0M)&qYlݹ5*SplitRmult%Reals#Coq@0sD\rt/'Sumbool$Bool#Coq@0sB ,$11.]m'Tactics$Init#Coq@0/9m+ a'Tactics'Program#Coq@032 Q@@@@"_9@A@@@@@@@@#_102M접 @)Rcase_abs7#_11'`o@A'R_scope@F@2 Q@@A@#_12@  @A@@@@+@#_132M접 #_14'`o@A%@j@2 Q@@A@#_15@7Ӭ@A@@@@O@#_162M접 #_17'`o@BI@@=@2 Q@@A@#_18@@A@@@@w@#_192M접 #_20'`o@Bq@@e@ڠ2 Q@@A@#_21G@:5@A@@@@@#_222M접 #_23'`o@@@@٠2 Q@@A@#_24f@:6@A@@@@@#_252M접 #_26'`o@@@@Š2 Q@@A@#_27@)@A@@@@@#_282M접 #_29'`o@Cנ@@@̠j@2 Q@@A@#_30@܇J@A@@@@ @#_312M접 #_32'`o@E@@@@MP@2 Q@@A@#_33@܇K@A@@@@>@#_342M접 #_35'`o@E8:@@@@36@2 Q@@A@#_36@V@A@@@@s@#_372M접 #_38'`o@Bm@@a@2 Q@@A@#_39C@7}@A@@@@@#_402M접 #_41'`o@B@@۠@2 Q@@A@#_42k@1@A@@@@@#_432M접 #_44'`o@B@@@2 Q@@A@#_45@Om@A@@@@@#_462M접 #_47'`o@B@@Ԡ@2 Q@@A@#_48@hJ@A@@@@@#_492M접 #_50'`o@A @R@2 Q@@A@#_51@ Q@A@@@@7@#_522M접 #_53'`o@B1@@w%@2 Q@@A@#_54@y@A@@@@_@#_552M접 #_56'`o@CY[@@R@2 Q@@A@#_574@@A@@@@@#_582M접 #_59'`o@D@@@ϠҠ@w2 Q@@A@#_60e@z@A@@@@@#_612M접 #_62'`o@B@@@u2 Q@@A@#_63@)(@A@@@@@#_642M접 #_65'`o@Cߠ@@'*@k2 Q@@A@#_66@v@A@@@@@#_672M접 #_68'`o@D @@@UX@_2 Q@@A@#_69@jK>@A@@@@C@#_702M접 #_71'`o@C=?@@@g2 Q@@A@#_72@r@A@@@@p@#_732M접 #_74'`o@Ejl@@@@ehP@f2 Q@@A@#_75M@qM;+@A@@@@@#_762M접 #_77'`o@C@@砐ꠐ@V2 Q@@A@#_78z@a@A@@@@@#_792M접 #_80'`o@E̠Π@@@@Ǡʠ@U2 Q@@A@#_81@`]@A@@@@@#_822M접 #_83'`o@E@@@@KN@T2 Q@@A@#_84@_=H@A@@@@<@#_852M접 #_86'`o@C68@@~/@\2 Q@@A@#_87@g^@A@@@@i@#_882M접 #_89'`o@Ece@@@@^ad@[2 Q@@A@#_90F@f@A@@@@@#_912M접 #_92'`o@E@@@@⠐堐4@Z2 Q@@A@#_93{@e!,2@A@@@@@#_942M접 #_95'`o@B͠@@@W2 Q@@A@#_96@b@A@@@@@#_972M접 #_98'`o@C@@@<ꠐ@R2 Q@@A@#_99@]@A@@@@'@$_1002M접 $_101'`o@C!@@@h@U2 Q@@A@$_102@`5t@A@@@@S@$_1032M접 $_104'`o@DMOQS@@,2 Q@@@@$_105.@7 bH3@$_1062M접 $_107'`o@C@@ˠ@2 Q@@@@$_108_@$_1092M접 @$_110'`o@C@@@@ޠ2 Q@@@@$_111@$_1122M접 >$_113'`o@C@נ@l!$@2 Q@@@@$_1148@$_1152M접 ,$_116'`o@C@@JM@2 Q@@A@$_117@6@A@@@@2@$_1182M접 $_119'`o@F@-/1@@@Ơ{~@]2 Q@@A@$_120@h6@A@@@@l@$_1212M접 $_122'`o@F@gik@@@砐@@@ @#DŽe@wT7 Fӄ@D_?]@?Q MZ]?\@>=!x,Rdefinitions%Reals#Coq@@!RӀȐ!s*Rbasic_fun@)Rcase_abs7A&Specif$Init@'sumbool7̂K@)@#Rlt=0@#IZR/r'BinNums'Numbers8@!Z7@AC@#Rge=-,BAAAA@@@@@DC6+B'X@#Rle=/bE:C6#fL!r;!a)Rsqrt_defn@%Rsqrt,q%RIneqz@*nonnegreal *@AD @&Rge_le 6/R\qq!H<@(Rle_refl g A*@0Rsqrt_positivity)\'<>sCKu&R_sqrt@$sqrt E؀$_tmp\@(sqrt_pos g3 r{e%Logic@"eq @Щ@%Rmult׀۩ZĠxvtlEbeΠ#Hlt&@)False_induُ.%t~@*Rlt_irreflnQ{@,Rlt_le_trans9#HgeB@(eq_ind_r!2#@&nonnegiQ3TAM@+Rsqrt_Rsqrt3]=C`'WoՐ%R_sqr-@)Rsqr_eq_0&@)sqrt_sqrt{@"or @B SK3MCO@$Rsqr=MW ',@(Rsqr_inj RЩ2.B2@(positive*@C@/sqrt_positivity7Ӭŀ7ASNP@'Rlt_0_14C}& ðp++Ȑ(hyp_list)Datatypesu@$list]@A @$prodt@,Ring_polynom+setoid_ring@%PExprk@y"Ȑ'fv_list)B@2RField_ring_lemma1!7𚠐(Ring_tac@0ring_subst_niter!u(Cl-G$  @$Truey@AĠM@$boolZ'@A@" Ȑ#lmpH@.mk_monpol_list(C&BinInt&ZArith@#add1P&)BinIntDef@ ̀@#mul1P] @ @#sub1P@ p@#opp1P@ {%Zbool!@(Zeq_bool0߀*@'quotrem\$@/ŀΩqy@#Monf@@#Polj@@#Peqj*(@*norm_subst7:d0QA;5/'*z0SC=71),wbvCKSQ"H0W.(Ȑ"H1R\-]_G1@&Rsqr_0 OgAMi<o ͐D@&eq_ind J{ِhShJWlm!y6`:=9̰"/ ѰȠFc9PL߰֠DD%P-';VɷGᠩ44Cj>lJ3 mŷ9nЩ${v\T@)Rle_0_sqr! CשܷP*:@+sqrt_square7}쌀#C]7)L"2W-!/@)Rmult_1_r+1LCB e(Rpow_def @#pow#׀@#nat@B  Aΐ(&(ِ@$Rabs; w1l3 y@)sqrt_Rsqr1+@(Rabs_pos+F(⩚@(Rsqr_abs /.LJCN'UST"HxʵKM]ݩH"Hy^h9ikǐU.BAAAA@@@@@D@8TOQS#Hx' zxnc ^KFujĠGhUӰRvРH ta>w<:2۠I *#Hxy"iɠLD9F@*Rge_not_lt3-&Rȩ(c˩"'Raxioms@1Rmult_lt_compat_l`5AsT^@)Rmult_0_r+Ȁ 婚@.Rmult_lt_reg_r>kl'!8t:+r ?{ 젩Fv N-mQ©"7W@&Rinv_l($@*Rgt_not_eq3ڀMbUg@+Rmult_assoc&ZCv=wnѩNC~EַkcͩЩ䐩ש,Fourier_util'fourierV@0Rle_mult_inv_pos @*sqrt_lt_R0z`jРoq"ϐ\nx*y{aᠩ. .f{ p~<'ʰz ƠGGyGC԰M1_rRWeWP $XZ}@(Rsqr_div _35PC`_2 01?@,sqrt_div_alt)(Baȷ?ɵ|@_rNoe_@*Rlt_not_lebַ|Ȑ#Hy'C٩jDܩϠĠT@Ƞ٠Πbɩߠ̷^|`lfY l@"R0ǀ}&cl@-Rsqr_incrst_19f3ҀЩ֩   :jϐǠC+uڐҠ1<-%䐩ܠpXY1L栐Kܰ3}HHSD<WJ> SC@FZLC@NOԩP"~|}%_tmp0@-sqrt_lt_0_altK>$@#andЖw@mBBB@@@@D@)y2>P·~ ;,8ƷD-I}Ct1/3=@,Rle_lt_trans*GӀ:hj N÷:ķp89!#@-sqrt_lt_1_altM;+KBAoַM׷K"H2N"H3="H4,vr˷QSjU6|շZ `ې@+Rsqr_incr_17S|ywD@D -[Ȑ!o@)Rle_or_lt"R?@xǠm٩q]AX ŷyC!;ؠ5 mn7 ͐Š&T'MWMYM 1C-CDNQO8WUVʷ˷ө@-sqrt_le_1_alt=H|GfdeٷڷjcmnpXrXtx[{,=~ffBg  ðpp Űrs;h1xȐ#Hx1h6B@'Rle_0_13oȐ#Hx2r=52 ">~Y+%lemmaߠP..)Morphisms'Classes@0reflexive_properm+(@@A@*respectful%WO?  &Basics'Program@$flip$ @$impl7o+@:reflexive_eq_dom_reflexive=[%&/RelationClasses4@.flip_Reflexive-0 @.impl_ReflexiveJ$@(symmetry0xj5@,eq_Symmetric9^J[[R@/eq_proper_proxy)f b>@)Rmult_1_l9@1Rmult_lt_compat_r ?rZljy@-sqrt_less_alt!,2h(&O)OR0ѷ1 Қ@&sqrt_1:6٩[y@pũ}Dtɩ@'and_ind14ۀЩOS-"H5 "H6_!!cg?Ol  oGWϐ֩@(sqrt_defVݩRCY .i @(Rmult_neFА@)sqrt_lt_1酀.1 e0?g5|.!b!c!dv@/Rsqr_incr_0_var>@%Rplus+1ᠩ hR]qs ]ũnx 0gϩx 1."!tܩ7:'ȵWXV30WBl 9761QEHJ+L-N/P^DUWB<]>_@acAiLmNoPqRsYu &!Wx5z[|,']~ZS@jSHF0 C3-'!t C0 E5/)#v Ts :nprt , ,vxz| + 6 Tyy    g  O Ơ vܩ x z | © d )ҩԩooة{ܩð}}@аub]0 f9 _0 h; ٰ LԠ֠L S Sؠڠ H HܠT >   蠩O 9 9dU ^ ^j C C _ ǩ p " ==    EA X  b@1Rplus_le_compat_l?,    P  g . ^_]:7 Y  W      r=;:5  I*K,M.O詜]FTV7X9Zz6/@ F/$"`0b  P 0d ! R 0 O m6 @&Rminus&Hc=c !xP | W YZ   [ ] J J\  0 ٠ b d f h U  =l   @  (, x z | i i ~  w %1 ȵr Zt \ wv ^ȩx ` H e<foLTf@ L9\40 = pjd^V Y60 ? rlf`X [C  w (a NY ~ /h /   ѩA k @)Rplus_0_rH€C 5mi t% t  vC 9 C ĠԩX޵ @4Rplus_le_le_0_compat 9Aө C J te 7DC S } ]b B  D M ?@+nonzeroreal%+X@% #    5 @,Delta_is_pos#jbvQ   x )@&sol_x1  Q p    2@&sol_x2  @&or_ind"   M  d "   % CE  y@'nonzeroDA- u ɷ  .gc    9 WY 4* 7s o ڵȐ$hyps ~ [Ȑ%hyps' Ȑ'hyps_eq  @ R - Ȑ*f_rw_lemma @3RField_field_lemma2(Ml a = %3A )|C +  _ a c  Ԑ S ;  g  !"fe,Field_theory @%FExprs@ #nfe @&linear@ @  @%Fnormw$  &  i Y S M G  B@@%PCondS< d 5  K d@$Ropp΀  9R&BinNat&NArith l!N@&to_nat`)BinNatDef @*9Gp ~M L  ␩p     [1 3 کS@)condition.  D ԰ \@&FEeval>@  s A >  r97 N )ð   ߠ11 ᠩ 2ϰ 4  4x@2display_pow_linear"O܀P   ] Z#   [  US+InitialRing @)get_signZ#7$ 0   e        .@#num:u  k 0 !  n        7@%denum0 Ȑ#resA / 1 3  5 7 EH <  >  @ ͩ ! B۩ # D Sթ Uש W٩ k YȐ&res_eq  @ =$ V       񩜠E [ ]G bD  hJ m oH t xC ~  -Ȑ#thm ϰ.  @ة p 7@ 9   h z   -3  3 =) s uUOʩ ? 7 A 8  ? Ȑ$res0}    % aȐ'res_eq0_@  $  -  p ` Z T N;  JȐ$thm0Ұ  O@ < l =  S  < ` n|Q sP v Ґ`     K7 9   @  W % m"  V z R   됩y à%% Š Ǡd& ( 8P  n < 9  g :  m42  `0  i <       5ש b0  k >       7Щ>!    * ?    ߠ ~T, S         N ĩ u " BB  ސb k ө  թ;., (4   Ȑ(list_hyp O ,Ȑ+field_lemma h@3RField_field_lemma1(Mk & 7 b 6 6 ԩְ @ BF G I KӠ M٩K Rݩ@&of_natK@)j2_  \ ^ ` C = ( @$nfe1˶@ RΩ$ k   (    - $nfe2Ӷ@ Z֩$ s   0     @ _ H  x  0 z   7 ' !    h  [ |d ~ ] 0    > . ( "   o  b kc Q@< 8   gp   ,R :H[W ?YZ BZ  @#appʀ   g  O@ Q "  8  ! Ek Sa\p Xr Z l@ \ -  C  , P NM :aJ@  > u(  -  p ` Z T N F  I s i      soj I c ?@7@Ba| n 4$@jjȐ$res1 -   =Ȑ'res_eq1@mm      * 9 t @k @-RField_lemma55v^S l$lock"le ᷐(lock_def ް  H8  x F C  w>< V M8  } K H  |CA ư ]˰ wͰ `  Ұ 㩚 C@,cond_nonzero$k @#notШ    Cn<   l# i  db ! x @ y@$Fapp{F &@&Fcons2w$ -  z       <M 1 GI  ؠ Щ*Rfunctions @)Rsqr_pow2.)C )  VIܠ* n *S  ސ lwk Ofd` <g 8  [ 4= U  7! # E%  U t8  h AJ b  ,a.^0]2 b# JC<   v OX p  & @ ̐S tN'*{} X Z  a c  b y&8B  q)z  6\D^F`HbJ  C8O   ~6  CiQ_mU oW A   ,{c  j;PC <l=  S < `R@ 6vC rɠˠ   *   N c & vx  vt asqnljK ٩ ۩ ݩ  ߩ   ð qI@ ѰMC$ d 7           yxEU@N @ N K   FD   v 4_   r 頩 ! @4#3 @.,(@v  C Щ')^ X @Z Wr%D޷B߷T ;= m !;  x oԩE  K \( `䠩.0Z @.canonical_Rsqr'W o$D   e@ Ðk | ~H NP=  o  z  X@*Rplus_commqf-  ש1@%Delta bH   s:"  Pmo ;  ~E-  kxzZ    w S?(  )]_I>3v   RdnV? qs[ ]w $@0Ropp_minus_distr',) @9Ropp_mult_distr_l_reverse/MvCİ Z* :^  4/.@ҰɠN   DӠW  - ?ܰ+( L C S H K@ Wp ! ) [y_ -c Wͩ 886lԩ֩/ p @Y `ĩ jy @&eq_sym XQQS!w@*Rinv_l_sym9`g~\;\()a ư+a_7a *@=4 Hd nٰfY IClM> : ~ːxuАE" $%`' ڐ[)&0`b v x9t;k3 %7Aq%s  G yͷLN~F6 unV>99\@vt=*M%0.qa[UOGJ '00sc]WQIL ChI jAkm>_ #C ^_y>a8@/Rinv_mult_distr @ 'Rmult_integral_contrapositive_currified T @'IZR_neq%YZ Ͱ]^ !`!ec@@AA@AA@@@@@@D!z@%Falsee@@Dڀ@ | ƠC$8  @*Rmult_comm8Cé ) -;  | 3 &OUJ ) f,E6*C(l JB@%Em VLة z/v)R3z$ 7W  h" % C  phݩI"6Om ~ѩJ˩ z*\#  3c*]g.X~N6P8 ʩj|$>KYMmf@}f[Y"2 0VF@:4,/I 0XHB<6.1 gM쐩 YZ@]C Ǡ٩ ˠÐ8m ӠƠΐC*ŷ {2ҠG 堩ݐRK}*ðpשש Ӑ#۩}Bq̰ΰϵ@߰ql0uHn0wJCR  P+MQA 9 o@@1Rplus_eq_compat_lqk &rC n pWfζ@  (tppg =jd  4b|b[Y63\/.)=T?T AR@.  өH0J80L : C7- dOM琩IFC쐩@'Rsqr_eq 雀  >ک@<@1Rmult_eq_compat_l$I   fɩ    @0Rplus_opp_r_uniq~F `,㐩 Q h4 F7 K