"`J_%R_sqr%Reals#Coq@()Notations$Init#Coq@%Logic$Init#Coq@*Logic_Type$Init#Coq@)Datatypes$Init#Coq@&Specif$Init#Coq@%Peano$Init#Coq@"Wf$Init#Coq@'Tactics$Init#Coq@%Tauto$Init#Coq@'Prelude$Init#Coq@)Notations$Init#Coq@0&v!D]hwnv %Logic$Init#Coq@0\͉!Ig)Datatypes$Init#Coq@0.i bYN Z*Logic_Type$Init#Coq@0 1jc6&Specif$Init#Coq@0;RWMi\N'Decimal$Init#Coq@0C涳N*ua#Nat$Init#Coq@0eʤģPSR蠠%Peano$Init#Coq@0 jha|ؠ"Wf$Init#Coq@0q+W,J+'Tactics$Init#Coq@0/9m+ a%Tauto$Init#Coq@0̂"&/rk0JqTttֱ'BinNums'Numbers#Coq@0dmk(5Ju<*EqdepFacts%Logic#Coq@0FI$ͼՋ`)Eqdep_dec%Logic#Coq@0u wWIϰ߼&Basics'Program#Coq@0!bs߯? :VU$Init'Classes#Coq@0](p{yOh.'Tactics'Program#Coq@03u%+Equivalence'Classes#Coq@07;ꮹ-SetoidTactics'Classes#Coq@0S_`nOU$&Setoid'Setoids#Coq@0D9AsWE!>$Bool#Coq@0j 2cZ`FW*Equalities*Structures#Coq@0όe얟)H.Ƞ2Relation_Operators)Relations#Coq@0%s鯰s4Operators_Properties)Relations#Coq@0U3y#h&)Relations#Coq@0r砠*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ&NZSqrt&NatInt'Numbers#Coq@0` .%m%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|&NZBits&NatInt'Numbers#Coq@0MlIpKt'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$&NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ)NMulOrder(Abstract'Natural'Numbers#Coq@04> Aat/ j $NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ'NMaxMin(Abstract'Natural'Numbers#Coq@0]v|Qg̟ʠ'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NLog(Abstract'Natural'Numbers#Coq@0KI'BinList+setoid_ring#Coq@0Au,Ring_polynom+setoid_ring#Coq@0gaKw9`UW+ListTactics%Lists#Coq@0,Jcy{+InitialRing+setoid_ring#Coq@0k/T=cN(Ring_tac+setoid_ring#Coq@0x2]%762f)Ring_base+setoid_ring#Coq@0fbU(2cNe$Ring+setoid_ring#Coq@0Msᬠ)ArithRing+setoid_ring#Coq@0ṔCgt?}%Arith#Coq@0I|кX*o4#Max%Arith#Coq@04=;3$>aU堠#Min%Arith#Coq@0Ce-Fѕ(PreOmega%omega#Coq@0\|چBb~w4%Omega%omega#Coq@0t.J'6\ϨrK(Zpow_def&ZArith#Coq@0f蓜DX;V*ZArithRing+setoid_ring#Coq@0{#'[{nm!/,Zcomplements&ZArith#Coq@0ʾq %RIneq%Reals#Coq@0JUڻIu)$w&DiscrR%Reals#Coq@0z41pV.%Rbase%Reals#Coq@0Jܡ\ c6{%R_Ifp%Reals#Coq@0c4+ZŠ,Fourier_util'fourier#Coq@0ϳ> 4`*r0'Fourier'fourier#Coq@0wV9TN*Rbasic_fun%Reals#Coq@0hܒiclE>~"Ow΄sVRР%R_sqr%Reals#Coq@A(Rsqr_neg @@@!x,Rdefinitions%Reals#Coq@@!RӀ%Logic$Init#Coq@@"eq @,Rdefinitions%Reals#Coq@@!RӀ%RIneq%Reals#Coq@@$Rsqr=MWA,Rdefinitions%Reals#Coq@@$Ropp΀A@@@@@AA@@>@,Field_theory+setoid_ring#Coq@@&FEeval>@@A@A"s @,Ring_polynom+setoid_ring#Coq@@&PEeval"s @@A@BA@A@)Rsqr_mult @@Arq!yvlaUF@%Rmult׀BA fBkA@@@@@N)Rsqr_plus @@B2w@%Rplus+1BA  BALP,Rdefinitions@@#IZR/r'BinNums'Numbers@@!Z7@B@(positive*@BCBA@@@@@*Rsqr_minus @@C   쀐@&Rminus&HBA sBAf^BA@@@@@.Rsqr_neg_minus @@]DMLۚPF;/CBA9MAB@@@@@!&Rsqr_1 @@Eh@!RӀ%RIneq @$Rsqr=MW@/r@@@@@H+Rsqr_gt_0_0 @@F@f@#Rlt=ӀAA@#notШ!B뀐@@@@@z+Rsqr_pos_lt @@GКπ@ʀ A4?<-@@@@@(Rsqr_div @@H@K A3`耐@$Rdiv̀C] i@@@@@ޠ)Rsqr_eq_0 @@DI43@*©A2@@@@@/Rsqr_minus_plus @@_J!aO!bTJ@@WӀ†OBABA[OBTA@@@@@7/Rsqr_plus_minus @@K>=<造BABABA@@@@@k+Rsqr_incr_0 @@LOĀ@@#Rle=BA@ 6Ƕ@?Щ#ED@@@@@/Rsqr_incr_0_var @@ M@<B倐A@KBo\S/@@@@@ՠ+Rsqr_incr_1 @@;N+*.@jBA@qh&@zq/&c*f@@@@@ -Rsqr_incrst_0 @@rObae@ȀEBJA@e@n耠@@@@@C-Rsqr_incrst_1 @@P'@BA@߀ր@耠߀ ѩԐ@@@@@z1Rsqr_neg_pos_le_0 @@QКπ^Ӏ@BA@B/&@@@@@1Rsqr_neg_pos_le_1 @@R@AҀAB@LY@QHuY:=@@@@@㠠/neg_pos_Rsqr_le @@IS98ǚ<@x AB@4+g/@@@@@@(Rsqr_abs @@wTgf\QEAJ*Rbasic_fun%Reals#Coq@@$Rabs; wA@@@@@;-Rsqr_le_abs_0 @@U@ЀtByAހ48@@@@@h-Rsqr_le_abs_1 @@VL@SBXA  @@@@@-Rsqr_lt_abs_0 @@W뚠ꀶy@Q΀BӀA_M@@@@@ -Rsqr_lt_abs_1 @@(X@~BA  z@@@@@(Rsqr_inj @@UYEDӚH@{B@@RG;w?P^*@@@@@%-Rsqr_eq_abs_0 @@Z{z ~@uj^BcA,Rdefinitions%Reals#Coq@@!RӀ*.@@@@@^-Rsqr_eq_asb_1 @@[B@+IBNA@@@@@2triangle_rectangle @@\ᚠo䀶!z逶@%IA@/I׀ۀ쩚߀L@#andЖw@%Logic$Init#Coq@@#andЖw@Z뀐;b?jJrN#@@@@@5triangle_rectangle_lt @@Z]JIؚMiQ@5C:B?Aaπۀ iɐ@@@@@>5triangle_rectangle_le @@^"@׀񀠩CBA򀠩HҩLTX@@@@@(Rsqr_inv @@_ޚ݀@-؀ ABူ֩ʀ@$Rinv8>ـF@@@@@.canonical_Rsqr @@!`›@+nonzeroreal%+X@Ś!c"!ͩvz%Reals#Coq@@'nonzeroDAƀCABр"D1ANC怠;D^^UDBeCfD@@@@@S'Rsqr_eq @@a7@BA@"or @! %@@@@@@@@ ӳ2@ ӳ2[)Datatypes$Init#Coq@@A@ Գq@ Գq\ @A@AB@cA@A.0TQ+Ring_theory+setoid_ring#Coq@@ABA.U>[J @B@@"O@(PeanoNat%Arith#Coq@#Nat@&of_int"O#Nat$Init#Coq@@ 6@A@A\@&BinInt&ZArith#Coq@!Z@'quotrem\)BinIntDef&ZArith#Coq@!Z@ /@A@\@@+pred_double\@/S@@A@As2@3@&shiftls2*@vY@A@BCs8@8@&shiftrs8/@vY@A@ѓ@>@&squareѓ5@y@A@@D@&to_intϑ;@@A@z@5@&doublez,@/!@A@ABCD/@O@)log2_iter/F@wd@A@NH/@B@&moduloNH/9@1,@A@A\d@G@&of_int\d>@1?A @A@bz@M@&of_natbzD@1?G!@A@#@S@&shiftl#J@1dV@A@#@Y@&shiftr#P@1d\@A@ABCD/x@&BinPos&PArith#Coq@#Pos@)pred_mask/x)BinPosDef&PArith#Coq@#Pos@ )X@A@6@x@&square6o@19@A@AV+L@}@&to_intV+Lt@2@A@V1b@@&to_natV1bz@2 @A@V5=@@&to_posV5=@2@A@ABCl@@)sqrt_iterl@!$:@A@@@6@(sub_mask@-@)@A@ADEF c@@'testbit c@!ć@A@7 B@D@'of_uint7 B;@*`]?@A@AG@I@)mask_rectG@@+ED@A@F˱@O@)add_carryF˱F@+p@A@AB^Ҷ@@'to_uint^Ҷ@#m@A@gL7@@'sqrtremgL7@40@A@Aq@@'testbitq@5)@A@ݎO@@+succ_doubleݎO@6r@A@A p@l@0double_pred_mask pc@0-+m@A@BCD T@&BinNat&NArith#Coq@!N@!t T)BinNatDef&NArith#Coq@!N@ 2@A@ @@#add @3 @A@A l@@#div l@3@A@ Y@%@#eqb Y@3@A@AB #@*@#gcd #!@3n@A@ T@0@#leb T'@3@A@ACEG "@5@#lor ",@3m@A@ q@?@#ltb q6@3@A@A @D@#max ;@3@A@ @J@#min A@3`@A@AB @O@#mul F@3B@A@ ~@U@#odd ~L@3@A@AC =@Z@#one =Q@3@A@ @b@#pow ˑY@3@A@A c@g@#sub c^@3@A@ @m@#two d@3J@A@AB hx@r@$div2 hxi@>@A@ @x@$even o@>4@A@ACD @}@$ggcd Бt@>U@A@ @@$iter }@>:@A@A 3"@@$land 3"@>m@A@ F)@@$log2 F)@>t@A@AB S@@$lxor S@>@A@ @@$pred @?U@A@AC @@$size ܑ@?'@A@ !@@$sqrt !@?@A@A ! @@$succ ! @?\@A@ !7@@$zero !7@@P@A@ *@@%ldiff *@@A@AB g_@1@+pred_double g_(@25\@A@CD m@6@÷ m-@2j@A@S@=@&of_intS㫑4@4}5@A@AS@B@&of_natS9@4};@A@BEFGH\R@G@(mask_ind\R>@4@A@\^@Q@(mask_rec\^H@4@A@A!,@V@&pred_N!,M@4s)@A@B@[@&shiftlR@5X@A@@b@&shiftrY@5X@A@A&@g@&square&ّ^@5,x@A@BC"@l@&to_int"c@5L@A@"@t@&to_nat"k@5L @A@AnTq@y@+testbit_natnTqp@6n@A@B@@(succ_posB@@A@I@@'abs_natI@?n@A@AB.@@'of_uint.@MS@A@3~@@'sqrtrem3~@7]%{@A@ACD,@ @'bitwise,@/v@A@>4'@@'testbit>4'@8g$@A@A{U@@,sqrtrem_step{U@8R@A@u^@9@(div_euclu^0@ @A@Afz@@'to_uintfz@9w@A@Bl@'@'comparel@3R@A@CDEFs8@,@+of_uint_accs8#@5+@A@}@R@,pos_div_eucl}I@&`@A@3x@(@'compare3x@]=@A@A@^@&doubleU@'޺_@A@BCq@@+of_succ_natq@$@A@w@i@&modulowɑ`@)1@A@ADK@n@&of_intKe@)j,I@A@K@v@&of_natKm@)j2_@A@AI@{@&shiftlIr@*O@A@O@@&shiftrOx@*O@A@AB,@@&square,}@*ow@A@Z@@&to_intZ@*81@A@ACE`@@&to_nat`@*9G@A@e@@+testbit_nateđ@+@A@A+{@@'sqrtrem+{ё@,J@A@5z@@'testbit5z@-T|@A@A @@'to_uint ͑@.@A@ @@+succ_double @.^4@A@A#@'@'compare#ݑ@ )Q@A@BCD%t2@,@(size_nat%t2#@ @A@%9@3@+of_uint_acc%9*@ ΋@A@A%V@8@+double_mask%V/@ S@A@%%@>@'div2_up%%5@ "@A@ABEF'ş@C@'Ndouble'ş:@ @A@(b0@K@*shiftl_nat(b0B@9-@A@A(nՖ@P@*shiftr_nat(nՖG@'@A@(@V@0succ_double_mask(M@@A@*W$@\@,compare_cont*W$S@!@A@.0@b@.sub_mask_carry.0Y@΂@A@ABCD.@@!t.@ ;@A@.먩@@#add.먩@ `@A@A.U@@#div.U@ @A@.B@@#eqb.B@ @A@A. @@#gcd. @ @A@.=@@#leb.=@ @A@ABCEGHI. @@#lor. @ @A@.Z@ @#ltb.Z@ @A@A.p@@#max.p@ '@A@B.@@#min. @ @A@.@@#mul.@ @A@AC.g@@#odd.g@ @A@.&@&@#one.&@ @A@A.뾴@+@#pow.뾴"@ k@A@.L@1@#sub.L(@ @A@.@7@#two..@ @A@ABCD.,a@<@$div2.,a3@ @A@.Xz@D@$even.Xz;@ ?1@A@A.@I@$iter.ؑ@@ @A@B. @N@$land. E@ @A@. @T@$log2. K@ @A@ACE.@Y@$lxor.P@ R@A@.y@`@$pred.yW@ `<@A@A.Ʉ@e@$sqrt.Ʉ\@ ;@A@.@l@$succ.c@ @A@.t @r@$zero.t i@ Z@A@AB/@w@.to_little_uint/n@ @A@CDF/@|@%ldiff/s@ H@A@00@@'compare00@?H{@A@A1P%@w@!t1P%n@  @A@B1P@|@#abs1Ps@ @A@1P&@@#add1P&z@ @A@A1P@@#div1Pґ@ y@A@BC1P@@#eqb1P@ f@A@1P@@#gcd1P@ 0@A@A1P@@#geb1P@ T@A@B1P@@#gtb1Pʑ@ q@A@1Pĺ@@#leb1Pĺ@ a@A@A1Pň@@#lor1Pň@ /@A@BCD1P@@#ltb1Pב@ ~@A@1P@@#max1P@ @A@A1P{@@#min1P{@ "@A@B1P]@@#mul1P]@ @A@1P@@#odd1P@ @A@A1Pɣ@@#one1Pɣ@ J@A@BC1P@@#opp1Pԑ@ {@A@1P1@@#pow1P1@ @A@A1P;@@#rem1P;@ @A@B1P@@#sgn1Pˑ@ r@A@1P@@#sub1Pɑ@ p@A@A1Pe@@#two1Pe@  @A@BCDE1[8@@$div21[8ޑ@ @A@1[d@@$even1[d@ I@A@A1[6@@$ggcd1[6@ i@A@B1[U@ @$iter1[U@ @A@1\@@$land1\@ /@A@A1\@@$log21\ @ 6@A@BC1\$@@$lxor1\$@ @A@1\Y@$@$of_N1\YÑ@ >j@A@A1\@)@$pred1\ @ j@A@B1\@.@$quot1\֑%@ }@A@1\@5@$sqrt1\,@ @A@A1\w@:@$succ1\w1@ @A@BC1\k@?@$to_N1\k6@ @A@1]@G@$zero1]>@ eD@A@A2:@L@%abs_N2:C@ @A@21@R@%ldiff21I@ ߵ@A@2=*@X@%quot22=*O@ @A@ABC2kF@@(size_nat2kF@{@A@3@x@(tail_add3o@^q@A@ADEFGH3@}@(tail_mul3t@^@A@5Z@@*shiftl_nat5Z@y/@A@5f}@@*shiftr_nat5f}@4@A@AB5a@@'iter_op5a@ @A@C6w~@@'of_uint6w~@^5@A@8j@@'of_uint8j@'"h@A@9E@@(div_eucl9Eđ@(*k@A@AB:x@6@,Nsucc_double:x-@ ʭ@A@CD@[@&divmod>R@C@A@>@b@&double>Y@NĴ@A@?2@S@,pos_div_eucl?2J@-u@A@AB?;@m@&modulo?;d@"i@A@CEFGIJ@%Arith#Coq@0I|кX*o4)ArithRing+setoid_ring#Coq@0ṔCgt?}*Arith_base%Arith#Coq@0Ĕ}CS&Basics'Program#Coq@0!bs߯? :VU'Between%Arith#Coq@06v*0ur`C0&BinInt&ZArith#Coq@0BpHޞun^)BinIntDef&ZArith#Coq@0ådR4Tuy'BinList+setoid_ring#Coq@0Au&BinNat&NArith#Coq@0K11ڤs+Π)BinNatDef&NArith#Coq@03@1O,[{ 'BinNums'Numbers#Coq@0dmk(5Ju<&BinPos&PArith#Coq@0vyػ0= u)BinPosDef&PArith#Coq@0}H d.%,b$Bool#Coq@0j 2cZ`FW*CMorphisms'Classes#Coq@0qیZBeϠ0CRelationClasses'Classes#Coq@0TL;0RUfw1+Compare_dec%Arith#Coq@0jXF 8432@0.i bYN Z)Decidable%Logic#Coq@0ND걸풬/Oߠ'Decimal$Init#Coq@0C涳N*ua&DiscrR%Reals#Coq@0z41pV.%EqNat%Arith#Coq@0AIgՋXRV *EqdepFacts%Logic#Coq@0FI$ͼՋ`)Eqdep_dec%Logic#Coq@0u wWIϰ߼*Equalities*Structures#Coq@0όe얟)H.Ƞ+Equivalence'Classes#Coq@07;ꮹ)Factorial%Arith#Coq@0@oehJd%Field+setoid_ring#Coq@0J _ȫ)Field_tac+setoid_ring#Coq@0d vDZl^۹H"0B~uYٮ٠'Fourier'fourier#Coq@0wV9TN,Fourier_util'fourier#Coq@0ϳ> 4`*r0-GenericMinMax*Structures#Coq@0måj$"Gt%Arith#Coq@0䙛#c:D $Init'Classes#Coq@0](p{yOh.+InitialRing+setoid_ring#Coq@0k/T=cN"Le%Arith#Coq@0d}Omq+$List%Lists#Coq@0>I+ListTactics%Lists#Coq@0,Jcy{0\͉!Ig*Logic_Type$Init#Coq@0 1jc6"Lt%Arith#Coq@0KZ-eJkP܏#Max%Arith#Coq@04=;3$>aU堠#Min%Arith#Coq@0Ce-Fѕ%Minus%Arith#Coq@0LFtR")Morphisms'Classes#Coq@0Imӽ%\$PD.Morphisms_Prop'Classes#Coq@0% :B'.>u%$Mult%Arith#Coq@0햖Qyb0$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI%NBits(Abstract'Natural'Numbers#Coq@0qteo_hɅ $NDiv(Abstract'Natural'Numbers#Coq@0bz$?[p(5$NGcd(Abstract'Natural'Numbers#Coq@08E-S ;j_Ҡ$NLcm(Abstract'Natural'Numbers#Coq@0 ~xZ9L{:$NLog(Abstract'Natural'Numbers#Coq@0K Aat/ j &NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf+NProperties(Abstract'Natural'Numbers#Coq@0unt"kwpYC%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ%NZAdd&NatInt'Numbers#Coq@00h`ZK4*NZAddOrder&NatInt'Numbers#Coq@0e~1>r砠(NZAxioms&NatInt'Numbers#Coq@0] ρ5r&NZBase&NatInt'Numbers#Coq@0^&8yUL&NZBits&NatInt'Numbers#Coq@0MlIpKt%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZMul&NatInt'Numbers#Coq@0ctR~6[Ƞ*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R'NZOrder&NatInt'Numbers#Coq@0 q;Ve7R W,(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x&NZSqrt&NatInt'Numbers#Coq@0` .%m#Nat$Init#Coq@0eʤģPSR蠠$Nnat&NArith#Coq@0$W;s #%M)Notations$Init#Coq@0&v!D]hwnv *NumPrelude'Numbers#Coq@05WUVŦ]xVXԠ%Omega%omega#Coq@0t.J'6\ϨrK+OmegaLemmas%omega#Coq@0TJ#Jes4Operators_Properties)Relations#Coq@0U3y#h&&Orders*Structures#Coq@0$Znl0\͗+OrdersFacts*Structures#Coq@05Mܿ獐ζΖLB)OrdersTac*Structures#Coq@05'4Ԗ+9%%Peano$Init#Coq@0 jha|ؠ(PeanoNat%Arith#Coq@0O~2$k[#lZ)Peano_dec%Arith#Coq@0Kݢ*k$Plus%Arith#Coq@04tmG$Pnat&PArith#Coq@0,?pr.gZ(PreOmega%omega#Coq@0\|چBb~w4'Prelude$Init#Coq@0JqTttֱ%Quote%quote#Coq@0J@ŹVz-,3% 0JUڻIu)$w%R_Ifp%Reals#Coq@0c4+ZŠ'Raxioms%Reals#Coq@0S]jnj][L%Rbase%Reals#Coq@0Jܡ\ c6{*Rbasic_fun%Reals#Coq@0hܒiclE> 0(2{Ze$ќ8)RealField+setoid_ring#Coq@0 >ʾq /RelationClasses'Classes#Coq@0Gz rA6ՠ4Relation_Definitions)Relations#Coq@0]4Ѐd{n^2Relation_Operators)Relations#Coq@0%s鯰s)Relations#Coq@0-SetoidTactics'Classes#Coq@0S_`nOU$&Specif$Init#Coq@0;RWMi\N'Sumbool$Bool#Coq@0sB ,$11.]m'Tactics$Init#Coq@0/9m+ a'Tactics'Program#Coq@03)ring_RsqrF@@@@@@@@@ 8./theories/Reals/R_sqr.vSS@-ring_2BA1BA26 y@Ǡ2 Q@@A@"_8@ @A@@@@@@@@"_92M접#_10'`o@A'R_scope@@|2 Q@@A@#_11@&k@A@@@@'@#_122M접 #_13'`o@B%'@ @s2 Q@@A@#_14&@~&@A@@@@P@#_152M접 #_16'`o@BNP@14@62 Q@@A@#_17O@Afe@A@@@@y@#_182M접 #_19'`o@Bwy@Z]@2 Q@@A@#_20x@'=V@A@@@@@#_212M접 #_22'`o@B@@2 Q@@A@#_23@&5J@A@@@@@#_242M접 #_25'`o@@@@2 Q@@A@#_26@6ѝ&@A@@@@@#_272M접 #_28'`o@B@@ʠ,@ 2 Q@@A@#_29@8@A@@@@@#_302M접 #_31'`o@B@@򠐑A@ 2 Q@@A@#_32@ @A@@@@:@#_332M접 #_34'`o@C8:@@n@2 Q@@A@#_35=@&@A@@@@g@#_362M접 #_37'`o@Be@@G=@2 Q@@A@#_38e@@A@@@@@#_392M접 #_40'`o@B@ps@2 Q@@A@#_41@|@A@@@@@#_422M접 #_43'`o@B@@2 Q@@A@#_44@7@A@@@@@#_452M접 #_46'`o@Eߠ@@@@ŠȠ @2 Q@@A@#_47@>@A@@@@@#_482M접 #_49'`o@D@@@7:@2 Q@@A@#_50@7@A@@@@G@#_512M접 #_52'`o@EEG@@@@+.ilo@2 Q@@A@#_53R@9f3@A@@@@|@#_542M접 #_55'`o@Ez|@@@@`cŠ@ߠ2 Q@@A@#_56@9f3@A@@@@@#_572M접 #_58'`o@E@@@@֠@ݠ2 Q@@A@#_59@?-{@A@@@@@#_602M접 #_61'`o@D䠐@@@ɠ̠ @ܠ2 Q@@A@#_62@?-|@A@@@@@#_632M접 #_64'`o@E@@@@9<?@ڠ2 Q@@A@#_65"@?S@A@@@@L@#_662M접 #_67'`o@DJL@@@/2mp@ݠ2 Q@@A@#_68S@ /@A@@@@}@#_692M접 #_70'`o@A{@\@נ2 Q@@A@#_71w@?Dp@A@@@@@#_722M접 #_73'`o@C@@@נ2 Q@@A@#_74@?Dq@A@@@@@#_752M접 #_76'`o@C̠Π@@@נ2 Q@@A@#_77@)T@A@@@@@#_782M접 #_79'`o@C@@ݠࠐB@נ2 Q@@A@#_80@)T@A@@@@(@#_812M접 #_82'`o@C&(@@  o@נ2 Q@@A@#_83+@ R@A@@@@U@#_842M접 #_85'`o@ESU@@@@9<wz8@֠2 Q@@A@#_86`@+x@A@@@@@#_872M접 #_88'`o@C@@loe@ʠ2 Q@@A@#_89@+(B@A@@@@@#_902M접 #_91'`o@C@@@ʠ2 Q@@A@#_92@ W@A@@@@@#_932M접 #_94'`o@E⠐䠐@@@ɠ̠Ϡ  @2 Q@@A@#_95@(x@A@@@@@#_962M접 #_97'`o@D@@f@2 Q@@A@#_98"@(x@A@@@@L@#_992M접 $_100'`o@DJLN@@036q@g2 Q@@A@$_101T@r ^@A@@@@~@$_1022M접 $_103'`o@B|@@^@\2 Q@@A@$_104|@g'W@A@@@@@$_1052M접 $_106'`o@D@@z@2 Q@@A@$_107@ @A@@@@@$_1082M접 $_109'`o@C֠ؠ@@@@@X%MԹ%M@Ʃh/ka @#LYO`I@Tv>N|v[66 %$!x,Rdefinitions%Reals#Coq@@!RӀȐ(hyp_list)Datatypes$Init@$list]@A @$prodt@,Ring_polynom+setoid_ring(@%PExprk@'BinNums'Numbers4@!Z7@-$Ȑ'fv_list4BIB:L%RIneqN@2RField_ring_lemma1!7𚠐(Ring_tac/@0ring_subst_niter!A;G2@D78@(positive*@C @NHE%Logicg@$Truey@A @"eq @Az@$boolZ'@A@ Ȑ#lmpu@.mk_monpol_list(pqAuBA&BinInt&ZArithx@#add1P&)BinIntDef~@ ̀@#mul1P] @ @#sub1P@ p@#opp1P@ {%Zbool!@(Zeq_bool0߀*@'quotrem\$@/ŀ@#Monf@@#Polj@@#Peqj*(@*norm_subst7:d0YVQA;5/'0[XSC=71)lCi@$Rsqr=MW @$Ropp΀ !y ֩԰Cϩԩ𩜠B}ǰɩɰ  @TAd<0xrlf^>0ztnh`C77:@%Rmult׀BDIG5H<:  3*E3".%'5C,>@@Ͱw4r06 t08 Cְmmp@%Rplus+167?A}@#IZR/r$:$t{yKHr>=5-C,[iFr?@ f̩0hD<0jF>  C@&Rminus&Hh2pmcbZRh%Q%P=3@!,ީ"0f^ +C(  dz~|{skjr(VL@:E86030+ w 052- y FCCکڐ`8᷐!H@#Rlt=oJ"H0\{@&eq_ind J !r"@&Rsqr_0 OgA)$$@)False_induُ@%Falsee@@*Rlt_irreflnQC@#notШ8.,K 1FР@"or @BAAAA@@@@@D@^YH]I@#Rgt=< jeP8@,Rtotal_order%wk@1Rmult_lt_0_compat=HHCt@&or_ind"հlR$T "H1buD_@&eq_sym X " @(eq_ind_r!2# @HE6F"H2WGEEC[@&Ropp_0 GU`a@4Ropp_lt_gt_contravarY>V@%R_sqr@(Rsqr_neg H_·Cǩ@$Rinv8Щ;ҩ_ dd|YݩũOhԩ)\~!#@1Rmult_eq_compat_l$|Ǡ!9n̠ DD F 'Raxioms@+Rmult_assoc&NN8 @*Rmult_comm8=䠩Z  \DD ^F^⩚@/Rinv_mult_distrC47@$Rdiv̀# CAA  KIhLcaaaV<k @.Rmult_integralqCb`@̰ccxr!ah!bk_]/,V"!'?#K@߰F0H$ 0J& CFAzxJGq=<4,B+Z> @`Ʃ0b>6 C^*@#Rle=c98Ȑ!s]@'Rle_dec3:&Specif@'sumbool7̂K@  BAAAA@@@@@D ,180G6r#Hle v$Hnle <@*Rnot_le_lt.JEGGH"H3  I"H4J젩_K䠩ɠ@,Rle_lt_trans*GӀ&@4Rmult_le_0_lt_compat2o=/ .#.#7{+|trmd}t[ƠTkȷRkP̩GOMeeHNSJJ*CL!G;SUSr㐩6 u_u_?JH6Ih ]@/Rmult_le_compat5i   ;;CW㐑][I\{yp/@$'Ұi!   ܰsߩ+ x{y{{qh 'RZ"H5{:@)Rlt_transCnB   EEEǩk=ZCY*Rbasic_fun@)Rcase_abs7IݠLة@#Rge=- #; 2@7s#Hlt Tٶ@a~?qIGF NS<Ty X c@4Ropp_ge_le_contravar>ŀ @&Rle_ge @ H @/Ropp_involutive"2c@+Rsqr_incr_07'9@&Rlt_le A<K~y>ʷW[@)Rle_trans"F=304ש3M.O O@&Rge_le 6/REC1Dc>Y lgo=oqndaeǠi|ɠ~q@4Ropp_le_ge_contravar(IJkywj}w<|o{ܠv ~䠩{M((v꠩L  5@+Rsqr_incr_17=%L̩eGҩ E-db0XPj X``!XWk,YӷЩ2Hss4\fM`x9کWLJFYQI~IA  AFsImOR+D; -\6F8JNCr   U@$Rabs; w 4xЩ ȩש&̷ -# $ǩ&s@(Rsqr_abs /ީy@(Rabs_pos+F󐑷;9':Y$2? <@DAEG>43 $QO=Po@-Rsqr_incrst_09f3р@?dZ W[w>h^[_{;:8A21+ecQd*hIei)lFim(@-Rsqr_incrst_19f3Ҁ)2L$Fywex_` }-⩚@#iffС)@#andЖw@99;@'and_ind14ۀж@G %!@ $LR(,6$_tmp¶@&57ɩ"ЩЩ&׷/"H6# ũw@+Rle_antisym>`Kѩppr[r@)Rle_le_eq" fH۷ܷHߵ9+1#(A*T,""V!U13<3b2a$Hltx8RD;;T1g"?&3$Hlty:&  v y 3Z{1  - 2@@٠%ک%7ޠ0=B/EE{@(Rsqr_inj RO<۩QMSZU&$Hgeytb<4WH]EI@+LR'$W7ڐj $Hgexư]_Z~lb_cΰe|Ω̩Ѱhѩ{̠nko@(zݰtuv-I|}a\@E ARJlLCpoyvyvq8zsV~GGO~Rb( 4PPX P!zթʩLHm{ЩRlé%fPfV7@*Rplus_commqv. ~a{43X|NAR<C>CXBI /@1Rsqr_neg_pos_le_0?-{PW6@/Rsqr_incr_0_var>%%Za @2Rplus_le_reg_pos_r!'@)Rle_0_sqr!j    Y ,*>/1*5٩f@-Rsqr_lt_abs_0)TÐ@2Rplus_lt_reg_pos_r~,J8.sϩjuMFQzِ=ݐA?-@A`4p21Z0@-Rsqr_le_abs_0?Dp/Z)q_U'%$i#d"a_~3c`dϰf~[?;CѰhh* "@+nonzeroreal%+X@ v!cy|zȐ(list_hypn@Ȑ+field_lemma4@3RField_field_lemma1(Mk1D=@'nonzeroLINP|L7,Field_theoryq@%FExprs@Eo qGvDD |  KA [%+-J$4Cp%  :F135#4%9--gF@LG$nfe1O@&linear@@Y X@%Fnormw$TQL<60*a$nfe2@f $\YTD>82D@kv70c`[KE?91kթp@#num:uw@%denum0ͩ!0urm]WQKC} @@%PCondS< $9H @#nat@&BinNat&NArith ,!N@&to_nat`)BinNatDef @*9G(Rpow_def <@#pow#׀  F  IX  KL  MS  ;@#appʀ .@)condition. (ǩ *CȰ _@&FEeval>@ f{,\/ 3A;* " h % kq ' m ) op %٩@ q7g: >LF5 Ȑ#res dȐ&res_eq @( Le Ȑ$res0A T8 V: X + Z (d - \ *o +ũ  mȐ'res_eq0  :@Ȑ$res1 kO m @ o B qU s F uPNϩ I x z M | O ~  L! Q $$  S   q _ s a u  *Ȑ'res_eq1(@ĩ &-J x b ?@© u@-RField_lemma55v| wx$lock"le BA(lock_def D  |8 m; `w\8 r@ e  ZN    e  a      a @,cond_nonzero$kؐ g  C< $^   @ j@$Fapp{F ֩q@&Fcons2w$  m j e U O I C ;ð  yIC  ᠩ    ֩ # ȩ Z  : 8 & 9X] <Q9 =@  @Ѡ 9%k ߩ  HZ < :       ݩ  ܠ  (  ٵ @     z g $ ީ b0 &            ǩ İ [ ""# X:Cn d +JKe i@;, װ nܷ ڰ q 5  w  z      UA     @@0Rminus_diag_uniq)6eB      2 D D   C    JR52 Ml M =M a@+Rplus_opp_l73 g@1Rplus_eq_compat_lZ \K$%P٪