"`#„#`+PSeries_reg%Reals#Coq@()Notations$Init#Coq@%Logic$Init#Coq@*Logic_Type$Init#Coq@)Datatypes$Init#Coq@&Specif$Init#Coq@%Peano$Init#Coq@"Wf$Init#Coq@'Tactics$Init#Coq@%Tauto$Init#Coq@'Prelude$Init#Coq@)Notations$Init#Coq@0&v!D]hwnv %Logic$Init#Coq@0\͉!Ig)Datatypes$Init#Coq@0.i bYN Z*Logic_Type$Init#Coq@0 1jc6&Specif$Init#Coq@0;RWMi\N'Decimal$Init#Coq@0C涳N*ua#Nat$Init#Coq@0eʤģPSR蠠%Peano$Init#Coq@0 jha|ؠ"Wf$Init#Coq@0q+W,J+'Tactics$Init#Coq@0/9m+ a%Tauto$Init#Coq@0̂"&/rk0JqTttֱ'BinNums'Numbers#Coq@0dmk(5Ju<*EqdepFacts%Logic#Coq@0FI$ͼՋ`)Eqdep_dec%Logic#Coq@0u wWIϰ߼&Basics'Program#Coq@0!bs߯? :VU$Init'Classes#Coq@0](p{yOh.'Tactics'Program#Coq@03u%+Equivalence'Classes#Coq@07;ꮹ-SetoidTactics'Classes#Coq@0S_`nOU$&Setoid'Setoids#Coq@0D9AsWE!>$Bool#Coq@0j 2cZ`FW*Equalities*Structures#Coq@0όe얟)H.Ƞ2Relation_Operators)Relations#Coq@0%s鯰s4Operators_Properties)Relations#Coq@0U3y#h&)Relations#Coq@0r砠*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ&NZSqrt&NatInt'Numbers#Coq@0` .%m%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|&NZBits&NatInt'Numbers#Coq@0MlIpKt'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$&NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ)NMulOrder(Abstract'Natural'Numbers#Coq@04> Aat/ j $NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ'NMaxMin(Abstract'Natural'Numbers#Coq@0]v|Qg̟ʠ'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NLog(Abstract'Natural'Numbers#Coq@0KI'BinList+setoid_ring#Coq@0Au,Ring_polynom+setoid_ring#Coq@0gaKw9`UW+ListTactics%Lists#Coq@0,Jcy{+InitialRing+setoid_ring#Coq@0k/T=cN(Ring_tac+setoid_ring#Coq@0x2]%762f)Ring_base+setoid_ring#Coq@0fbU(2cNe$Ring+setoid_ring#Coq@0Msᬠ)ArithRing+setoid_ring#Coq@0ṔCgt?}%Arith#Coq@0I|кX*o4#Max%Arith#Coq@04=;3$>aU堠#Min%Arith#Coq@0Ce-Fѕ(PreOmega%omega#Coq@0\|چBb~w4%Omega%omega#Coq@0t.J'6\ϨrK(Zpow_def&ZArith#Coq@0f蓜DX;V*ZArithRing+setoid_ring#Coq@0{#'[{nm!/,Zcomplements&ZArith#Coq@0ʾq %RIneq%Reals#Coq@0JUڻIu)$w&DiscrR%Reals#Coq@0z41pV.%Rbase%Reals#Coq@0Jܡ\ c6{%R_Ifp%Reals#Coq@0c4+ZŠ,Fourier_util'fourier#Coq@0ϳ> 4`*r0'Fourier'fourier#Coq@0wV9TN*Rbasic_fun%Reals#Coq@0hܒiclE>%R_sqr%Reals#Coq@0X%MԹ%M+SplitAbsolu%Reals#Coq@0M)&qYlݹ5*SplitRmult%Reals#Coq@0sD\rt/$Even%Arith#Coq@0YO%q}d߫%$Div2%Arith#Coq@0n*Áht!,)ArithProp%Reals#Coq@0B+L?>*e˃a j*Rfunctions%Reals#Coq@0d¹d‹@'Compare%Arith#Coq@0OM v먣5L:'Rseries%Reals#Coq@08]$u+?'SeqProp%Reals#Coq@0Lt2|9D }SSԻ)Rcomplete%Reals#Coq@0{ڸ4q 'PartSum%Reals#Coq@0j&2"(>S)AltSeries%Reals#Coq@0d US^(Binomial%Reals#Coq@0]JrHr#E&Rsigma%Reals#Coq@0䟄WCJҦ<%Rprod%Reals#Coq@0gȀn_}!W+Cauchy_prod%Reals#Coq@0K*ߞ4q(Alembert%Reals#Coq@0I͗Huz&)SeqSeries%Reals#Coq@0Npc$5|T ٠&Rlimit%Reals#Coq@0*r0ē([HAE&Rderiv%Reals#Coq@0?KQ;^WU;H*Ranalysis1%Reals#Coq@0 n;qm.L%%RList%Reals#Coq@05g2NaA:7PropExtensionalityFacts%Logic#Coq@0 +_.ɓoFؘ'Hurkens%Logic#Coq@05[gNk2up.ClassicalFacts%Logic#Coq@0$RzqIF\(4.Classical_Prop%Logic#Coq@0Yh޿JdI1ƽ3Classical_Pred_Type%Logic#Coq@0m[6BZ5)Rtopology%Reals#Coq@0;Wo G#MVT%Reals#Coq@0cq통 gZ"Yb1>%vRMР+PSeries_reg%Reals#Coq@A%Boule @!x,Rdefinitions@@!RӀ!r%RIneq@'posreal̠@!y@#Rlt=*Rbasic_fun!@$Rabs; w+@&Rminus&HAC&@#pos=D.B@>,Rdefinitions%Reals#Coq@@!RӀ?>%Reals#Coq@@'posreal̠@AA d+k()7 7!7 7%'9x3dPPLD@@@@@AA@@>@,Field_theory+setoid_ring#Coq@@&FEeval>@@A@A"s @,Ring_polynom+setoid_ring#Coq@@&PEeval"s @@A@BA@A@,Boule_convex @@@!c[!dPDF!z,Rdefinitions%Reals#Coq@@eӀ@@>ߌEDC@ FE@%Logic$Init#Coq@@#andЖw@-@#Rle=D,HG@@@@@q1boule_of_interval @@A횠JIH@@Ӏ !hX@=BA&Specif$Init#Coq@@$sigT#6@Ӏ}@#sig#* @р%Logic$Init#Coq@@#andЖw@@"eq @@&H EZ@%Rplus+1D@@@@@ߠ1boule_in_interval @@kB[nDprhkCAqABo7d1r3^ԀBADiFYB%RIneq%Reals#Coq@@k=D.sbB~E@@@@@A-Ball_in_inter @@C"c1"c2"r1x"r2{o@ECA@#"r3@3(ŀ;J@I@@@@@,Boule_center @@D¶SBAB@@@@@#CVU @"fn@)Datatypes$Init@#nat@@""!f(&#eps*@.@#IZR/r'BinNums'Numbers7@!Z7@A%Logic+@"ex @5!N8!n;;R@%Peano>@"le UxT@,$@x_@n>ߌ-NIA=K@@`@)Datatypes$Init#Coq@@#nat@@FHe@MOSI; T+k() +7T'+ L7 7!T'+ 77%'+7T'+7T'+ 7!T'+ 7"T'! 7!7 7%'$L|u(PgȠ@N접4x@@@@@K%CVN_r @&Specif@#6@@ѷ"An@#sig#* @ܷ!lߩ@Жw@'Rseries@%Un_cvɀ۩*Rfunctions@(sum_f_R0Yc!kސ(ж@Iթ@8=쐩0S@@@ـۀрQ4[@@ +k() + +r7T7%' + 77%'+7T +97!7%' +7T' + L7 7"T' !7 7%'+7%' 7$'6',9̠hP2V䠒Rؠh`<1D)T@@Q4@2@A@A@HAA5@A@@堠%CVN_R @LJUS@>ဠ,5@T@@/1Qs\@@ T+k+7T'7%'qd @@@Qs@@A@A@hA@6A@AB@@#SFL @"cvĠR'PartSum@"SP?v wvwBBB@@@@@!sѠn}!a@ @@P@8њ< +k() = R '>''+k6'>ABABD@@@@@{'CVN_CVU @@E@@jŀˀ.&%Reals#Coq@@%Un_cvɀΛ%Reals#Coq@@"SP?v DACA$倶@D@y>ဠCAL@3>.΀(Z@>.HvPgf@@&/r%@@@@@ꠠ.CVU_continuity @@vFQ@@,.K@35w9n/@BDCBA@8tO@ူb*Ranalysis1%Reals#Coq@@-continuity_pt?ZLĐqih@{v@@@@@A7continuity_pt_finite_SF @@G@H@yQ˚@Z@%Peano$Init#Coq@@"le UxT@ACP+Vך*Rfunctions%Reals#Coq@@(sum_f_R0YcH,ː@@@@@1SFL_continuity_pt @@"H@@؀ڀ 怷IDACA-@ CA@Ѐ1 @ {#z( D@36Ԁ"5@@@@@.SFL_continuity @@Ig@@BD﶐JuPJ"|DACA@@N>B@\7@*continuity*ݐ r@@@@@P)CVN_R_CVS @@J@W@@2AܚɀـvЀ4@@@@@&CVU_cv @@K!gwkrjp@ʀDCBA@b;㩚ʛ)Datatypes$Init#Coq@@#nat@Jn@@@@@+CVU_ext_lim @@HLö"g1"g2@@ EDBA@P@{"#%̩z "!.@@@@@-CVU_derivable @@}MHoT"x0,Rdefinitions%RealsV@!RӀ"f' )"g'@OECBA@<@耰hiPqpĐj@WP@}@0derivable_pt_limF}ˠb@@@@@@W@@@Q4y@QsF@AB ӳ2@ ӳ2[)Datatypes$Init#Coq@@A@ Գq@ Գq\ @A@AC@cAZYX@A.0TQ+Ring_theory+setoid_ring#Coq@@BA.U>[J @ABg@QB&Rlimit%Reals#Coq@A al.@A@Bs@CD@@"O@(PeanoNat%Arith#Coq@#Nat@&of_int"O#Nat$Init#Coq@@ 6@A@A\@&BinInt&ZArith#Coq@!Z@'quotrem\)BinIntDef&ZArith#Coq@!Z@ /@A@\@@+pred_double\@/S@@A@As2@3@&shiftls2*@vY@A@BCs8@8@&shiftrs8/@vY@A@ѓ@>@&squareѓ5@y@A@@D@&to_intϑ;@@A@z@5@&doublez,@/!@A@ABCD/@O@)log2_iter/F@wd@A@NH/@B@&moduloNH/9@1,@A@A\d@G@&of_int\d>@1?A @A@bz@M@&of_natbzD@1?G!@A@#@S@&shiftl#J@1dV@A@#@Y@&shiftr#P@1d\@A@ABCD/x@&BinPos&PArith#Coq@#Pos@)pred_mask/x)BinPosDef&PArith#Coq@#Pos@ )X@A@6@x@&square6o@19@A@AV+L@}@&to_intV+Lt@2@A@V1b@@&to_natV1bz@2 @A@V5=@@&to_posV5=@2@A@ABCl@@)sqrt_iterl@!$:@A@@@6@(sub_mask@-@)@A@ADEF c@@'testbit c@!ć@A@7 B@D@'of_uint7 B;@*`]?@A@AG@I@)mask_rectG@@+ED@A@F˱@O@)add_carryF˱F@+p@A@AB^Ҷ@@'to_uint^Ҷ@#m@A@gL7@@'sqrtremgL7@40@A@Aq@@'testbitq@5)@A@ݎO@@+succ_doubleݎO@6r@A@A p@l@0double_pred_mask pc@0-+m@A@BCD T@&BinNat&NArith#Coq@!N@!t T)BinNatDef&NArith#Coq@!N@ 2@A@ @@#add @3 @A@A l@@#div l@3@A@ Y@%@#eqb Y@3@A@AB #@*@#gcd #!@3n@A@ T@0@#leb T'@3@A@ACEG "@5@#lor ",@3m@A@ q@?@#ltb q6@3@A@A @D@#max ;@3@A@ @J@#min A@3`@A@AB @O@#mul F@3B@A@ ~@U@#odd ~L@3@A@AC =@Z@#one =Q@3@A@ @b@#pow ˑY@3@A@A c@g@#sub c^@3@A@ @m@#two d@3J@A@AB hx@r@$div2 hxi@>@A@ @x@$even o@>4@A@ACD @}@$ggcd Бt@>U@A@ @@$iter }@>:@A@A 3"@@$land 3"@>m@A@ F)@@$log2 F)@>t@A@AB S@@$lxor S@>@A@ @@$pred @?U@A@AC @@$size ܑ@?'@A@ !@@$sqrt !@?@A@A ! @@$succ ! @?\@A@ !7@@$zero !7@@P@A@ *@@%ldiff *@@A@AB g_@1@+pred_double g_(@25\@A@CD m@6@÷ m-@2j@A@S@=@&of_intS㫑4@4}5@A@AS@B@&of_natS9@4};@A@BEFGH\R@G@(mask_ind\R>@4@A@\^@Q@(mask_rec\^H@4@A@A!,@V@&pred_N!,M@4s)@A@B@[@&shiftlR@5X@A@@b@&shiftrY@5X@A@A&@g@&square&ّ^@5,x@A@BC"@l@&to_int"c@5L@A@"@t@&to_nat"k@5L @A@AnTq@y@+testbit_natnTqp@6n@A@B@@(succ_posB@@A@I@@'abs_natI@?n@A@AB.@@'of_uint.@MS@A@3~@@'sqrtrem3~@7]%{@A@ACD,@ @'bitwise,@/v@A@>4'@@'testbit>4'@8g$@A@A{U@@,sqrtrem_step{U@8R@A@u^@9@(div_euclu^0@ @A@Afz@@'to_uintfz@9w@A@Bl@'@'comparel@3R@A@CDEFs8@,@+of_uint_accs8#@5+@A@}@R@,pos_div_eucl}I@&`@A@3x@(@'compare3x@]=@A@A@^@&doubleU@'޺_@A@BCq@@+of_succ_natq@$@A@w@i@&modulowɑ`@)1@A@ADK@n@&of_intKe@)j,I@A@K@v@&of_natKm@)j2_@A@AI@{@&shiftlIr@*O@A@O@@&shiftrOx@*O@A@AB,@@&square,}@*ow@A@Z@@&to_intZ@*81@A@ACE`@@&to_nat`@*9G@A@e@@+testbit_nateđ@+@A@A+{@@'sqrtrem+{ё@,J@A@5z@@'testbit5z@-T|@A@A @@'to_uint ͑@.@A@ @@+succ_double @.^4@A@A#@'@'compare#ݑ@ )Q@A@BCD%t2@,@(size_nat%t2#@ @A@%9@3@+of_uint_acc%9*@ ΋@A@A%V@8@+double_mask%V/@ S@A@%%@>@'div2_up%%5@ "@A@ABEF'ş@C@'Ndouble'ş:@ @A@(b0@K@*shiftl_nat(b0B@9-@A@A(nՖ@P@*shiftr_nat(nՖG@'@A@(@V@0succ_double_mask(M@@A@*W$@\@,compare_cont*W$S@!@A@.0@b@.sub_mask_carry.0Y@΂@A@ABCD.@@!t.@ ;@A@.먩@@#add.먩@ `@A@A.U@@#div.U@ @A@.B@@#eqb.B@ @A@A. @@#gcd. @ @A@.=@@#leb.=@ @A@ABCEGHI. @@#lor. @ @A@.Z@ @#ltb.Z@ @A@A.p@@#max.p@ '@A@B.@@#min. @ @A@.@@#mul.@ @A@AC.g@@#odd.g@ @A@.&@&@#one.&@ @A@A.뾴@+@#pow.뾴"@ k@A@.L@1@#sub.L(@ @A@.@7@#two..@ @A@ABCD.,a@<@$div2.,a3@ @A@.Xz@D@$even.Xz;@ ?1@A@A.@I@$iter.ؑ@@ @A@B. @N@$land. E@ @A@. @T@$log2. K@ @A@ACE.@Y@$lxor.P@ R@A@.y@`@$pred.yW@ `<@A@A.Ʉ@e@$sqrt.Ʉ\@ ;@A@.@l@$succ.c@ @A@.t @r@$zero.t i@ Z@A@AB/@w@.to_little_uint/n@ @A@CDF/@|@%ldiff/s@ H@A@00@@'compare00@?H{@A@A1P%@w@!t1P%n@  @A@B1P@|@#abs1Ps@ @A@1P&@@#add1P&z@ @A@A1P@@#div1Pґ@ y@A@BC1P@@#eqb1P@ f@A@1P@@#gcd1P@ 0@A@A1P@@#geb1P@ T@A@B1P@@#gtb1Pʑ@ q@A@1Pĺ@@#leb1Pĺ@ a@A@A1Pň@@#lor1Pň@ /@A@BCD1P@@#ltb1Pב@ ~@A@1P@@#max1P@ @A@A1P{@@#min1P{@ "@A@B1P]@@#mul1P]@ @A@1P@@#odd1P@ @A@A1Pɣ@@#one1Pɣ@ J@A@BC1P@@#opp1Pԑ@ {@A@1P1@@#pow1P1@ @A@A1P;@@#rem1P;@ @A@B1P@@#sgn1Pˑ@ r@A@1P@@#sub1Pɑ@ p@A@A1Pe@@#two1Pe@  @A@BCDE1[8@@$div21[8ޑ@ @A@1[d@@$even1[d@ I@A@A1[6@@$ggcd1[6@ i@A@B1[U@ @$iter1[U@ @A@1\@@$land1\@ /@A@A1\@@$log21\ @ 6@A@BC1\$@@$lxor1\$@ @A@1\Y@$@$of_N1\YÑ@ >j@A@A1\@)@$pred1\ @ j@A@B1\@.@$quot1\֑%@ }@A@1\@5@$sqrt1\,@ @A@A1\w@:@$succ1\w1@ @A@BC1\k@?@$to_N1\k6@ @A@1]@G@$zero1]>@ eD@A@A2:@L@%abs_N2:C@ @A@21@R@%ldiff21I@ ߵ@A@2=*@X@%quot22=*O@ @A@ABC2kF@@(size_nat2kF@{@A@3@x@(tail_add3o@^q@A@ADEFGH3@}@(tail_mul3t@^@A@5Z@@*shiftl_nat5Z@y/@A@5f}@@*shiftr_nat5f}@4@A@AB5a@@'iter_op5a@ @A@C6w~@@'of_uint6w~@^5@A@8j@@'of_uint8j@'"h@A@9E@@(div_eucl9Eđ@(*k@A@AB:x@6@,Nsucc_double:x-@ ʭ@A@CD@[@&divmod>R@C@A@>@b@&double>Y@NĴ@A@?2@S@,pos_div_eucl?2J@-u@A@AB?;@m@&modulo?;d@"i@A@CEFGIJ@(Alembert%Reals#Coq@0I͗Huz&)AltSeries%Reals#Coq@0d US^%Arith#Coq@0I|кX*o4)ArithProp%Reals#Coq@0B+L?>*e˃a j)ArithRing+setoid_ring#Coq@0ṔCgt?}*Arith_base%Arith#Coq@0Ĕ}CS&Basics'Program#Coq@0!bs߯? :VU'Between%Arith#Coq@06v*0ur`C0&BinInt&ZArith#Coq@0BpHޞun^)BinIntDef&ZArith#Coq@0ådR4Tuy'BinList+setoid_ring#Coq@0Au&BinNat&NArith#Coq@0K11ڤs+Π)BinNatDef&NArith#Coq@03@1O,[{ 'BinNums'Numbers#Coq@0dmk(5Ju<&BinPos&PArith#Coq@0vyػ0= u)BinPosDef&PArith#Coq@0}H d.%,b(Binomial%Reals#Coq@0]JrHr#E$Bool#Coq@0j 2cZ`FW*CMorphisms'Classes#Coq@0qیZBeϠ0CRelationClasses'Classes#Coq@0TL;0RUfw1+Cauchy_prod%Reals#Coq@0K*ߞ4q.ClassicalFacts%Logic#Coq@0$RzqIF\(43Classical_Pred_Type%Logic#Coq@0m[6BZ5.Classical_Prop%Logic#Coq@0Yh޿JdI1ƽ'Compare%Arith#Coq@0OM v먣5L:+Compare_dec%Arith#Coq@0jXF 8@0.i bYN Z)Decidable%Logic#Coq@0ND걸풬/Oߠ'Decimal$Init#Coq@0C涳N*ua&DiscrR%Reals#Coq@0z41pV.$Div2%Arith#Coq@0n*Áht!,%EqNat%Arith#Coq@0AIgՋXRV *EqdepFacts%Logic#Coq@0FI$ͼՋ`)Eqdep_dec%Logic#Coq@0u wWIϰ߼*Equalities*Structures#Coq@0όe얟)H.Ƞ+Equivalence'Classes#Coq@07;ꮹ$Even%Arith#Coq@0YO%q}d߫%)Factorial%Arith#Coq@0@oehJd%Field+setoid_ring#Coq@0J _ȫ)Field_tac+setoid_ring#Coq@0d vDZl^۹H e0B~uYٮ٠'Fourier'fourier#Coq@0wV9TN,Fourier_util'fourier#Coq@0ϳ> 4`*r0-GenericMinMax*Structures#Coq@0måj$"Gt%Arith#Coq@0䙛#c:D 'Hurkens%Logic#Coq@05[gNk2up$Init'Classes#Coq@0](p{yOh.+InitialRing+setoid_ring#Coq@0k/T=cN"Le%Arith#Coq@0d}Omq+$List%Lists#Coq@0>I+ListTactics%Lists#Coq@0,Jcy{ 0\͉!Ig*Logic_Type$Init#Coq@0 1jc6"Lt%Arith#Coq@0KZ-eJkP܏#MVT%Reals#Coq@0cq통 gZ#Max%Arith#Coq@04=;3$>aU堠#Min%Arith#Coq@0Ce-Fѕ%Minus%Arith#Coq@0LFtR")Morphisms'Classes#Coq@0Imӽ%\$PD.Morphisms_Prop'Classes#Coq@0% :B'.>u%$Mult%Arith#Coq@0햖Qyb0$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI%NBits(Abstract'Natural'Numbers#Coq@0qteo_hɅ $NDiv(Abstract'Natural'Numbers#Coq@0bz$?[p(5$NGcd(Abstract'Natural'Numbers#Coq@08E-S ;j_Ҡ$NLcm(Abstract'Natural'Numbers#Coq@0 ~xZ9L{:$NLog(Abstract'Natural'Numbers#Coq@0K Aat/ j &NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf+NProperties(Abstract'Natural'Numbers#Coq@0unt"kwpYC%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ%NZAdd&NatInt'Numbers#Coq@00h`ZK4*NZAddOrder&NatInt'Numbers#Coq@0e~1>r砠(NZAxioms&NatInt'Numbers#Coq@0] ρ5r&NZBase&NatInt'Numbers#Coq@0^&8yUL&NZBits&NatInt'Numbers#Coq@0MlIpKt%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZMul&NatInt'Numbers#Coq@0ctR~6[Ƞ*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R'NZOrder&NatInt'Numbers#Coq@0 q;Ve7R W,(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x&NZSqrt&NatInt'Numbers#Coq@0` .%m#Nat$Init#Coq@0eʤģPSR蠠$Nnat&NArith#Coq@0$W;s #%M)Notations$Init#Coq@0&v!D]hwnv *NumPrelude'Numbers#Coq@05WUVŦ]xVXԠ%Omega%omega#Coq@0t.J'6\ϨrK+OmegaLemmas%omega#Coq@0TJ#Jes4Operators_Properties)Relations#Coq@0U3y#h&&Orders*Structures#Coq@0$Znl0\͗+OrdersFacts*Structures#Coq@05Mܿ獐ζΖLB)OrdersTac*Structures#Coq@05'4Ԗ+9%'PartSum%Reals#Coq@0j&2"(>S 0 jha|ؠ(PeanoNat%Arith#Coq@0O~2$k[#lZ)Peano_dec%Arith#Coq@0Kݢ*k$Plus%Arith#Coq@04tmG$Pnat&PArith#Coq@0,?pr.gZ(PreOmega%omega#Coq@0\|چBb~w4'Prelude$Init#Coq@0JqTttֱ7PropExtensionalityFacts%Logic#Coq@0 +_.ɓoFؘ%Quote%quote#Coq@0J@ŹVz-,3%#0JUڻIu)$w%RList%Reals#Coq@05g2NaA:%R_Ifp%Reals#Coq@0c4+ZŠ%R_sqr%Reals#Coq@0X%MԹ%M*Ranalysis1%Reals#Coq@0 n;qm.L%'Raxioms%Reals#Coq@0S]jnj][L%Rbase%Reals#Coq@0Jܡ\ c6{*Rbasic_fun%Reals#Coq@0hܒiclE>)Rcomplete%Reals#Coq@0{ڸ4q d0(2{Ze$ќ8&Rderiv%Reals#Coq@0?KQ;^WU;H)RealField+setoid_ring#Coq@0 >ʾq /RelationClasses'Classes#Coq@0Gz rA6ՠ4Relation_Definitions)Relations#Coq@0]4Ѐd{n^2Relation_Operators)Relations#Coq@0%s鯰s)Relations#Coq@0-SetoidTactics'Classes#Coq@0S_`nOU$0;RWMi\N+SplitAbsolu%Reals#Coq@0M)&qYlݹ5*SplitRmult%Reals#Coq@0sD\rt/'Sumbool$Bool#Coq@0sB ,$11.]m'Tactics$Init#Coq@0/9m+ a'Tactics'Program#Coq@032 Q@@@@#_14@A@@@@@@@@#_152M접 à#_16'`o@C'R_scope@@@G2 Q@@A@#_17@R6җ@A@@@@1@#_182M접 #_19'`o@H.@135@@@@Ġʠ͠kadV@52 Q@@@@#_201@@>v@A@@@@t@#_212M접 #_22'`o@Cqs@@QTI@2 Q@@@@#_23^@ @A@@@@@#_242M접 #_25'`o@D@@@Ġ2 Q@@A@#_26@"A@A@@@@@#_272M접 #_28'`o@GРҠ@@֠@@@dg\_p@2 Q@@A@#_29@6@A@@@@@#_302M접 #_31'`o@B@@@Ҡ2 Q@@@@#_32'7@#_332M접 @#_34'`o@D.function_scope8@@AAɠ@N2 Q@@@@#_35Ue@#_362M접 .#_37'`o@B-@@A@נ2 Q@@@@#_38x@#_392M접 Q#_40'`o@AP@A@2 Q@@@@#_41 @#_422M접 CBAA#_43'`o@Cpr@AA7@2 Q@@A@#_44@e!@A@@@@@#_452M접 #_46'`o@D@@@AAUo@I2 Q@@A@#_47@T,P(@A@@@@@#_482M접 #_49'`o@Hˠ͠@@Ӡ@@AAA5@32 Q@@A@#_50@>]W@A@@@@B@#_512M접 #_52'`o@D )nat_scopeD@AנA@2 Q@@A@#_531@/ɞ<@A@@@@t@#_542M접 #_55'`o@G>@@@Dy@@AAA@2 Q@@A@#_56m@ <@A@@@@@#_572M접 #_58'`o@Dz|@@AAܠA@2 Q@@A@#_59@=gf@A@@@@@#_602M접 #_61'`o@C@@Ap@2 Q@@A@#_62@6+@A@@@@ @#_632M접 #_64'`o@Gՠנ @@@@AA;@2 Q@@A@#_65@!@A@@@@H@#_662M접 #_67'`o@GK@@@AAA᠐֠蠐A@Š2 Q@@A@$_113A@-5R@A@@@@@$_1142M접 $_115'`o@KNPRT@@Z\@@AAAA&-AA3@@@䝠|%n@:kpZK'xz؄@՛qLP@!kᜰw"^@3# 6Z L8!c,Rdefinitions%Reals#Coq@@!RӀ!d%RIneq@'posreal̠@!x!y!z!"bx+PSeries_reg%@%Boule>ߌEDC#b_yF $intz%Logic$Init<@#andЖw@H@#Rle=  !/*Rbasic_funR@)Rabs_def2(S\@&Rminus&H,HT@#pos=D.G;1n@#Rlt=w@$Ropp΀"L-%LI #UK   <@)Rabs_def1(R9`J4@,Rle_lt_trans*GӀ E8  @1Rplus_le_compat_r?3uAp@'and_ind14ۀЩEYT IB#sR!H "H0UNclGKЩ_sNLn f_ wW"H1"H2rkQM=ЩVX%"H3"H4-&AǐBMHD\e@K><S4-4'5%#W?N$"@,Rlt_le_trans9\`id``ZeXVmNGGNESCAu86ˠX :?863|xtrphaԷ]k[YPNPLQJHE E&?$@!h֠NO&Specif @$sigT#6@AQTR @#sig#* @K!rN#%@"eq @g ru= mn@%Rplus+1 Dt@$Rdiv̀ L}@#IZR/r'BinNums'Numbers@!Z7@B@(positive*@BCȐ&radius@1Rmult_lt_0_compat=Mz@$Rinv85@*Rlt_Rminus©@0Rinv_0_lt_compatDC)RealField+setoid_ring@'Rlt_0_2+C\OIA]*V Aȷ}ɩ{ܩksfywAwqA̩εȐ(list_hyp)Datatypes@$list]@A @$prodt@,Ring_polynomY@%PExprk@  Ȑ+field_lemma@3RField_field_lemma1(Mk(Ring_tacq@0ring_subst_niter!6B=?=AK,Field_theory@%FExprs@F, G1E6D;©=ͩIB"CGI)K2@$Truey@A#lmpSjl[e@#Monf@l@#Polj@i@+u@.mk_monpol_list(rƩ&BinInt&ZArith@#add1P&)BinIntDef@ ̀@#mul1P] @ @#sub1P@ p@#opp1P@ {%Zbool!@(Zeq_bool0߀*@'quotrem\$@/ŀζ$nfe1@&linear@@p @%Fnormw$ ED4.("ⶐ$nfe2@} $ML<60*@@$boolZ'@@#Peqj*:@*norm_subst7:d0*dcSMGA9G۩@#num:uԩ@%denum00?yxhb\VN֩ .A@@%PCondS<P@%Rmult׀@#nat@&BinNat&NArith*!N@&to_nat`)BinNatDef @*9G(Rpow_def:@#pow#׀ Dt F}B@#appʀ7 @)condition.3&5&X@&FEeval>@_DB><6%'az)c$" @eJH DB<+Ȑ#resfȐ&res_eqA|@(UFȐ$res0A]iFbnEgsD10nzC,[]Ȑ'res_eq00@Ȑ$res1)Ȑ'res_eq1 @ΩA v~}|@@Ω@-RField_lemma55vtpkl$lock"le)A(lock_defg ҩ8\nSMk@(eq_ind_r!2#8 fx]WΩDpC<pga G@萩@$Fapp{FƩ@&Fcons2w$![ZJD>80ک:[CΩ@p64@7-$3ml\VPJ  (:@=3$9srb\VP@&@ @ Aa@CcM{y@wuRs~@qC CᠩĠ*>İ%)* +:à<;Ȑ#cmpBBB@@@@D@ӠK֠ؠ+-ޠ1 Y"h1"h2Y?'^j'Raxiomsc@1Rplus_lt_compat_l ]߀%]@1Rmult_lt_compat_r ?r=E@)Rlt_transCDKL !/@*Rplus_commq9jީAȐ!si@1boule_of_interval>vOINGAb?93:]E9F_BBB@@@@D$`Z{XRL[b^RRf-÷ĩrla`MhbdoېӷI"BBB@@@@DRзѩ}y̠h@HM4[Ӱw4i !a$Ϸ@̠ ݩ|hW \/Ƞ 㠩*+X砩>W1"P1#"P2ϰ0àϐǠN&zʠn;></0LM\ ؠO۠Bx=>+[M꠩s,l80${84@1{L<ܐ n@.Rplus_lt_reg_l5=Ӏ !ln2 "6romh`b]J}QIBNFaM70.@߶@H$@N$ @Ѷ@<GY>8{}UQ|u\e@QcHKBVĐR)m@YkPSJ'b`R_]WSQIFF?;53@))1XPIWO2?0;@++o .+'&" #8tke#(8ypjWSC<%ys Y@llt{@&eq_ind Juu \ꠐP_c~F"<)#hx,@1Rplus_lt_compat_r8׀###5C@$Rabs; wCP@ΩΠ5ݩܐ Ԡ]ٷmҩYܠ ޠ@EqOM,)'"TL^߶@̶@@~@z@H<^CA<=;5$&`w!b @dIGCA;*,fX(˩@iNL HF@/ ;CBAz{ũ°c8y^ \WXVP?h8~ca"\][UDFYBCn<ig( bca[J@%At 4& ;)+zz8sAh}zxsk^f N920@@@϶@˶@<AS82uwrkR[@GY>A 8{W]@I[@C :}Y`RPBOMGC!T  dϩ8YkPJi S_C<_qVPi6@nǩKҩegEߩ שjOշکmRTөqB鐑"c1䷐"c2緐"r0@BB@@@@D!p涐"r2@ְ@ٰ"r3@ΠCx"r1#r1pL!0 .' @9>)@+Р# &@!DF6 _89;1#r2p5#in1͠J #in2֠R@+Rmax_lub_lt:>Щ'%꠩+- 3l( 4@1C۩oA$_tmp!u &M{t@.Rplus_lt_reg_r5=ـE1G$Щ#8+N@&Req_le 3v  Ȑ(hyp_list|Ȑ'fv_listjΩe@2RField_ring_lemma1!7|)٩H+)I @WE-C0*) 0,+  Tj1wo֩ac\ @j~ qnguq쐷k ixqdgvnWЩa\Z°bXW@$Rmax; UF@+Rmin_glb_ltzG؀Щ?H⩷ҩשǰ$@⠩W-$ʩ&G!Щՠ*KŠ =O5:2 FEӵ@_ͩZ$U0&zQW0(|S 9 ޠy\}@pslelΩWЩ !ҩsհkJΩ6p6cC!@$Rmin; 〠ljȐ!tvЩ#R')+^۰`ݰb#ǩ |@,mB=e4uJ:{PȠ=V}@թZELDMk=@U1Ŷ@Ye堩ZsNҠw̩y {fmnZq wC& |uo(,w·@iE/o @א9&AT\, N䠩ɠ/obϠ56?3= F֠joȐ"H5@&Rmax_l?>*+-Ȑ"H6@&Rmax_r?D7 PȐ"H7 @&Rmin_l|oU Ȑ"H8 @&Rmin_rW 'Ȑ"H9" pz ũ ! #| =Ȑ#H10' 1ԩ 5ѩ 7. 9$+, S*   _ 3t I4 M Q[I TZ WBI Jx hI b f\D i kV] ^֩  a c \@  k  %j )⠩ ]4 $ w~ 6  y  ǐ  ʐ^L ΐ   *"h'   L c / X  ZȐ#H11 *  !@ 頶@ '@#Rgt=< 8   @ @ C@  E @(Rmin_Rgt 3@"@@#k  U= MX N O*  [ V `u _ 젩   . 4 *@B5@ 2H t a~ !˩  U "       I Y . )b1 ` 5 0 $cmp1($cmp2s @+ 2F 4- H C# 2 (8 ?cW B&  D 1 h  Je/ Mdb  Ʃ      Ʃ PV oөΠ sf# v{ xc j  k  ک m    |ࠩ j l @)Ropp_Rmin Y! }    {  g> ,       hQ      @0Ropp_minus_distr"     ) 'F  $  %  &@ @ /  8   @   Ǡ8 = @@     B @(Rmax_Rlt Z$ @@@ ٠J h  R 1 J / K - L"J X S i O ␩ ꠩      k (  3@ 0  r j| " q   "      I Y .ѐk ` 5 $cmp3*$cmp4 , % B- 4 61 J% 4 Sl\ V(  F m#  ^n1 am ȩ  T  V   Z po a w G &Y  ( ?Щ m% o.I)D  B  p6A@   d a\] }=@   y a w   90  $ ^ ] M G A ; 3    0  & ` _ O I C = 5  g㩚 @%proj1OԠ E֠ EI j5 T9 Щ *P- T  W yY6t  r ڰ S ܰ 2 rq  " !E l@  8    3  h٩ .0  S   | v p j b  *M  PͩiRϩ Щ mVq*s )   .aI @%proj2O;{ f +- 3 <   A  Cv -C ( D@ ؠ 䐩 d C  ࠩ!  \ө 栩'  bC@    y * 2@    l  Yg Z N j@ ?  { Ce 7 G   q     Q &     % C@ d , @ g (  ;   u @ X p   r       z p  p  G $rpos  ޷ O  =~ C }   U  C    驚 c@+Rabs_pos_equ 𩚠 @(Rle_refl  T  M c@+Rplus_opp_r {GC ^ l  C   "fn@ @  ۷"cv  ߩ  ᷐!l 䩚'Rseries @%Un_cvɀ  ͩ'PartSum @"SP?v       췐!X @%CVN_r>յ#eps  L @(sigT_ind捀ж@  "An   5  ݠ5!n *Rfunctions @(sum_f_R0Yc!k    8 8   0@  h  = 젩 o  >,+ @"ex @ !V "* # + G@%Peano @  UxT@ ֶ@ .   ] 砩(  6@#SFL>.H   1q  4 3 RT"X0S @'sig_ind5π n o 5X QVN TI L   _ X ` |@ Y    8S   OR! 4 L g hp i q @F@ k    $e :=   i  l k    . Щ | w r >     @     f  7 Iw     @q@    ũ O eh}  ԰    (    ʶ@    ש   W q 嵷$eps0 ط    @&ex_ind 5{   @@"ge Uw  ~@&R_dist֠ ԩɐ *   x ̩ ٷ ڶ ۶@   9 ַ   #A   @) #  鐩   # Q O  # 7l S  Š  A  1  )     Ѡ c@*Rminus_0_r- C ȠJ   CU   ᠩ     N y  Wb- & -% +    [ v 0e 19 2@q W q 7l 8@ 9A]@@; Y j 5  }9y<; $"N0 K }i N OW PXt@-@R   L!$kPSR g `hQ= EHc   Щ]25|a~dce:yq wl V 3n q+ H\wLO|~  T  Wk )SeqSeries@(sum_maj1'Ѐ$'1   8 qŷƩ⠷ ٰ   թ砷  {B  @@@@@ J ׷ة    琷 ߷@  h C ĩ 2 ZS"n0 ɩAЩ  ΩӠ ѩƐ =  ն@ְ 1 EА  > ϩ֐ Pn  @ D NȠ㐩 4 I ]  Ѡ쐩() @*Rabs_right |T@&Rle_ge @ H e!@)Rle_trans" l  Q %@(Rabs_pos+F #q ! |8@.Rplus_le_reg_l -<  P Q ] 栩7/ 5 * S -v `  e s sk  p)  s t-!  z @(sum_incr}检R _G  #@)Rplus_0_l 6ʀ). ,@+Rplus_assoc 3ũ(5 CQ-/ ө@)Rplus_0_rH€A@1Ropp_minus_distr'%~Y@)Rabs_Ropp&# =Z @K OQ   \<  @&Ropp_0 GU` @eb fh n rt ) y{̠!C Q   0C@#CVU>. ک  5 ,*!f,LL @*Ranalysis1@-continuity_pt?ZLI$C$HL72A={ &@1Rplus_lt_0_compat-P<@"R1ȀB@%IPR_2ū7@'Rlt_0_14C&DiscrRL@)Rlt_R0_R2AlCa-k.3 =r >F ?Gc@@A_p ; f ; uF5s#alpv<`y@@&Rderiv}@#D_x> Ht@'no_cond')  a6 +* s6d80 :^_  r, oI7۩K O*ŷR@T 4  Z _MƩO e,g ) '  ' & E a !@o ]@.mk_monpol_listEa ǩxl(& Էީq  b(w3H5FD> ? }!  ' Ɛ e鷐#del@S ۰ = G   ڐ Ce  搩 H ~ |  ^ | {,+        ~@̰J]Ez@0e|t<B0g~v> $հ6ɠAݠS ߠϠWG  H@Ӡ< Eؠ Щ  ࠩ !  " @+Rabs_triang9 搩 0 Z ld 6 h @  + F 0 yz     _ K>MH  Y j  @-p۩0rc 0te 6<G;,?I BX1E35. xM = ~ HM  xzu  .3 5L @ZHF y0-,  aNUXWRX nɩ\թpj v  1^m/s*zj C ! Cܶ@p3| yַ׶@İ  }@!@ z  Ԑ ِ   ! =$del16ڠ=@ޠ & Š, + ˠ h3 j $&01Z4@Ƞ ޠ  /  5$del2@-I РNE?GHq2K@Ұ Z㠩 $` _頩 *  P  s iqIb@) q ;w v A  g - mР0@'sumbool7̂K@BAAAA@@@@@D A &ZO@#notШ k|P ZjB:pө@'Rle_dec3 @(cond_pos 1y l#Щ@ygHeJ ` > ? ԩM  Q <Ŷ@LD ԩ] *_ u "ѩ # b C gQC"x0ݷ l{Eqs s  w  d P N   tũ S Rv &ש}uQ@0M08rqa[UOG 0:tsc]WQI  '"  ! ͠j ꐩ Y m Ơ Vʠ71IK ԠK ̠c o ڠ /l9̠YΠ >Ӡ 5 5P7@1Rplus_le_compat_l?kf  M, R_T_ ]V)#o bZka 7 L ;J]xEC= 驚b@.Rmult_eq_reg_lAM    vS vfY h[ ,(m` ѩ   51%xk  }r tC?35       z' $(D@R@>0%$0'& !@.Rinv_r_simpl_m=  @'IZR_neq% Bk  !eM@@AA@AA@@@@@@D尛@%Falsee@@Px@ | @)False_induُCe'ՠȩנ ̩@+Rmult_assoc& Cs|e~@2Rmult_plus_distr_l0ylɀ J SSS$ @/Rplus_lt_compat":Ȁ  g iiZDA%  / 4   @?Oʵ@ذViM*۰<ϠRTJBՠ / 1lG#  SЩѰ : ⠩#%   ;꠩+/'PЩ1-m C89rЩ D6Tm@4 ]|F c L! Ѡ9 Ӡ;˩YcƷ  lp@P!b72'h= ؠ ڠݩ+ ut( x9OFS#H12 #H13CSH] Щ_RZ&Ƶ Z)Cx ©NkƩYʩoorͩ`#  -(ݩbumvfqCܶ@߷l @jb{!"C@ ᩚ&Rlimit@$Base /h @%R_met Րs@Р&@$dist 3^ )(C@(limit_in=++C)@)limit1_in8 3C@+continue_in :C <_]H8|@+2;@'nat_indJзX$-&@:+<4P2*0#$%:3@c7AK)R0k 7 CSKgIAG:;}I%HrecN(UN@*~SBEgnEgee]cVX&+ {@(plus_fct1xy ~|tzmp-=H$֩@2continuity_pt_pluso-( u|g @(PeanoNat%Arith#Nat@(le_trans:L˩@.le_succ_diag_rѠ@B̩_4/CѩNJݐ}ɷ۷ܶ@Π/#@.CVU_continuity,P( ȩ$@'CVN_CVUe!ǷԷ"y0!װ2@7continuity_pt_finite_SF]Wƀo*C G < : 8 6 @%CVN_R>_  @*continuity* %f@4Rplus_le_lt_0_compat&_ eà tǠkɠ ,`q>?Ҡ Ԡ(NF٠}IܠU 2C8%'#C頩*w hC:0>%o7B@1SFL_continuity_pt/ɞ< VA XQYuR NbOPCa   om)Rcomplete@*R_complete~b􀠷 n d  shf u @*cauchy_abss''SeqProp@)CV_Cauchy5թ  !iI~{pLj٠ʩ  {@(sigT_rec   x̷ ͩ  Ѷ@ iA Z H     Ơ9"Bn ڷ!@'sig_rec5Ԁ   Ӷ@԰/U  R }( % #  젷_ߐz /5@'and_rec1@ z @S9Q-ܠ V sӠ' F( D <  h;;C A 5@mS͠Y"G p@/Rseries_CV_comp^ .'\ "#]_YZ 0UDjb( eq -N"-ː/C13 ACD>CR@C*z {  [ `PL e^QU321 ha=6T mfB H O  m n vo@ &  h Zu v ~w@ .  cr~R   @ ©:  -B M = @&sum_eqcǀ  F}<_  )˩ ũ pmȩ[ ݠjR ٩C 젷  SkkC @2Cauchy_crit_seriescZ/vC @+Cauchy_crit ܀W !g ැ#cvuҩа "ep ", ܷ ݶ ޶@ @=pڐ&ک BBB@@@@D@ ۠ + @ ն@PW)ɠ.Ʃ  <  @ H B*L= F"Pn 2 L @ XР RL<M )""nN ,}J ]MYZ! 2@*R_dist_sym W&C r =6 Y "g1 "g2fdXVvq:9qr!qSl@yoM kqy] ; 7R S [T\x@ 1@Vvn@ B] ^ f_g@ <@e Id e mfn@ C@n`5l r` u v ~w@ T@y2sH_s8  $R@V CN ,Coq_Reals_PSeries_reg_CVU_derivable_subproof"f' Ŷ Ƕ%delta˶#dyzawȶz~|ݩj`b)|, -Coq_Reals_PSeries_reg_CVU_derivable_subproof0&߶ÐKǐ -Coq_Reals_PSeries_reg_CVU_derivable_subproof1 4 tvx -Coq_Reals_PSeries_reg_CVU_derivable_subproof2E"d'"d2%mmposM -Coq_Reals_PSeries_reg_CVU_derivable_subproof3 (amaéӠà(( -Coq_Reals_PSeries_reg_CVU_derivable_subproof49r+~r -Coq_Reals_PSeries_reg_CVU_derivable_subproof5&B{46D4E20۠+ -Coq_Reals_PSeries_reg_CVU_derivable_subproof63OACQAR?=-) -Coq_Reals_PSeries_reg_CVU_derivable_subproof7C\A]"xybklTVdTeRP#ymx k7N < -Coq_Reals_PSeries_reg_CVU_derivable_subproof8 -Coq_Reals_PSeries_reg_CVU_derivable_subproof9b~prpnl< .Coq_Reals_PSeries_reg_CVU_derivable_subproof10y{ywuDn .Coq_Reals_PSeries_reg_CVU_derivable_subproof11 .Coq_Reals_PSeries_reg_CVU_derivable_subproof12 P&+$ .Coq_Reals_PSeries_reg_CVU_derivable_subproof13 9   ѷ,"g' Է #cvp@ĩ Ԡ & $dff' @Ω @0derivable_pt_limթ7Rη Ȑ$rho_ ]BAAAA@@@@@A!s[Y婚@(Req_EM_T: 䠷@ @ | "!ȶ ԶȐ#rho(!@7@6Ȑ%ctrho  "bzGz4,= -"xz 1) * 7$eps'1#ep' [efn@A *r+;@߰@Ju@Ԡ ֠젩֠ n!i oD@ GHX@@.`8b: /m n4 Xw@8Zht1 lxuv q"Pa, } L p@P  !%P ZQ _6tѶ@d3,p*"z'oq (D$QkE @} 62_ɩS V ؠElCϩ@# @b|,-  [))Y--@@w,,59@ qĩmA˶@ # /(  &!@M @ 35 G@!55#>99@@ϠѠ8:$xnz'ְ7s$dxz'͠ O1aY%C .ηjàKࠩ b}vϠW͐Yc@qt@렩 x   ~堩 mo@@#abs5@@D@ + + @:~-@!;#>55mb@&eq_sym XB,Z7= / ; 9S;WN٩ 2YTT 0Ơ@I @@Nh;kHHҠQ@0.P А0/Jj*@xf ΠРd^Щu~2Nyh!j!b~H6J8H+JqB-7@((JkiѰ$Ӱ _Ω;i=f@2 E<-b(0Mvpjd\$  %mN( Ǡ=vv%ư'd1\)^*˰,i8kc01 Ġ3Ơj ?O@C 8oBCˠM@cҠTР꠩aATޠMC@ᠩc~w РXaP ΐZu@ %@젩 p ,  䠩 ldd nhh@@CC gXK#xnz_Z@-Ball_in_inter"A}}VUU3xym@fVRj@z@s/_w 7j"PdȐ"dz|QD ]@+Rabs_pos_lt #zx0Z=#!A!fǩZniiͩ`tOɷ" zթvj  ҷ+nթpש Z^C V)ur<Ȑ"t'~| # r p ! z xZ%T:3 Z  @E@pEĠ]+#X.& '< ӠIlv:àEzd өݠj^    ʷf C_ OܠpM=BHad\0Mcx p6@)Rmin_left"fQ1Z(y'}uv ré*$$O5'!S%2@*Rmin_right'>`,{@&Rlt_le A3˩@*Rnot_le_gt.뀰:+)<ϩ8C1rG,*7.xM0+@ ϩL:TZOXZ@*Rlt_irreflnQƀ#xnyRCbéPjbynթ̶@nϩѩ^xVo| @9continuity_pt_locally_extLEn Ʃ=e񩚠 @1continuity_pt_div''  n @3continuity_pt_minusMBЩNw @7derivable_continuous_pt%f ~.! @0derivable_pt_abs팀9uKưx @3continuity_pt_const 5 <C @(constantV)1з$.%,U)H*' 6@3derivable_pt_lim_idsT$ [67ʠ91Cް?pt=אB!7GڠUMࠩII3RT^VWY \T] &W5ijC ֐%G@Ed@WT/pdjrVȐ#ep8+r Ds~8ST\U]y@2@O$"v@Jefngo@D@ a6a"[vwx@U@z3tIt#Pn1$Ȑ'cauchy1m."pNn˩oJqeui1b[Y@q\ܶ @u$ ED4.("@{ $KJ:4.(@@<tke@zqt=k3)@!~uxAo"w@{ }|z)f-c3a_@((]wp3Ȱk;\g@** ZW&RNLFO8C&DT8Hd;C<Kg @8LN( =#%Π~991ڠ X;ΠGР̠9@A  F *HJ VUΰ-y S/,@pީk5f07(b h09*d J\ p) r)/ld   L=  N=k*pЩE MOB+ T )Z/(ˠ a" uRR1d]c+fge oide&yz@@@4uJ(s*Ȑ&step_2ji  -ZȐ#mm0 ! =| : O D B@"or @yکh%%}ީ .*2/3©9/η/Š Ǡ D8AР WW ֠ ] _(   c >@*Rmax_rightXBl-IhYZ '>\ )r *\ϰ 0o:Ӱ 4FgB') /1O13%'a@)Rmax_left q<  'o|  Pe SU $  X ( ZnȐ"mmBAAAA@@@@@D@ .  lX oq A 6 t E va E@  "q1"q2 . @ C( , !   *: @ O2 +Z T 3@@Ѡ 4C > B 7  Z9 [@'Rminmax1~ˀC~@96ַ4  P2 ӷb @ w ө R ?ʷ { f@ Z gcj  ie ^ KMנٷ  Q  ԩJw ' nXN{ \\^@  q 2됩u 3:98 wzwȐ"dm     q @6derivable_pt_lim_minus9 ' P 3ө 5  @,Boule_convex6җ BWZ[ @9 Ϡ! b$!e  ՠ!h !k, 3T 頷 ]@ ⠩!  !"  +@ / ɰ!* _!,{!-    F  5 l! @l!9 !:!! !  !  K!! !  !!! L  V V! ?@!!T= !V4 `թ![۩!] 1!_ !`!)!'!T%!@ !/!-!"!#!> " v  u!=@g!J!A i=@X!P} ZQ!{ʷ !!|!EO!Y ' !  )!!MJP!NB < : !W xR@9  93! !߷ 6!!Z1]![,I G !d6@![!P!i!R!k!l h@!e!Z!t!\!v &$! P!!t~!r!g !F!i!H3!! Z!!~{!|!q!P!s !x r p !!@o  ɐ@o>i!!.! l!Ƕ!g!!F!e   !g!8 ж!!϶@ !!ө!x`a  !|!!!!x!!P!|!!!!9!! ,ЩQԩϩ٩۩ mީ nҩ?ðCǰ@<HF@ I?$ E~nhb\#!:L@ OE$ Ktnhb!"@8@<" Q !! "&"!)O"$,b-"(0p1",!$".5 ϰ"0@"2 g !!     "4,ĩ"7/u ";3Q "?7} "C "E V@"G |, *!!   & $ G[Zө +ΰ -yа /*ZӰ 2YW  A@KK ;ް =c ? ( L @PP! "0"8"7"6!o!pL! !vX8"n S!Q"!L M KE4<]8"s X!V"!Q R PJ9 ;"u!ͩ >"x$r B"|(i& F",* J"| L". Gʩ!4#yx0!/""5: M!  t `"֩ b" ] n!! 2@!@ . ,!C"!7"K22"!="Q##""!P"!" !Y"!U"!I! "/!`" N"2!P 4:6!!ˀC75C<" !W"i"N !HRp!!@!f"ǩ!T"n"ps"9"u"O""vy"?{"Uv"|!f" |!j" "!p"" "1!""B!{ U!#MVT"@(MVT_cor2")""") UV"" Ġ###"ɠ!#""# ""(":"#" E!""⠩" "*" @#%#(#&"젩!ɰ#*"Ϡ"Ѡ"I"b"נ"O"h #"ߠ#"Ѡ"J"Ӡ"L"ՠ!Ӡ""ѩ@"Ơ"kҩȠ"ԩ"!B "a#:#Y"4%@#"!#`##"^"# "d "" R#q7#,*#<# ."# "2#P" #'#)|#-ϠEީѠ"#3" ""Pz7#inz#^#-*i#m#0#olB@Ӡ#i"F#5("I#+"ک#p"M#"ީ"O#1#C"A#[#]"թ#bݩߩ#h""Ra ,#E# &@#"n#ϩ]""r#ө"#g"e####""od I"ec"#""#/ !#"#"#"~#### # # #"###} B$ȷ"$"$"# ##" $"##à#Š#Ǡɩ&#0#0"Ȱ$)"#Р#Ҡ'E )o#ؠ-K/u#ޠ!E$="ʠ#L#栩0L\#Q"$K#ޠ"ڠ  $R!6#NC#Pn##$[#/!C#k"$g!L" ѩ $n!R!T*"Ȑ,#$u$ $y!^#$z$ N!b$%.$0q$# $4u$( G$* $6#4$$V$%T$&$0$q# $#?$$a$0)$$2 ̩$| $i$8O$E$:wP#c$x$z $R#P$$ީ% $#X$#p$$ $_#]$#)$$t z$u$( $#f$,'$$};$0$2%"$-$$KCY$M$$4$d5$6$$g$@#$$#O$Y!$0@  $!A$ $ $###$$!Ġ!ǩ$@)Rmult_1_r+1y$@&Rinv_r ;:!%$#$i#$$$#.!.$#$r#%$$ #7$@0Rminus_eq_contrawŀ$@*not_eq_sym6Ԁ%$$$!$C$۩#l $$$^q @$㠩#%!R$:#°%#P?O$-#ǰ%(?/$l!^%+=!`%-ҷ#%.#ϰ%0#$נ7+]/#5#3### ##%:#%<#%>ɩ#%@ȩ#%B$LS####%S##'KN"ܶ""Ӷ@z""@>"t"@#""$#1#""""""$\@"r@"@<%V#";#"9$$"4#5#"3"-"#%Xua#"%\ye#&%`}y#*%d}#.%ho ""$ %j"@%l#"Q#"O%$###K#"I"C"2#4%nqh#9%sl#=%w #A%{ ϩ#D%~u"&@%#"e$"c%$% $ ##_$"]"W"F>""# "" 9"!,v!" #f" #h;" #j78#S#w!"!!@AA%& %[%c%b%a$$!!=!ݷ!!׷!ѩ$6!$"8%#"~$+"|%=%""w#x$"v"p"_-!!ߩ"8%#"$0"%B%'"|#}$!"{"u"d#f%rN#k%R#o% +#s% #v%[2!!$#{#,`#.$[%%a>i#4$a%©%goD#°Fq%sHߩưuJC"<%$"$^"%p%U"#$O""".$$@!$$%"%w"%e_"%"\" %c !  %w "%y"%O"%$%K%%v +%cF% #R%%}%%%$%%"#%F"%%$%^__ $%%ǩ"*%@",%$%e%% ;%i9j$%%%{ M%%\&%'%N(%L%%x8%%%e/  %V0%T5%%%%42+Ω"K& &"M&·$&$&$T %(%*%%C %+%Ơ$%ʠG?m$%ΠG?q%5# :# @x@~&&0@}@{%Š %۠$Š%ߠz{% S$̠%栩 b& Z$Ӡ%@ Ȑ'unif_ac0#)Z#*&5&Q& &. k %^Ȑ!o&H@'Req_dec3{ r%g%&b v%kؐ@% &jU&:&% @& G F% n$%    ff%)&n|&o&c&@&\ %%&H&`%! %6&{&|&p&@&i )%%&U&m%&L g&< ̩ ˩%( %!% &&Pdeltaө%&;&o%2   k&6&&pӶ&@&t4,&0%&E%&4%&I ; <!*%I  @&·O&é&&̶@&ME&5%թ&^%&9%ة&bðϩ#U$ʩ%b  ֩& & x!b yѩ%l!*%e%됷 &&'!"@& %%&@&rj&'%&%&+&ĩ&K^L%  & А&.R%!%&"dp! g&@&Ҡ&@&&&&D&&V!`&#X`% N !&P&W&!_'"'#&L' ,@&&#&5&+&9&'&8& #/;!q&>=%à7*@'<'='f''F@ ϩ&Ԡ5AΩ%ԠH'!&lm~%ޠ%&]D'U&#!@'r'Ba@'" ҩ& '0&T` Q&oS%h'"!='*%%&|#dp2#Pd2'a@'A'q}&!'R'u!&?&w%''b&%&%ȩ''f%'+&&%ީ')%ͩ&% &jЩ)!!&3/!&9!&58: Y&&1 (&<&5@*R_dist_tri 71&%%%%%%z&ǩ%k%%m%%%l%`%W%P%N@%$@&h%$$%%%8%7%'%!%%&ն$%@&n%$$%&%>%=%-%'%!%&۶@$@$<'& $&g$'y'^$%&X$$$%'%$&x'٩$@'&$&m$''d&g&0%&^$$$%'% $@'&$&q$''h&k&4%&b$$$$z$x%j$w$k$i%é$a%ũ$%$`$Y%ɩ&g&[&]$%Щ$n%ҩ$%$m $%$o $h%ة&v&j&l&n%Ȱ% %ʰ%  %=$k$i@??$g$%$$z$t%B$c$n@>>' ''''''$a$^:$Y$U$S$M&$V'$8(&J$&$''$%&$$$:$K$[%8(&O$&$''$%&$$$%(%$D%C% <(&T%&%''$%&$$$$'(')@$A&(!&&&.x"1()&&,&&&(2'렩&ǠI!%!֩&Ϡ)&ˠΠ0&ǩV 'P(7@/Rplus_le_compatz9`Š"h"eǠ"j&"i&⠩堩 JS&/m 0$(_r'(b('n&e ܰ =(&|"(bn"'&#쐩'(z"'&(k@3Rminus_not_eq_right8K2耰".$('0"'+(')(&$(' :'""(4'8(W$(&ʷ';( '9('-^'&ѩ$(I (@*Rgt_not_eq3ڀP&''8R&ܩ TL'=)Y"C$'Q((W1"&a$R@*Rplus_commqf$(<'e((S"'W'Щ(P'$(<'o(ʩ(] '%(''t(ϩ(b"9(%( % ('}(ة(kѩ'(y'(('( ҩ";/ [''B@X>=;3C(z"(#($C(('C'm#8 ΩJ ԩ u (E'J') N1')Y')'(N"'#g'  !B( 'X"V(ˠ XTM'Ͱ).^)0(:@fַ@'(۠U'͠#{'ɠ ̠ !R'( J(M5 Ƿ@k')I):@*Rle_not_lt8Ҁ4!6(\u ###M(n()&(_$ymnxF%)ZDC')\'頩)#z)_ #n)f') 0#)3()p)(~#Z((nT()( )'#L#G(-)T)(@@(")<+(.#(*!-!/!?[(&4)H (@{)@ͩ(J)bs"u(w ###()0)(]&F)5C(V)(D)^##R #)©(O)iR#c(o)ʩ)]ߠ(ة([E5 #R#l#$)-!)g(  (M$(k$(g(`$%$۩#֠&)$ )))($ (w#(s(l&))$,())({$2$9(#Ő A zC)հ$:$A#$))ٰOt'%ʷ@)Ǡ)߰GU!)LI(#()())N )5 )(!)ʠ$R٩)̠=:$V$])))$X?* @1Rmult_le_compat_r(vΩ (W(x(j U &Z*'$p**((˰*,)Ѡ)8(c)ՠ${(g$}$,)M)*d$p)>)> = *(JΩ)͠*(N'ҩ*/@*Rlt_not_eq$Y$[)?)~*)P&*Lɷ(*M))&*Q)&*S((*T))&*X0&*Z)*[))O *({/ *+ "RC)~*1C)z*3C/( ()u  )a($j*G$)*z*K$é)!**T$*$X*-)/**Z$*)@ =)$0@)$*> & '*B*5$9)@ K@)1*K 3ĩ 4 )7$).)**.*N*F$$/)**1*Q*I*}**C*FGE ^$%p'#'@ @l**@k*v$*f%  %  )R))KȐ(unif_ac'Ȑ%cvrho**η**!$)۵y\ ')⠷@ԩ!!@ԩ)j* )*!! b)**%&`*)@$o@)}* h!D**(-*"Ȑ"e0%)à'޷'߶'*+@@*$ڐ* %ک )*@Ԡ'$''*+@ζ@*$됩* % )%*'3'(@?*9 *3$ А$**6"N2( #Pn2 -(G((@S*ˠM *G! !**I%(#nN2('y+FY +*S$*T$$$Cg2(+!!$5@'CV_mult(6*!!!(;)k+F$)@(CV_minusx܀ CX(sC;5C(x&U*&++@$(} Y+9*+++sS*))))))z%*)X))U)@)9)7@ ޶((@*Q(($)))!) )) )( *((@(ڶ@(ֶ@% *Y+(b@+)(*N(+`+E*H*)*?(((%^%(W(U)G(T  (H%((&($@%*b+é*V*%+ǩ*Z*V&*O+̩+_%+u&%++*Ȑ#ep2!&*ҩ+m* +t++k*(((@+w(ǩ&#M&ީ&5+*y&*r@(Ϸ(ж(Ѷ@+ &++&;+x*"*+%Ґ+"%ũ&O*ש*mm+(+rЩ $&O++*&*&Ue@#max.pc+@ '+3 *88s;,@2Rplus_lt_le_compatڀA A(b,/BF*,2+Š+>8+?#Max@(le_max_r2K,,+x++ @(le_max_l2E++,'+R%V)&@ ,0,L@ +ࠩ&!+' 'G&M(+nO)4i)5=)6,>,Z@@,8%&u+g+&2,N&*k',/J)C,K,g+ ,+s+,G&&+v,@,@+x,?+yCz,A+z++m,s{%_(,A,I++,G,H,, ++;,y,z,@,d@,r~,!+,Uu@I,,,N,r@,R,!+,#ש,+,_Y,,+X,@^@Z,.&o,D+.,H&Щ&$,x#$,G+,+$(w@,tȶ,@,x,G,,I,%',&+,R,,+,@@,U&,k+U,o&h&$,'$,:+ڐ0,ڶ@,٩,j˰++,,nϰ۩,'ө,$,,Է,ն+,@@,z&,+z,&+';,ũ&,Ʃ',.+(+,#hn0"dh,ɩ,+0,E*"'+- '4+-+'],']+-G@+-!+'_,'_-%,/@9@+,Ϡ#|+'D,<,ՠ'F+,٠&- ,B'@`+ݰ->P+ˠ- -,%+B+!%+ -G'[+-I-+ %%+,U,T)Ͱ+,)))*)@+*m**۩*h+2**c0+4+*******+%,_ !d*E+-W,8'-+'c-[+,-\)-^'r,-_%+^+=%%%+3,m,l)')ՠ+E+*)@,****+K**|0+M+*******+>,x *~0+O+*******+@,z *`B,y-:,z%Z,%+q+P%ԩ+<-v-@'%ҩ%+H,,))+Y%<)+)@,*+ +*+_*%;*0+a+*******+R, *r,#--V-'--P,,-,(-,-0#,"$|-'#,, -**'-Xf,C,7-,'-,,C--1'r-G,U,,0̩%,L-''#,P-,@$@,C-])),Ġ&C*O-зCA@,b- ,ΐ*X-'ۀC,h-ɩ,w'-̩(,s-Ω-a'-w',,-+-R,-(-s԰( -b+ +z#xxh l--.&R++&P+-$ݩ+--+&P,--(--k$(-$,-,-m,4&c++&a&]r- -- C%-D(.-з,.-!]-@--C- -C,C-Ҡ(L0-,-'y --CQ-0--H'ؐ!."',Fourier_util'fourier.@2Rfourier_not_ge_lt#M瀰.(@"R0ǀ,-8, 3new_hyp_for_fourier.5@#Rge=---!@.Rfourier_le_ltI؀ +(+* ,,נ.+0&&.+2,#6@+Rfourier_leS51=@1Rfourier_ge_to_le1 48-jD@0Rlt_mult_inv_pos8ş++J@*Rlt_zero_1&ր-u 2?R@2Rlt_zero_pos_plus1-9.- 5+]-S-1+a1.Oc@*Rnot_lt_lt;EĀ-+lD-.]]-B+rB.a--թ.LX.@&Rinv_1 ;9ۀ-:._S(.a-C.-?.+z-.G-7++n-+^.v-?+-=.|9,,,,,,o-,i,,UT,V+,y,,j,,q,,s,   ,u,,w, ,h,,v,r,w,,~,  ,,x,, ,e,^,\@,, @-v,,$,- ,F,E,5,/,),##-,,@-|,, $,-,L,K,;,5,/,)%-@+@+<.-+-u+..l+,-f++++ +-.+@.-+-y+..p-s-<,-j+++$1+@.-+-{+..r-u->,-l+++&/++,t++u+s,+J+W,'+U+S@+Q+x,+d,,+f+b,.+O+Z@. ......+M+J+%+E+A+?+9-+B. +8/-6+-+..+,-+++>+7+G+8/-;+-+..+,-+++(c+.,C+</ ->+-+..+,-+++(f+r..@++.-/ +ũ.)/-/'@(Rnot_lt0!ө.-ө,.-,ߩ-..1.1K.lMA-C"%/+3(@2Rfourier_not_gt_le#߽-.?,   %..!@.Rfourier_lt_ltK` ,(-Ӡ/ /,,--ߠ-!4@+Rfourier_ltSD ;@1Rfourier_gt_to_ltvڀ.h.g$5.-$,L"B-(,P&/>. .,X0./IB,\2/K..)/~B.$/. //&.,iߩ./SS,mC/U.%---k-h-f-aJ.۩-P-r-A-t-H-vש԰-x-B-L-zө-N-|-P-~-A--O--Q--N-S-ܩ-Z- -=-6-4@۶,,@ض,,@.P,,$--- --- -,".@,Ӷ@ԩ.V/ҩ,_@/-,.K,/]/B.E.-.<,,,(,T,R-D,Q,E,,#,,E-,B-,˰-)ϩ,Ͱ-ީ--ɩ--˩--,=-,&,1@.ة.o/ũ/u`b)//y.i,.g/,/.qx..CI/ӷ//ϵʰ.uɷ/1/2 ,ՠ,נ.///...,'%).,./S/Tx*0׷.0.0v/.,Ω.''3/.-.&.$..---0+ -/5u-. -۰.-.md-߰.qd-Ƕ--@e-q-o@b-_-q@.ڰ-t-j$..p------/G@-]@-+<0A.v-&.-$//-. .---. 0C'Ѡ'Ӡ/?/`4.-.0I,@0K.-0.-.//...*.-(-"-.0M'۠'w-.,@0R.-7.-5//...1.-/-)-',,-,fe,i-,g,,.8,۰.:-d.<*,hh.%.I,Щ.'.K,ҩ.).M,p-,,@,,/ 01090807/p/q,,(,,,,/ ,/w-Y80o.-T/-R0/-M.N.-L-F-5$,,-^80t.-Y/-W0/-R.S.-Q-K-:.<0v(('.:,.C-f<0|.-a/-_0 0-Z.[.-Y-S-B,//@,4//0~s0#w}*0wqn0'/-j:/(($.0*^/ -sC//jCt000jqh&tt//a 'xRPzTK|/8/807/9//;1+/?5/A7// *0 x/Z0/V00\/LB/ND....../ ...q..s..[.T.R@..@-.@/n.-$./.>.=.-.'.!./۶@-@/t0-}@0/ -/i-0{0`/c/,./Z----r-p.b-o-c.-A-<-c.-`.-.-Z-S.-<-G@//0۩0:<*0֩0/uh/jw//Ce00+000൩۰0˩/0ʩȠ00B0C -/0\00000/ /f/-ȩ/0 /-00`0a+(1  /1!/°1#0Ƞ/. 0/.ߩ/0/0/./ / //.150 0?././w./wx/.u././ }./".t.׶..ζ@u..@r.o.@/..z$/,/......0W@.m@.;<1Q/.6/.400.//0/...(./1S+K. /1U-@1W/.</.:00///6/.4.../1Y+.@1[/.@/.>00///:/.8.2.!&--.-on-r.-p--/A-/C-/E q.o/G--٩.q/I-/K--w.-Ƶ-@%%1 1:1B1A1@0y0z-ĩ-!----0-0.b81x/.]0 .[11.V/W/.U.O.>!--.g81}/.b0.`1!1.[/\0.Z.T.C/E1+ -/C.l<1/.g0.e1&1 .`/a0._.Y.H-00@-:00#1y1)nt+1}wt1-0.p@1,0!.tD0%12 00mC1}11{1:8111641>0318qo1C00꩚@.Rfourier_lt_leK` 0A.d0E1R;0G141Thy jf18l@3Rfourier_eqLR_to_le*51?0U1U1A1a1YW1V0X0Z=J0^0`.0d1QKZ.1?0h0jS11IB+1!01ީ01@10u0w.ʠ1.̠0w)z)|%i1X.Ӡ1(00.٠010////ԩ//ͩ/Ű11//ǰ2.1 K////Ω//C//////I//@M///@A/M/K@>/;/M@0/P/F$/0L///u/o/i/c1#@/9@/<20R/0/11./0.../2,3/2!,_.۩0°2#.@2%0Z/ 0/1100z00/../2')/2),?s.@2+0`/0/11000 0//.*../.?>.B/g.@Z..0.0.0/?0./A0!E.0/E0/G0.0!/K0#!.... Q.0%0 Z003.005./..@881 22!2 21X1Y..4....0.1_/A82W0/<0/:11/5060/4/./2../F82\0/A0/?21/:0;0/9/3/"0$2^,0&2`)),,\!./C/Q<2g0/L0/J2 1/E0F0/D/>/- .1p1q@.1q12i^2,u2mb\Y211Y11/[+1 1_11TC琷2a2}2oq2o2mkf@2Rfourier_not_le_gt#>݀2.2]cZ2Ef11өS /vF292`nHDpJ1,1,2+1- #11/T2G2:+11 ,2"l1N21J2 2P1@/c2V21:0000000202290|10z00k00r0000q00i0i0Y0R0P@00@/0@1l0/$010<0;0+0%001ٶ@/@/<21/1e/2w2\/01V///02,/1v2ש/@21/1k/2}2b1e1.01\///02-#%/@21/1o/22f1i1201`///"/x/v0h/u/i0/G /B/i0é/f0/0ǩ/j0ɩ/g0/d/]0%/F/Q@##2 222211/D/A/</8/6/01/92/821-/1/22/01{////./>/8212/1/22/01///é0Ű2-=/'0C/<317/1/22/01////k2 2 @/$2 132Xh-321/2~2224C23K3332 (2\2] u*ѩ2ө2+ 2e2f20J2hL@1C␷33*c32o2Ԡ1Ġ31.)3) 2y2z 0 2㠩1Ӡ31Ϡ.3.  2R2Qܩ2۠1ݠө1ߠ02.1堩08213,1!-3.10B!22ɩ-l3d#(2 3e23gǩ3 1ũ0O-.20Sɩ323 2-8H3 1x1v1U1R1P1K1C3}->2ǩ1<1^é1-1`141b111@00@00@2*0ĩ0$1l10000002@0@0{<310v2#0t3530o1p20n0h0W1Y320M2430=@310|2)0z3;3 2#11v20t0n0]1_3",0A@3102-0~3?3$2'11z20x0r0a06041&030'0000'10$1000/0 @3= 3r3z3y3x22//////2M/2083102B03T390123000v//083102G03Y3>0128000{1}3"-e/ߵ1LC0<3102L03^3C012=0000#22@/r2ĩ2[33abl-33e2Ux0x.b2Y03o2_32[.l3W22C33ҷ 3ķ3.˷.33 0 ....22x3w2y o2{k20Ҡ!w23334b[-3#2323Y3220Y-2211ܩ11թ1Ͱ431ϰ4 -13S1Ȱ11111O1ΰ111İ1O1111Ȱ1W1H111@I1U1S@F1C1U@21X1N$22T111}1w1q1k3+@1A@1<4%2Z1 213312210014'314)3 102ʰ4+0@4-2b12133222 21 1014/.141#*1{0@432h12133222211 0*0010GF0J1o0Hb002020202`00M1y00@%%3 44443M3N00!0000203T1684L21121/331*2+21)1#1001;84Q216214331/2021.1(124S.K24U#B20}1C1B<4X21=21;3316272151/103a3b@0z3b24ZO3lp.f4^SMJ4221H /3p3p @C:'b4hp-TND23w1RA:?=K338 1[334K /S4K1_$A2Ӑ3$E3$G3$I3$K;5aC0c3+3+$Q&!#%I54(3*"1} s3.Q1$4o 341_324x93:]104|33.4$s3U43Q44W3G1=43K13I4P%222222{3 222r22y22{22l22z22|22~22232}22222222C22&2r2k2i@22@ 2 2@322$232U2T2D2>2822&3@2@ 341@43#13144w3z3C23q111+,112y11z2*1X1S1z222201Q1\@4344V\/44314ש31é34r44!/C45 45G53!0*!4Y4Zp 1թ.퐩4 44A/٩/۩ʰ/4-4,é43I3K32/4֠54E3ƠG4y4z/A59$35:3۰5<4ᠩ3ѠA2$/4443٠I3I3G3&3#3!335N/35P34Z3313333352A337C222@22@22@322$3A32222224l@2@2P<5f32K32I5 42D3E32C2=2,3.5h4_305j/<54f0'3/2(45p2@5r32W42U54333Q32O2I283:5t$m3<5v/H503/r3;ĩ2"@5|32a42_5 5433[32Y2S2B ,2232221123b23d2-G1121ߵ1@))5 5S5[5Z5Y441ݩ1ڰ%1շ11Ϸ1ɩ4.142{8532v4#2t5552o3p42n2h2W11ש28532{4(2y5:52t3u42s2m2\3^5$3`5/l5A//3_1Ƶ33C2<5324325E5*234$2~2x2g 2 44@1Y44B55Hrz/55L4<G2g/5T44CN44!C%(ܷ55(2555554a55 ө2}/5j55]#u#4i4i5\4^ 4`P4do2/5|4ju55IB/5%45ީ45@54u2Ƞ>/542̠B54}3333ǩ3335 35534>333@&3230@#3 32@@3@2<54324255234222ĩ3ư6/Ґ500J2462@64=2425544]34222Ω3а6 /ܐ500JX2@64E2425544e342222232$#2'3L2z%?2u3N2o5 55555!5"2l2i2d2`2^2X42a5(3 86 4U343552342222V2f386%4Z3 435534432236'/5Π0q0?36- 32U3C3<604e343553443 32 2595:@2R5:4Ѱ62'5נ]c0>66+%"5۠4ˠ305553$04ՠ 5N5N"h5"j"^46J4נ5556"55y56%5ѩ55|5^4Cy:=i+}L