"`-- J)NewtonInt%Reals#Coq@()Notations$Init#Coq@%Logic$Init#Coq@*Logic_Type$Init#Coq@)Datatypes$Init#Coq@&Specif$Init#Coq@%Peano$Init#Coq@"Wf$Init#Coq@'Tactics$Init#Coq@%Tauto$Init#Coq@'Prelude$Init#Coq@)Notations$Init#Coq@0&v!D]hwnv %Logic$Init#Coq@0\͉!Ig)Datatypes$Init#Coq@0.i bYN Z*Logic_Type$Init#Coq@0 1jc6&Specif$Init#Coq@0;RWMi\N'Decimal$Init#Coq@0C涳N*ua#Nat$Init#Coq@0eʤģPSR蠠%Peano$Init#Coq@0 jha|ؠ"Wf$Init#Coq@0q+W,J+'Tactics$Init#Coq@0/9m+ a%Tauto$Init#Coq@0̂"&/rk0JqTttֱ'BinNums'Numbers#Coq@0dmk(5Ju<*EqdepFacts%Logic#Coq@0FI$ͼՋ`)Eqdep_dec%Logic#Coq@0u wWIϰ߼&Basics'Program#Coq@0!bs߯? :VU$Init'Classes#Coq@0](p{yOh.'Tactics'Program#Coq@03u%+Equivalence'Classes#Coq@07;ꮹ-SetoidTactics'Classes#Coq@0S_`nOU$&Setoid'Setoids#Coq@0D9AsWE!>$Bool#Coq@0j 2cZ`FW*Equalities*Structures#Coq@0όe얟)H.Ƞ2Relation_Operators)Relations#Coq@0%s鯰s4Operators_Properties)Relations#Coq@0U3y#h&)Relations#Coq@0r砠*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ&NZSqrt&NatInt'Numbers#Coq@0` .%m%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|&NZBits&NatInt'Numbers#Coq@0MlIpKt'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$&NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ)NMulOrder(Abstract'Natural'Numbers#Coq@04> Aat/ j $NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ'NMaxMin(Abstract'Natural'Numbers#Coq@0]v|Qg̟ʠ'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NLog(Abstract'Natural'Numbers#Coq@0KI'BinList+setoid_ring#Coq@0Au,Ring_polynom+setoid_ring#Coq@0gaKw9`UW+ListTactics%Lists#Coq@0,Jcy{+InitialRing+setoid_ring#Coq@0k/T=cN(Ring_tac+setoid_ring#Coq@0x2]%762f)Ring_base+setoid_ring#Coq@0fbU(2cNe$Ring+setoid_ring#Coq@0Msᬠ)ArithRing+setoid_ring#Coq@0ṔCgt?}%Arith#Coq@0I|кX*o4#Max%Arith#Coq@04=;3$>aU堠#Min%Arith#Coq@0Ce-Fѕ(PreOmega%omega#Coq@0\|چBb~w4%Omega%omega#Coq@0t.J'6\ϨrK(Zpow_def&ZArith#Coq@0f蓜DX;V*ZArithRing+setoid_ring#Coq@0{#'[{nm!/,Zcomplements&ZArith#Coq@0ʾq %RIneq%Reals#Coq@0JUڻIu)$w&DiscrR%Reals#Coq@0z41pV.%Rbase%Reals#Coq@0Jܡ\ c6{%R_Ifp%Reals#Coq@0c4+ZŠ,Fourier_util'fourier#Coq@0ϳ> 4`*r0'Fourier'fourier#Coq@0wV9TN*Rbasic_fun%Reals#Coq@0hܒiclE>%R_sqr%Reals#Coq@0X%MԹ%M+SplitAbsolu%Reals#Coq@0M)&qYlݹ5*SplitRmult%Reals#Coq@0sD\rt/$Even%Arith#Coq@0YO%q}d߫%$Div2%Arith#Coq@0n*Áht!,)ArithProp%Reals#Coq@0B+L?>*e˃a j*Rfunctions%Reals#Coq@0d¹d‹@'Compare%Arith#Coq@0OM v먣5L:'Rseries%Reals#Coq@08]$u+?'SeqProp%Reals#Coq@0Lt2|9D }SSԻ)Rcomplete%Reals#Coq@0{ڸ4q 'PartSum%Reals#Coq@0j&2"(>S)AltSeries%Reals#Coq@0d US^(Binomial%Reals#Coq@0]JrHr#E&Rsigma%Reals#Coq@0䟄WCJҦ<%Rprod%Reals#Coq@0gȀn_}!W+Cauchy_prod%Reals#Coq@0K*ߞ4q(Alembert%Reals#Coq@0I͗Huz&)SeqSeries%Reals#Coq@0Npc$5|T ٠*Rtrigo_fun%Reals#Coq@0T+ɧK/۠*Rtrigo_def%Reals#Coq@0$xR`VcxIaƶ"x*Rtrigo_alt%Reals#Coq@0zsC^,%+OmegaTactic%omega#Coq@0@{4-EܭEUBW'Cos_rel%Reals#Coq@0%}ֺ|3J-tWK(Cos_plus%Reals#Coq@0IWEGն&Rlimit%Reals#Coq@0*r0ē([HAE&Rderiv%Reals#Coq@0?KQ;^WU;H*Ranalysis1%Reals#Coq@0 n;qm.L%)Rsqrt_def%Reals#Coq@0eA~%&Y?%RList%Reals#Coq@05g2NaA:7PropExtensionalityFacts%Logic#Coq@0 +_.ɓoFؘ'Hurkens%Logic#Coq@05[gNk2up.ClassicalFacts%Logic#Coq@0$RzqIF\(4.Classical_Prop%Logic#Coq@0Yh޿JdI1ƽ3Classical_Pred_Type%Logic#Coq@0m[6BZ5)Rtopology%Reals#Coq@0;Wo G#MVT%Reals#Coq@0cq통 gZ+PSeries_reg%Reals#Coq@0䝠|%n͠'Rtrigo1%Reals#Coq@0x'ml^*Ranalysis2%Reals#Coq@02N헛W*Ranalysis3%Reals#Coq@0Gz魸NJ,:7(Exp_prop%Reals#Coq@0D:L-*Rtrigo_reg%Reals#Coq@0QWk'&R_sqrt%Reals#Coq@0 @#DŽe+Rtrigo_calc%Reals#Coq@0"Jl<8iD4%Rgeom%Reals#Coq@09b'mdlsy(Sqrt_reg%Reals#Coq@0?N~K0,o^}*Ranalysis4%Reals#Coq@0kp+PA&Rpower%Reals#Coq@0x9^XQ-Ranalysis_reg%Reals#Coq@0$૔ B_QNAM-RiemannInt_SF%Reals#Coq@095Ի<&O jq*RiemannInt%Reals#Coq@0|ڭ~3vo+OrderedRing)micromega#Coq@0A Zl)+>(Ndiv_def&NArith#Coq@0AU|ڣTu)Nsqrt_def&NArith#Coq@0W58pG*~W-G(Ngcd_def&NArith#Coq@0OLMP"^e#Fin'Vectors#Coq@0r'gް؅/׸)VectorDef'Vectors#Coq@0]i>3 ٠*VectorSpec'Vectors#Coq@0GyK5%l6L(VectorEq'Vectors#Coq@0#'`ԶlxjT&Vector'Vectors#Coq@0_ċ|"Ʌhz'Bvector$Bool#Coq@0,rO3^~'Ndigits&NArith#Coq@032W}-RingMicromega)micromega#Coq@0{L䬃ɟh$Zdiv&ZArith#Coq@0gho4S*Zlogarithm&ZArith#Coq@0|P#ar&ZArith#Coq@0ߴ#ҤР+QArith_base&QArith#Coq@0#-\D7* Q,"f\&Qfield&QArith#Coq@0td;X񦐳#@`%Qring&QArith#Coq@0F%pw;}=O5}*Znumtheory&ZArith#Coq@0g2/#1ϳ\;R*Qreduction&QArith#Coq@0nDk%}Y&QArith#Coq@0H#oޞ6 78&Qreals&QArith#Coq@0 |-=ʈ%*RMicromega)micromega#Coq@0>e{&(_>Υ*QMicromega)micromega#Coq@0K׈qq~_E&VarMap)micromega#Coq@0Zգ#Lra)micromega#Coq@0 ?@D{@[]#*Ranalysis5%Reals#Coq@0ۤ$+]ݽN9%Ratan%Reals#Coq@0(쟭CK&Machin%Reals#Coq@0Z,cq麠&Rtrigo%Reals#Coq@03Lcrǡ2))Ranalysis%Reals#Coq@0q ' =(L)^O:ji$Р)NewtonInt%Reals#Coq@A1Newton_integrable @!f@,Rdefinitions@@!RӀ !a !b&Specif$Init@#sig#* @!g!%Logic@"or @*Ranalysis1,@.antiderivative ۀDACB@?@,Rdefinitions%Reals#Coq@@!RӀ BC| AnT@@ +k() + +%7T7%' 7  77%'6'6eHXTL@@| @@A@A@HAA@A@@AA@@>@,Field_theory+setoid_ring#Coq@@&FEeval>@@A@A"s @,Ring_polynom+setoid_ring#Coq@@&PEeval"s @@A@BA@A@ @"prK@,"onpBBB@@@@@E@ @&Rminus&H@˶@ĚŚ:@,"8 +k()= R'>  7%''+k6',pHABAD|@@@@@}*FTCN_step1 @@,Differentialme@A  렩!x@)derive_pt$Fn@"d1!sY驚@)cond_diff9䀠pР@'sumbool7̂K@BAAAA@@@@@D!s?@#Rle= $@#notШ,.@#andЖw@GW@ '&('>@"ex @;@,derivable_pt8\ETF8 Q@"eq @ygbGG_InKLDML6w@:LUVNXY0PXY%RIneq@'Rle_dec3U!r_~ATUAQ%!HSNAJ@CzBAL !nwBs==5ķ=5@&Rlt_le A<@*Rnot_le_lt.J-CשŰC> @㛠%Reals#Coq@@,Differentialme@㚠䚠ꚠ@)derive_pt$Fn*Ranalysis1%Reals#Coq@@"d1!sDA3@)cond_diff9䀠DABA x+k() 7!2= RM'>+(:9'>7"7"+:9' 7 :'()G 7!:'()G 7!:' +k7!+7T7!7!+S7T7!7%'+ 7! 7!7!T'+7 7!7%'7 7"7!7 7"77&'+ 7! 7!7!T'+7 7!7%'7 7"7!7 7"77&'80l8)\Dؠ(䠒c̠ȠؠԠAABA@GX'D,~̠|hh-4dLBP8@@@@@㠠*FTC_Newton @@u@e[)\-%Logic$Init#Coq@@"eq @@ ^[sFDAzDABA@BCBA,Rdefinitions%Reals#Coq@@&HCACB@@@@@@,NewtonInt_P1 @@A¶@񀰐BAA@@@@@\,NewtonInt_P2 @@B޶@ךx mBAA@<+M:〠BA@@#IZR/r'BinNums'Numbers@!Z7@A@@@@@,NewtonInt_P3 @!X@'sig_rec5Ԁ(v y+ , y{3.67 ˩@&or_ind" '"H0 #% CXVKVIW:%"#@^@!W%X)L879 4+k() + +i+ +7T7# '()A +A +B   7   77!   7   77 :'9'9'+ +%7T7%' 7  77%'6' 7  77%'6'ࠒM Xh,[(|r(Ii<@@@@@,NewtonInt_P4 @@C@[]ae πCBAAթ6DCBA@$Ropp΀EDBC@+M:DCBA@@@@@^,NewtonInt_P5 @߷ැ!lǩՠȠ}"X0ԠũݠHLͩN   ꠩@%Rplus+1@%Rmult׀J꩐Iln&!p++ , C"5 $78,<-("L#K%Cǩ E"x0J"p0!GO1P/&DTE@M;$9Y/ &[;!y_PKEE.F)<&4h>(6jKB4nD6p 6I3?UuK5AwWXO) }ni>cNdbX2 d<鰩]{|wNNr95~Ux4yvlx{y@'and_ind14ۀж@UgdqisKEu=P}~vh@\Vb3-'SƩ:Orϩ ,4"H1@жݶ@;J<v驐Q9@砩I·^PR /$_tmpРϩn@ƠؠMڠ !&(TS1"޷"x1:"H2)@&ex_ind 5{ЩޠְI71Щ1߰R&@E@[LG4A+ cTOҥA<svEQJTDO[WLA" N YǩXpͩ @&eq_sym X٩ǰ$^̠Ǡwd%eȐ"H6@%pr_nu"_"j4ncЩ^Y&tT vOx?尩@(plus_fct15'@&eq_ind J|wS ^`toY{ SZZ@(eq_ind_r!2#' *|, / !(4"4o %'9:<˰>/ .X!*"DE@H/rGKڰM>@;'6>7F-9BȐ*to_rewrite)DatatypesO@$list]@Bj[]X,;Z9GtAy#Heq M%vxsG8u5M/wȐ(list_hyp5@$prodt@,Ring_polynom+setoid_ring@%PExprk@2Ȑ-list_hyp_norm; @#Monf@@#Polj@IȐ0list_hyp_norm_eq@X .@.mk_monpol_list()ϩB@(positive*@C&BinInt&ZArith@#add1P&)BinIntDef@ ̀@#mul1P] @ @#sub1P@ p@#opp1P@ {%Zbool!@(Zeq_bool0߀*@'quotrem\$@/ŀEȐ*ring_lemma@2RField_ring_lemma2!8(Ring_tacz@0ring_subst_niter!°"g˩ư&\ɰ)o Ͱ-Ѱ1^հ5]Ü@$Truey@A"pe#npe@԰@*norm_subst7:d0K|p`ZTNF6ݰP@&PEeval"s 8WIBY@΀@#nat@&BinNat&NArithe!N@&to_nat`)BinNatDef @*9G(Rpow_deft@#pow#׀~bϩ"_%sjF)w-a1`\@(Pphi_powcHVCAU=7&+InitialRing@)get_signZ#7&jȐ#resBөC ک A Ȑ&res_eq @O{0)E "0G'5C9D024B  : A@ +Ȑ#thm,87Kx0a砩h谐[94e̩xcbȐ$res0ig9fimk1c=YȐ'res_eq0Z@_0sJ>.("XuSwELy?9O|HDȐ$thm0.80 sҰ2ְ6,ذ8& oܰ<*BT@dD>)HG70DuGGI  L۰N?:@jE@fe\^`bSN%0 hYTe#Z<C\JEnac^2{{BC@EE }npk?Ygou^kwm|wɩ t ^C#,dogo@/derive_pt_const ~wu@.derive_pt_mult{@.derive_pt_plusۀvxzkAlyyxC(g;-ж@k}|a[&RJ@)@ЩDbu dܶ@Codթਗ਼@#Rlt=z]͠㠩ޠE9Dfhs@)False_induُࠩ 8L>y{@{@*Rlt_irreflnQG@,Rlt_le_trans9NN/} S   "$V v +@ޠԠΠư 9*%,  ww  CbЩ^   `"H7"H8 PȐ"H9@+Rle_antisym>`K '/ & $ ^ )1Ȑ#H10%:': lA nC 8  sFs uJ h v x  B BK *Ȑ#H11AVCǰ ]   }   W  % WdӰ! %* \FȐ#H12   r@0derivable_pt_abs팀w n)hЩA, 9  3 =  @.derive_pt_eq_1K    C CȐ#H13 Ʒ ǩ* Щe̷ 1]  4` #H  Jǰ  0CȐ#H14WЩRMĩHƩC#   ݠؠө ЩF 砩ݷ _  ͐ Q  ש;  ۩Ȑ#H155&Щ    ' 0 + - 69  ?   <˰ > /*% G8 7 9"  - O@; A"S@ G & \ ^O * N! -$B d  e gXZU 7+XڠL1 `3 6 xikf:)h'5"    Q) z|wK"yk13 U b; >  @  D  H *K 7t s umk@i = `8 n[ Y mUO>T W Y  z]  |a gd P 1H o micR, $"   ۩ X ˩{8 v t$pjY   ϩ S| ð = ة g  ˠƠgD& r 8  *>s \   ܰb%  rd h  ߩhH  @T+c Щ pF f  i? |A ԩ   |RC   O ݷ {     6V2 䩐j: d6Ȑ#H16Щ  ^   *kH h   0 +iH,  7 %   : ɰ < *B Z# l" G{$ F*  G ְ I:50 ;2" @;6)44 V,  W  YJE@ ' Ȑ(hyp_listȐ'fv_list eH g'  i𩚠 @2RField_ring_lemma1!7X : 8ɩ= à@$boolZ'@A@  Ȑ#lmpé@#Peqj*E0v X |O Z ~ ZTO cC@! ) ^o N 8 AP w,}C = 8^ia{l~ v    { K   C 2      ZQOM|R,ж  ɶ@!0ж  Ͷ@+@@\  Զ@     ] R q T_ܠY[ [  f  O %ҵ O ɩ[ŷ Y A _ G}wrp  nfec^\  CggN  LMIGCA CKK:8. l& G      "ǩ $~|ihfcstroDBg 2c['%x  R86.)~80 Bv= CC  C    ʩ }~  8 H@ usж > N@zk   D T@d  K{  J Z@   ) ! +G #+ c) ' - - ,C , - - ,C h f H g g ] h [ i@ ˰  4 6@ ΰ  8 7 а b rc^  A ?@ z@ ; = `@ B D H ~ L  P@ )@ * + 4+k() ++%+ & +$&7T7# '() ++%+`% +w%7T7#'()n +h +l  +q$+z$7  +y$+$77!  7  77 +i$:' +a +u ++7 ++77!  7  77#'<+17!+N7T7!7!+7T79'() +07!+\7T7!7!+7T7#'() +:'() ! 3!+N +)7!T+7!7+ +7!7!+7!7#'()$  7!7 77 7!7 5 % 7!7 77 7!7+w7+{7" % 7!7 77 7!7 % 7!7 77 7!77 7!7!7" a7!7 7 7!7 77 7!7" 7!7!7 7" 2GLLL : :7":!7":: :L77 G77"7" 7"7! L7 7!7!7! @""7" ))7"L+[ 77(+e 77+w 7"#7"7!7!77+aL7 77+7"7!7! 7!7 7"7!7!77+r7" 7!7 77 7!7"7!77+O % 7!7 77 7!77 7!7!7"77  7!7!+7"77 :'  7!7%'  7!7%'  7!7! 7!7!77&'  7!7! 7"7!7!77&'  7!7! 77&'  7!7!7"7"7!7! 7!7!7!77&'  7!7!7" 7!77&'  7!7! 77&'  7!7! 77&'  7!7%'+ 7" 77"T'++<7!7%'+7"  7!7!77&'  7!7%'  7!7%'7" 77&'+7"  7!7!77&'  7!7%'  7!7%'7" 77&' + 7! 7!7!T'++<7!7%'+7"  7!7!77&'  7!7%'  7!7%' + 7! 7!7!T'+ 7!7%'7" 77&' + 7! 7!7!T'++<7!7%'+7"  7!7!77&'  7!7%'  7!7%' + 7! 7!7!T'+ 7!7%'7" 77&' <+z++2 7TT7!+X 7T7 +| + 7 + + 77!7!+ 7T7#'() + U +V ++7 ++77!77"7!7# ', 7 + :+779'()  + ++B +m7!7!7!7!7#'()  7   + 779   779: 9      77+ 779: &!+ 7"+7!7 : &!+ 7"+7!7 : $ 7!7 77 7!7 #5 % 7!7 77 7!7+n7+r7" w% 7!7 77 7!7 % 7!7 77 7!77 7!7!7" 7!7 7 7!7 77 7!7" q7!7!7 7" 2GLLL : :7": 7":: :L77  G77"7"7"7! L7 7!7!7! 0'!&+a '7"77"+7!7"7" l0+!,+m -7"77"+7!7(7" GL77LL : ::77+c 77'+m 77+ 7""7"7!7!77+iL7 77+7"7!7! 7!7 7"7!7!77+z7" 7!7 77 7!7"7!77+W % 7!7 77 7!77 7!7!7"77  7!7!+7"77 :'77&' 77&'()7" 77  7#'7" 77&'()7" 77  7#'7" 77&'  7!7%'  7!7%'()  7+7"77#'7"77&'7" 77&'()  7+7"77#'7"77&'7" 77&'  7!7! 7!7!77&'  7!7! 7"7!7!77&'  7!7! 77&'  7!7!7"7"7!7! 7!7!7!77&'  7!7!7" 7!77&'  7!7! 77&'  7!7! 77&'  7!7%'+7"  7!7!77&'  7!7%'  7!7%'++7#'  7!7%'  7!7%'77! +,+67 +4+>77!7%'  7!7%'  7!7%'  7!7%'  7!7%'  7!7%'  7!7%'  7!7%'  7!7%'+ 7!T'+)+37 +1+;77%'  7!7%'  7!7%'  7!7%'  7!7%' + 7! 7!7!T'+ 7!7%'7" 77&' + 7! 7!7!T'+ 7!7%'7" 77&'  7!7%'  7!7%'  7!7%'  7!7%' + 7! 7!7!T'+ 7!7%'7" 77&'  7!7%'  7!7%'  7!7%'  7!7%' +a + ++7 ++77!  7  77#' <+z++2 7TT7!+X 7T7 +| + 7 + + 77!7!+ 7T7#'() + U +V ++7 ++77!77"7!7# ', 7 + :+779'()  + ++B +m7!7!7!7!7#'()  7   + 779   779: 9      77+ 779: &!+ 7"+7!7 : &!+ 7"+7!7 : $ 7!7 77 7!7 #5 % 7!7 77 7!7+n7+r7" w% 7!7 77 7!7 % 7!7 77 7!77 7!7!7" 7!7 7 7!7 77 7!7" q7!7!7 7" 2GLLL : :7": 7":: :L77  G77"7"7"7! L7 7!7!7! 0&!&+a '7"77"+7!7"7" l0,!,+m -7"77"+7!7(7" GL77LL : ::77+c 77'+m 77+ 7""7"7!7!77+iL7 77+7"7!7! 7!7 7"7!7!77+z7" 7!7 77 7!7"7!77+W % 7!7 77 7!77 7!7!7"77  7!7!+7"77 :'77&' 77&'()7" 77  7#'7" 77&'()7" 77  7#'7" 77&'  7!7%'  7!7%'()  7+7"77#'7"77&'7" 77&'()  7+7"77#'7"77&'7" 77&'  7!7! 7!7!77&'  7!7! 7"7!7!77&'  7!7! 77&'  7!7!7"7"7!7! 7!7!7!77&'  7!7!7" 7!77&'  7!7! 77&'  7!7! 77&'  7!7%'+7"  7!7!77&'  7!7%'  7!7%'++7#'  7!7%'  7!7%'77! +,+67 +4+>77!7%'  7!7%'  7!7%'  7!7%'  7!7%'  7!7%'  7!7%'  7!7%'  7!7%'+ 7!T'+)+37 +1+;77%'  7!7%'  7!7%'  7!7%'  7!7%' + 7! 7!7!T'+ 7!7%'7" 77&' + 7! 7!7!T'+ 7!7%'7" 77&'  7!7%'  7!7%'  7!7%'  7!7%' + 7! 7!7!T'+ 7!7%'7" 77&'<+17!+N7T7!7!+7T79'() +07!+\7T7!7!+7T7#'() +:'() ! 3!+N +)7!T+7!7+ +7!7!+7!7#'()$  7!7 77 7!7 5 % 7!7 77 7!7+w7+{7" % 7!7 77 7!7 % 7!7 77 7!77 7!7!7" a7!7 7 7!7 77 7!7" 7!7!7 7" 2GLLL : :7":!7":: :L77 G77"7" 7"7! L7 7!7!7! @""7" ))7"L+[ 77(+e 77+w 7"#7"7!7!77+aL7 77+7"7!7! 7!7 7"7!7!77+r7" 7!7 77 7!7"7!77+O % 7!7 77 7!77 7!7!7"77  7!7!+7"77 :'  7!7%'  7!7%'  7!7! 7!7!77&'  7!7! 7"7!7!77&'  7!7! 77&'  7!7!7"7"7!7! 7!7!7!77&'  7!7!7" 7!77&'  7!7! 77&'  7!7! 77&'  7!7%'+ 7" 77"T'++<7!7%'+7"  7!7!77&'  7!7%'  7!7%'7" 77&'+7"  7!7!77&'  7!7%'  7!7%'7" 77&' + 7! 7!7!T'++<7!7%'+7"  7!7!77&'  7!7%'  7!7%' + 7! 7!7!T'+ 7!7%'7" 77&' + 7! 7!7!T'++<7!7%'+7"  7!7!77&'  7!7%'  7!7%' + 7! 7!7!T'+ 7!7%'7" 77&'  7!7%'  7!7%'  7!7%'  7!7%'  7!7%'  7!7%'  7!7%'  7!7%'  7!7%'+ +Q7T7%'+7 +77%'  7!7%'  7!7%'6' 7  77%'6'+ +Q7T7%'+7 +77%'  7!7%'  7!7%'6' 7  77%'6' {feW\;$:+  yqqHntnlPPpO(NMDMLL|EEBBTA%$#h#4 T (xXwTRON`'(#" |X,,l dHHTT`0t|((D(d|PD ulu,ttrrlr,qppDpoooDonmPmltl4kklkjj@iiiXhhhlhgele,b`h`_ [[xKKLK JIIlI,HFFFlF,DDDDDCCCDCAAP@@t@ ??T>>>===8<<><=T<>>0>$==D<<<\<099x7543l//  x $`8@Dp(@p䠑 P4z vt4sTRJTHtG&!TxĠl8g,fal`__@^^X;l:P543322('&|^Z2D/<4@}H{zb,XW0Vp6l-+p*p  h m\~~ }||P{Tza``<ZYY<XlWVV6544|.X--|,,+*T8 P  t    L/Q%P~X}t}<|{zbXb a@YXXX W$Vd66`5.-4,,`+d*d  ,  X \ ! }bdY6-@ 8B@CB@CAA@@A@@B@CAA@@A@[$/d\InBР L8ltx$ww vuusssrpRROLN$JIH$HGDG0E$''#"d! 8$@,t`|xUT)) K,<bTXS|Q6}Y`- ~Z.D <0zDy]p\UU10*)HdCEB@BB@BA@]]11YmAࠑ O<qnPO8LEB% #xĠ0dccT(S877D(h'H 0X HTLp0vXtxslk8jjjihh0gglffPdd,c`c8]4\HPJHG@@?x? >>D=\===<;;;X::|:<988L770655 44<3P3411`00t///..x.$-L+!x,4@T8P    p  D Ā@@@@@ 1antiderivative_P1 @@ D @ N P s@ U W!F@ ] _!G@ e g Ț k  o  s@ @.antiderivative ۀ >   @ C      ũ   Z  X  @@@@@ U,NewtonInt_P6 @@ E ׶@   @     ۚ  ܚ #pr1 EBA#pr2 "ECB  (   ̀ n@ +1 t@ ׀FH 穐G DC4@ P+M:GFEDCBA" E GDCB ĀFDCA@@@@@ Ԡ1antiderivative_P2 @@fFV@"F0@!"F1@')_-`1!c6@ÀFECB@̀  MLЀ  yLР&Specif$Init#Coq@@ h7̂K@B g f@@@@@D ,Rdefinitions%Reals#Coq@@ k=y %Logic$Init#Coq@@#notШ ,Rdefinitions%Reals#Coq@@!RӀ =%Reals#Coq@@'Rle_dec3$ A;*  )5*4݀  Q Ԑ   B@@@@@1antiderivative_P3 @@G@ǀɀ@΀Ѐ@Հ׀ ۀ߀〶@pFECB@y { @ @ ;  ?  @@@@@̠1antiderivative_P4 @@^HN@@@U#V'+@FECB@ DAHɀ LJ̀ NP@@@@@,NewtonInt_P7 @@I@TVZ^-b@ @=rq@wv@׀D~@܀; ?@@@@@H,NewtonInt_P8 @@Jʶ@ÚĚd@DCB@ 0{4@@@A1E%I } | {@@A1J`N@A8䝠C&Specif$Init#Coq@@ABC@@,NewtonInt_P9 @@K @΀ЀԀ؀܀/FDCB.OECB U FECK@}+M:FEDCBA8 ̀FEDB ՀFDCA@@@@@@@@| @A ӳ2@ ӳ2[)Datatypes$Init#Coq@@A@ Գq@ Գq\ @A@AB@@A{@Bw@cA@A.0TQ+Ring_theory+setoid_ring#Coq@@ABA.U>[J @@ABC-A'EnvRing)micromega#Coq@A.0TQ+Ring_theory+setoid_ring#Coq@@-#BA.U>[J @AD@&Vector'Vectors#Coq@/VectorNotations)VectorDef'Vectors#Coq@ @A@"O@(PeanoNat%Arith#Coq@#Nat@&of_int"O#Nat$Init#Coq@@ 6@A@A\@&BinInt&ZArith#Coq@!Z@'quotrem\)BinIntDef&ZArith#Coq@!Z@ /@A@\@@+pred_double\@/S@@A@As2@3@&shiftls2*@vY@A@BCs8@8@&shiftrs8/@vY@A@ѓ@?@&squareѓ6@y@A@A@D@&to_intϑ;@@A@z@6@&doublez-@/!@A@A@j@(nth_map2*VectorSpec'Vectors#Coq@@ 8"@A@@w@*fold_left2q@6U@A@"W@}@*fold_right"Ww@6N@A@ABCDE/@h@)log2_iter/_@wd@A@NH/@[@&moduloNH/R@1,@A@A\d@`@&of_int\dW@1?A @A@bz@f@&of_natbz]@1?G!@A@#@l@&shiftl#c@1dV@A@#@r@&shiftr#i@1d\@A@ABCD/x@&BinPos&PArith#Coq@#Pos@)pred_mask/x)BinPosDef&PArith#Coq@#Pos@ )X@A@6@@&square6@19@A@AV+L@@&to_intV+L@2@A@V1b@@&to_natV1b@2 @A@V5=@@&to_posV5=@2@A@ABCl@@)sqrt_iterl@!$:@A@@@6@(sub_mask@-@)@A@ADEF c@@'testbit c@!ć@A@7 B@D@'of_uint7 B;@*`]?@A@AG@I@)mask_rectG@@+ED@A@F˱@O@)add_carryF˱F@+p@A@K5@@*Forall_indK5@9M@A@X@@/shiftrepeat_nthX@;\@A@ABCD^Ҷ@@'to_uint^Ҷ@#m@A@gL7@@'sqrtremgL7@40@A@Aq@@'testbitq@5)@A@BE@@-replace_order@:k@A@2s@!@,shiftin_last2s@=Nn@A@AxYe@&@!txYe @;z@A@Bx^@+@"Inx^ʑ%@;z!@A@xa @2@"hdxa ,@;zd@A@Axa@7@"tlxa1@;zP@A@BCx#@<@#eqbx#(VectorEq'Vectors#Coq@@ /@A@x[@J@#etax[@> .@A@AxI@O@#mapxII@;{&@A@BDx@T@#nthxN@;{)j@A@y@^@#revyX@;{-@A@AG8@c@$castG8'@/Y@A@B8[@h@$last8[b@;d@A@R@n@$map2Rh@;@A@ @t@$take n@;:c@A@ABCݎO@J@+succ_doubleݎOA@6r@A@HI@@%case0HIz@@A@ @x@$even o@>4@A@ACD @}@$ggcd Бt@>U@A@ @@$iter }@>:@A@A 3"@@$land 3"@>m@A@ F)@@$log2 F)@>t@A@AB S@@$lxor S@>@A@ @@$pred @?U@A@AC @@$size ܑ@?'@A@ !@@$sqrt !@?@A@A ! @@$succ ! @?\@A@ !7@@$zero !7@@P@A@A *@@%ldiff *@@A@ O@u@,take_prf_irr O @*@A@A g_@@+pred_double g_@25\@A@ q@@(take_app q@lm@A@ABCD m@@÷ m@2j@A@ @@+Exists2_ind Ñ@ @A@ k@@'nth_map k(@wF@A@ABS@@&of_intS㫑@4}5@A@S@@&of_natS@4};@A@ACEFGJ\R@@(mask_ind\R@4@A@\^@@(mask_rec\^@4@A@Aũ@@*Exists_indũ@@A@Ǜ@@'of_listǛ@@A@A!,@@&pred_N!,@4s)@A@BC@@&shiftl@5X@A@@#@&shiftr@5X@A@A&@(@&square&ّ@5,x@A@BD"@-@&to_int"$@5L@A@"@5@&to_nat",@5L @A@AnTq@:@+testbit_natnTq1@6n@A@B@3@(succ_posB*@@A@I@@'abs_natI@?n@A@AB.@>@'of_uint.5@MS@A@3~@R@'sqrtrem3~I@7]%{@A@ACD,@@'bitwise,@/v@A@>4'@_@'testbit>4'V@8g$@A@d;@ @*rev_appendd;@fh:@A@AB{U@j@,sqrtrem_step{Ua@8R@A@u^@c@(div_euclu^Z@ @A@Au@@&Existsu@@A@UA@"@&ForallUA@@A@#N@(@&In_ind#N"@%@A@ABCDfz@@'to_uintfz~@9w@A@l@@'comparel@3R@A@AA@:@&appendA4@ m@A@L9@@@&caseS'L9:@ x@A@ABW@E@'replaceWݑ?@ 4@A@K@K@&eq_decK@?w@A@K~@Q@&eqb_eqK~@?w@A@MĚ@W@)nth_orderMĚQ@ O@A@ABCDEFGs8@B@+of_uint_accs89@5+@A@@g@3to_list_of_list_opp@<@A@A}@@,pos_div_eucl}@&`@A@3x@C@'compare3x:@]=@A@`<@x@&t_rect`<r@ b@A@c`@~@&take_Oc`@3@A@ABCD@@&double@'޺_@A@(@@'shiftin(@*I@A@Aq@@+of_succ_natq@$@A@w@@&modulowɑ@)1@A@ABEK@@&of_intK@)j,I@A@K@@&of_natK@)j2_@A@H@@'Exists2H@uF@A@ABI@@&shiftlI@*O@A@O@@&shiftrO@*O@A@AC,@@&square,@*ow@A@Z@ @&to_intZ@*81@A@ADF`@@&to_nat`@*9G@A@@@'Forall2@?j@A@Ae@@+testbit_nateđ@+@A@'@@+Forall2_ind'@ ~@A@"@@'to_list"ӑ@O*@A@ABC+{@.@'sqrtrem+{ё%@,J@A@@@0shiftrepeat_last@@A@A5z@:@'testbit5z1@-T|@A@BD @?@'to_uint ͑6@.@A@ @G@+succ_double >@.^4@A@A!lK@@)const_nth!lK@@A@!K@@+fold_right2!K@x @A@A#@f@'compare#ݑ]@ )Q@A@$@@8fold_left_right_assoc_eq$@3@A@ABC%t2@q@(size_nat%t2h@ @A@%9@x@+of_uint_acc%9o@ ΋@A@A%V@}@+double_mask%Vt@ S@A@%%@@'div2_up%%z@ "@A@%R@/@)take_idem%R@-W@A@ABCDEG'ş@@'Ndouble'ş@ @A@(K|@=@*eqb_nat_eq(K|@w@A@A(b0@@*shiftl_nat(b0@9-@A@B(nՖ@@*shiftr_nat(nՖ@'@A@(@@0succ_double_mask(@@A@A*W$@@,compare_cont*W$@!@A@*@Z@(cons_inj*@!@A@*A@`@(shiftout*AZ@@A@AB.0@@.sub_mask_carry.0@΂@A@CDE.@P@!t.G@ ;@A@.먩@W@#add.먩N@ `@A@A.U@\@#div.US@ @A@.B@c@#eqb.BZ@ @A@A. @h@#gcd. _@ @A@.=@n@#leb.=e@ @A@ABCFHIK. @s@#lor. j@ @A@.Z@@#ltb.Zw@ @A@A.p@@#max.p|@ '@A@B.@@#min.@ @A@.@@#mul.@ @A@AC.g@@#odd.g@ @A@.&@@#one.&@ @A@A.뾴@@#pow.뾴@ k@A@.L@@#sub.L@ @A@.@@#two.@ @A@ABCD.,a@@$div2.,a@ @A@.Xz@@$even.Xz@ ?1@A@A.@@$iter.ؑ@ @A@B. @@$land. @ @A@. @@$log2. @ @A@ACE.@@$lxor.@ R@A@.y@@$pred.y@ `<@A@A.Ʉ@@$sqrt.Ʉ@ ;@A@.@@$succ.@ @A@.t @@$zero.t @ Z@A@AB/@@.to_little_uint/@ @A@CDF/@@%ldiff/@ H@A@00@c@'compare00Z@?H{@A@A1P%@@!t1P%@  @A@B1P@@#abs1P@ @A@1P&@@#add1P&@ @A@A1P@@#div1Pґ@ y@A@BC1P@@#eqb1P@ f@A@1P@ @#gcd1P@ 0@A@A1P@@#geb1P@ T@A@B1P@@#gtb1Pʑ @ q@A@1Pĺ@@#leb1Pĺ@ a@A@A1Pň@!@#lor1Pň@ /@A@BCD1P@&@#ltb1Pב@ ~@A@1P@/@#max1P&@ @A@A1P{@4@#min1P{+@ "@A@B1P]@9@#mul1P]0@ @A@1P@@@#odd1P7@ @A@A1Pɣ@E@#one1Pɣ<@ J@A@BC1P@J@#opp1PԑA@ {@A@1P1@R@#pow1P1I@ @A@A1P;@W@#rem1P;N@ @A@B1P@\@#sgn1PˑS@ r@A@1P@c@#sub1PɑZ@ p@A@A1Pe@h@#two1Pe_@  @A@BCDE1[8@m@$div21[8ޑd@ @A@1[d@v@$even1[dm@ I@A@A1[6@{@$ggcd1[6r@ i@A@B1[U@@$iter1[Uw@ @A@1\@@$land1\~@ /@A@A1\@@$log21\@ 6@A@BC1\$@@$lxor1\$@ @A@1\Y@@$of_N1\YÑ@ >j@A@A1\@@$pred1\@ j@A@B1\@@$quot1\֑@ }@A@1\@@$sqrt1\@ @A@A1\w@@$succ1\w@ @A@BC1\k@@$to_N1\k@ @A@1]@@$zero1]@ eD@A@A2:@@%abs_N2:@ @A@21@@%ldiff21@ ߵ@A@2=*@@%quot22=*@ @A@ABC2kF@N@(size_nat2kFE@{@A@3s&@ @*eq_nth_iff3s&@*@A@A3@@(tail_add3@^q@A@BDEFGH3@@(tail_mul3@^@A@5Z@i@*shiftl_nat5Z`@y/@A@5f}@o@*shiftr_nat5f}f@4@A@AB5a@@'iter_op5ay@ @A@C6w~@@'of_uint6w~ @^5@A@6W @5@)fold_left6W /@*Za@A@A8j@ @'of_uint8j@'"h@A@8V@@@.nth_order_last8V@/71@A@AB9E@@(div_eucl9Eđ @(*k@A@:El@L@/rev_append_tail:ElF@.G@A@A:x@@,Nsucc_double:x@ ʭ@A@BCD@#R@A@A=9R@L@.to_little_uint=9RˑC@#b@A@=Y@@+shiftin_nth=Yӑ@3뗦@A@A=@X@%ggcdn=͑O@$*@A@=U@^@%ldiff=UU@$'R@A@ABCD>@@&divmod>@C@A@>@@&double>@NĴ@A@>@@+shiftrepeat>@2Y@A@AB?2@@,pos_div_eucl?2@-u@A@?;@@&modulo?;@"i@A@ACEFGIL@(Alembert%Reals#Coq@0I͗Huz&)AltSeries%Reals#Coq@0d US^%Arith#Coq@0I|кX*o4)ArithProp%Reals#Coq@0B+L?>*e˃a j)ArithRing+setoid_ring#Coq@0ṔCgt?}*Arith_base%Arith#Coq@0Ĕ}CS&Basics'Program#Coq@0!bs߯? :VU'Between%Arith#Coq@06v*0ur`C0&BinInt&ZArith#Coq@0BpHޞun^)BinIntDef&ZArith#Coq@0ådR4Tuy'BinList+setoid_ring#Coq@0Au&BinNat&NArith#Coq@0K11ڤs+Π)BinNatDef&NArith#Coq@03@1O,[{ 'BinNums'Numbers#Coq@0dmk(5Ju<&BinPos&PArith#Coq@0vyػ0= u)BinPosDef&PArith#Coq@0}H d.%,b(Binomial%Reals#Coq@0]JrHr#E$Bool#Coq@0j 2cZ`FW'Bvector$Bool#Coq@0,rO3^~*CMorphisms'Classes#Coq@0qیZBeϠ0CRelationClasses'Classes#Coq@0TL;0RUfw1+Cauchy_prod%Reals#Coq@0K*ߞ4q.ClassicalFacts%Logic#Coq@0$RzqIF\(43Classical_Pred_Type%Logic#Coq@0m[6BZ5.Classical_Prop%Logic#Coq@0Yh޿JdI1ƽ'Compare%Arith#Coq@0OM v먣5L:+Compare_dec%Arith#Coq@0jXF 8(Cos_plus%Reals#Coq@0IWEGն'Cos_rel%Reals#Coq@0%}ֺ|3J-tWKhgf@0.i bYN Z)Decidable%Logic#Coq@0ND걸풬/Oߠ'Decimal$Init#Coq@0C涳N*ua&DiscrR%Reals#Coq@0z41pV.$Div2%Arith#Coq@0n*Áht!,#Env)micromega#Coq@0=rΜL杠tsr@0s<#"#8r;%EqNat%Arith#Coq@0AIgՋXRV *EqdepFacts%Logic#Coq@0FI$ͼՋ`)Eqdep_dec%Logic#Coq@0u wWIϰ߼*Equalities*Structures#Coq@0όe얟)H.Ƞ+Equivalence'Classes#Coq@07;ꮹ$Even%Arith#Coq@0YO%q}d߫%(Exp_prop%Reals#Coq@0D:L-)Factorial%Arith#Coq@0@oehJd%Field+setoid_ring#Coq@0J _ȫ)Field_tac+setoid_ring#Coq@0d vDZl^۹Hސ0B~uYٮ٠#Fin'Vectors#Coq@0r'gް؅/׸'Fourier'fourier#Coq@0wV9TN,Fourier_util'fourier#Coq@0ϳ> 4`*r0-GenericMinMax*Structures#Coq@0måj$"Gt%Arith#Coq@0䙛#c:D 'Hurkens%Logic#Coq@05[gNk2up$Init'Classes#Coq@0](p{yOh.+InitialRing+setoid_ring#Coq@0k/T=cN"Le%Arith#Coq@0d}Omq+$List%Lists#Coq@0>I+ListTactics%Lists#Coq@0,Jcy{O0\͉!Ig*Logic_Type$Init#Coq@0 1jc6#Lra)micromega#Coq@0 ?@D{@[]#"Lt%Arith#Coq@0KZ-eJkP܏#MVT%Reals#Coq@0cq통 gZ&Machin%Reals#Coq@0Z,cq麠#Max%Arith#Coq@04=;3$>aU堠#Min%Arith#Coq@0Ce-Fѕ%Minus%Arith#Coq@0LFtR")Morphisms'Classes#Coq@0Imӽ%\$PD.Morphisms_Prop'Classes#Coq@0% :B'.>u%$Mult%Arith#Coq@0햖Qyb0$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ&NArith#Coq@0S22b%&*NArithRing+setoid_ring#Coq@0_ .Ys!Р'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI%NBits(Abstract'Natural'Numbers#Coq@0qteo_hɅ $NDiv(Abstract'Natural'Numbers#Coq@0bz$?[p(5$NGcd(Abstract'Natural'Numbers#Coq@08E-S ;j_Ҡ$NLcm(Abstract'Natural'Numbers#Coq@0 ~xZ9L{:$NLog(Abstract'Natural'Numbers#Coq@0K Aat/ j &NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf+NProperties(Abstract'Natural'Numbers#Coq@0unt"kwpYC%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ%NZAdd&NatInt'Numbers#Coq@00h`ZK4*NZAddOrder&NatInt'Numbers#Coq@0e~1>r砠(NZAxioms&NatInt'Numbers#Coq@0] ρ5r&NZBase&NatInt'Numbers#Coq@0^&8yUL&NZBits&NatInt'Numbers#Coq@0MlIpKt%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZMul&NatInt'Numbers#Coq@0ctR~6[Ƞ*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R'NZOrder&NatInt'Numbers#Coq@0 q;Ve7R W,(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x&NZSqrt&NatInt'Numbers#Coq@0` .%m#Nat$Init#Coq@0eʤģPSR蠠'Ndigits&NArith#Coq@0&Orders*Structures#Coq@0$Znl0\͗+OrdersFacts*Structures#Coq@05Mܿ獐ζΖLB)OrdersTac*Structures#Coq@05'4Ԗ+9%+PSeries_reg%Reals#Coq@0䝠|%n͠'PartSum%Reals#Coq@0j&2"(>S%Peano$Init#Coq@0 jha|ؠ(PeanoNat%Arith#Coq@0O~2$k[#lZ)Peano_dec%Arith#Coq@0Kݢ*k$Plus%Arith#Coq@04tmG$Pnat&PArith#Coq@0,?pr.gZ(PreOmega%omega#Coq@0\|چBb~w4'Prelude$Init#Coq@0JqTttֱ7PropExtensionalityFacts%Logic#Coq@0 +_.ɓoFؘ&QArith#Coq@0H#oޞ6 78+QArith_base&QArith#Coq@0#-\D7* Q,"f\*QMicromega)micromega#Coq@0K׈qq~_E&Qfield&QArith#Coq@0td;X񦐳#@`&Qreals&QArith#Coq@0 |-=ʈ%*Qreduction&QArith#Coq@0nDk%}Y%Qring&QArith#Coq@0F%pw;}=O5}%Quote%quote#Coq@0J@ŹVz-,3%%RIneq%Reals#Coq@0JUڻIu)$w%RList%Reals#Coq@05g2NaA:*RMicromega)micromega#Coq@0>e{&(_>Υ%R_Ifp%Reals#Coq@0c4+ZŠ%R_sqr%Reals#Coq@0X%MԹ%M&R_sqrt%Reals#Coq@0 @#DŽe)Ranalysis%Reals#Coq@0q ' ="0 n;qm.L%*Ranalysis2%Reals#Coq@02N헛W*Ranalysis3%Reals#Coq@0Gz魸NJ,:7*Ranalysis4%Reals#Coq@0kp+PA*Ranalysis5%Reals#Coq@0ۤ$+]ݽN9-Ranalysis_reg%Reals#Coq@0$૔ B_QNAM%Ratan%Reals#Coq@0(쟭CK'Raxioms%Reals#Coq@0S]jnj][L%Rbase%Reals#Coq@0Jܡ\ c6{*Rbasic_fun%Reals#Coq@0hܒiclE>)Rcomplete%Reals#Coq@0{ڸ4q 0(2{Ze$ќ8&Rderiv%Reals#Coq@0?KQ;^WU;H)RealField+setoid_ring#Coq@0 >ʾq $Refl)micromega#Coq@0h <0P/RelationClasses'Classes#Coq@0Gz rA6ՠ4Relation_Definitions)Relations#Coq@0]4Ѐd{n^2Relation_Operators)Relations#Coq@0%s鯰s)Relations#Coq@0-SetoidTactics'Classes#Coq@0S_`nOU$̠͠@0;RWMi\N+SplitAbsolu%Reals#Coq@0M)&qYlݹ5*SplitRmult%Reals#Coq@0sD\rt/(Sqrt_reg%Reals#Coq@0?N~K0,o^}'Sumbool$Bool#Coq@0sB ,$11.]m'Tactics$Init#Coq@0/9m+ a'Tactics'Program#Coq@0332W}&VarMap)micromega#Coq@0Zգ&Vector'Vectors#Coq@0_ċ|"Ʌhz)VectorDef'Vectors#Coq@0]i>3 ٠(VectorEq'Vectors#Coq@0#'`ԶlxjT*VectorSpec'Vectors#Coq@0GyK5%l6L"Wf$Init#Coq@0q+W,J+$Wf_Z&ZArith#Coq@0`&i!2 Q@@@@#_11 ;@A@@@@@@@@#_122M접 @#_13'`o@C.function_scope'R_scope@A  @!O2 Q@@@@#_14/.@#_152M접 DD@A#_16'`o@D,+-@@A!"!% @ t2 Q@@A@#_17@A@@@@]@#_182M접 @#_19'`o@C@XZ@!O!R@82 Q@@A@#_20!@C3@A@@@@@#_212M접 #_22'`o@C@@֠!|!@2 Q@@A@#_23@A@@@@@#_242M접  #_25'`o@B@A!@2 Q@@A@#_26"@+M:@A@@@@@#_272M접 #_28'`o@B۠@A!@2 Q@@A@#_29N@A@@@@@#_302M접 DD@A#_31'`o@D@@A!!!b@2 Q@@A@#_32"W@+M:@A@@@@3@#_332M접 #_34'`o@D213@@A"("+!@2 Q@@A@#_35T@A@@@@c@#_362M접 GF@A#_37'`o@Gacbdf@@@AA"^"a"d!̠!@(2 Q@@A@#_38"@3x@A@@@@@#_392M접 #_40'`o@I@@@AAAA"""69@$2 Q@@A@#_41# @/+M:@A@@@@@#_422M접 #_43'`o@G堐砐栐蠐@@@AA"⠐"堐"蠐"P"S@2 Q@@A@#_44#H@x@A@@@@$@#_452M접 #_46'`o@H#%'&(*@@@AAA#$#'#*@u2 Q@@A@#_47#@x@A@@@@f@#_482M접 #_49'`o@Hegihjl@@@AAA#f#i#l@o2 Q@@A@#_50#@zx@A@@@@@#_512M접 #_52'`o@H@@@AAA###:=@l2 Q@@A@#_53$@w+M:@A@@@@@#_542M접 #_55'`o@H預蠐ꠐ@@@@@A#䠐#砐#ꠐ#X#[@w2 Q@@A@#_56@A@@@@+@#_572M접  #_58'`o@F*)+-@@@A$#$&$)##@m2 Q@@A@#_59$@x+M:@A@@@@e@#_602M접 #_61'`o@Fdceg@@@A$]$`$c#ˠ#@@@n\%XVc@H&ð.'@n\\Gz,A,@83>j`A&(0!f*Ranalysis1%Reals#Coq@@,Differentialme@!a,Rdefinitions@!RӀ!b %Logic$Init@"eq @A@&Rminus&H1@"d1!sCA BC 1)NewtonIntA@ ^[!x=M@)derive_pt$Fn#DW@)cond_diff9䀠%"%@*FTCN_step1B-),;j@YY\Z&SpecifO@#sig#* @A!g]@"or @@.antiderivative ۀQPMM@(mult_fct)?@'fct_cte€\`@"id!s-%A!ill@#andЖw@Ae@ @#Rle=@"ex @@,derivable_pt8\ED?|:"prȩESNH,Է!H6Ȑ"H1@1derivable_pt_mult=Aƀ"X@2derivable_pt_const>ҥ'@/derivable_pt_id#$q9BA>*η3ʰF:zȐ"H2@'and_ind14ۀЩhj˩ͷ"H0 rP%RIneq)@+Rle_antisym>`KZ)@&eq_sym X*/3<@.derive_pt_eq_0J6: '@(eq_ind_r!2#<s=?@@%Rplus+1G@%Rmult׀N@#IZR/r'BinNums'Numberse@!Z7@A7GkB@(positive*@CȐ(hyp_list)Datatypesk@$list]@A @$prodt@,Ring_polynom+setoid_ring@%PExprk@C"Ȑ'fv_list)BE0@2RField_ring_lemma1!7𚠐(Ring_tac$@0ring_subst_niter!/E&4G+9C0t>D5a79fBj?p@$Truey@AӠh@$boolZ'@A@ Ȑ#lmpc@.mk_monpol_list(^&BinInt&ZArith@#add1P&)BinIntDef@ ̀@#mul1P] @ @#sub1P@ p@#opp1P@ {%Zbool!@(Zeq_bool0߀*@'quotrem\$@/ŀ@#Monf@@#Polj@@#Peqj*(@*norm_subst7:d0QA;5/'0SC=71) zb CK   ҠS[ F@&eq_ind J[^!rgw@0derivable_pt_lim𐩐H{L@5derivable_pt_lim_mult1@6derivable_pt_lim_const9A!@3derivable_pt_lim_idsT(b"B@#Rlt=ĩiooqCCi@1Newton_integrable,"uxxLȐ!nz@,NewtonInt_P1+M:TBBB@@@@D!s`hYiWQjB@@@@@ xiyga o@u$_tmp@.Rminus_diag_eq-퀰ܠC%*2E@٠4C CɰO<fPIGACƩ߰G穚@$Ropp΀Pө@,NewtonInt_P3+M:ɷM('+}FkdH krc\@\QO(0L<60*"0N>82,$]CF,an8堩*Y,[U@'sig_rec5Ԁ !X BqD s INPMk@&or_ind"VX!sc(e*dz f495eh+;@Ezk#l4CkiV mZשM>N!FQ!GT!lݩz@  ZJQ$ȶ@(&')жҶ@202+%g੐L #שC@:4~1j}kǷ0 ǰK: |ж@5ZTIҰ@A@nLϩt@xvx%qk$堩gH&f ,oNpMr7@ Duj9,-iB@*LJ k$#IUR@.0#^2(7 7f'"PO16q2-B NMѠ>y"H3)n@&ex_ind 5{Щ͠YYKWba1Щ֠[bb'TbkjY@砩ᠷ_[Vm4*Y sc^uRQmrniD *"x0)"H4)"x1w"H5WȐ"H6@1derivable_pt_plus= ЩUPe)gة+کi ٩r7V-*>Sa & GUTU uԩ°ة Ȑ"H7@%pr_nu"_"j/JЩpn=r8R఩/@(plus_fct1}'(방 HiXLS<7 9VʩP C K #j`  o]X+Z3v%)`a4c$&!@v+$1| 7Ȑ*to_rewrite԰v794/+6)7ްש#HeqX^JLGB&I#5ZȐ(list_hypȐ-list_hyp_norm"stȐ0list_hyp_norm_eqzw@s|yȐ*ring_lemma@2RField_ring_lemma2!8 X~ux|WFZ ©Y"pe<#npe@07{hѩE@&PEeval"s 8s@_@#nat@&BinNat&NArith!N@&to_nat`)BinNatDef @*9G(Rpow_def@#pow#׀W[[:]°ЩaưF$e]i \f婚@(Pphi_powcH|<6%+InitialRing@)get_signZ#7%Ȑ#resBC A[ũk Ȑ&res_eq*@ 0F60*$szAݩy{#Ȑ#thm(%($S8U:D}wf^H WQ e,`3b9#l_©^Ȑ$res0OLکS0IBȐ'res_eq0B@KH:0(vpjd\ð>8C^Ȑ$thm0`c_8C+PIuB)[0_1`>)HZBg`S@Y{SaHpkIvN vqOb˩i\éQO,)'_)+&$#9@@0Bs) rqow75C@?1 57B  XC԰ĠƠ@/derive_pt_const ~ȩ@.derive_pt_mult멚#@.derive_pt_plusۀܰ$q#rC0ƶǶyȶwɶu"%#$@^@a-7@?2<L<?=5>#pr1z#pr2 @,NewtonInt_P5+M:W )%(" +p3br5d1`  k@omBqkB@ TکE2-!" U W:*@ ɠ/ 0c)e+f(8@ #hX;!o>ީܠB3C1+v,<-x>.t~2hc5WHXF@>ABC@P`@ }iZjXRPSTURbr@ u"o05|m}kecgeݩàˠ"'/~13ː@ ݠΐАF"o1-I'Raxioms@-total_order_T=ҖXL@%sumor$|@@'sumbool7̂K@ %_!@#Rgt=<BAAAA@@@@@Du"T:7V< : A(KIL,M!6BAAAA@@@@@D@Ǡ&x,[(z.]C1#L P E#HltECEG  L  NRg#FAo+s/~"3+)$5+-k̩_Z/ԩ0FةG{@1antiderivative_P1xڀ$@  HA{wrҩ3}xUG#MVT@3antiderivative_UcteX̩ܩIҩ/-(ط!c۶ܶ@<:<{3yƩr@RPΩR̰SGܩװ 젩wˠƠ01TU"x2 d)]x..z0- &55  (7  -<9kC  9H 4    @  Ȑ"H8  ! Pi$ [j e 8 g My A+&t T YB y:<7ِҩ  V  k ^HJE*#  #   4 ( % t qo Y  '$_}-~l+׵@ yt0bO v0 dQ ѩ9 X  %ж  @           ̩     *f(  ө 4 ȩ Šo̩p'k @>@ @)False_induُ꩚@*Rlt_irreflnQN@,Rle_lt_trans*GӀUU    ж  @ ` ^ ܩ ` ^ Yķ Fũ ݰ @© gv 7 A)   ٠Ԡ4 $% 6}1  _ ŷ T #ж  ,@     ȩ  r  8TL {J |  - j6[sV۩Q   շ  K N L  N 4_   :  <ɩ _  ]ک _ a֩ c < 97ѩ=++?''@ CM:]50 # qke_W N70 % smgaY PH P#HgtE  M OJ  }ж K @ Z  bZ ݠH I a  Q LW K fd<   .j4646 x [ x ") 2 Cus 4 EuwM  ж q @   D    z7    OMӠΠU    H Q X S ZH  ж  ˶@ +     ;  [ 0.lǩ4646     ۩3$:k ~8tv   o    A{}o(6 0B  © =    @ O MM  ǰ        ֩ (   @ b `  ڰ $ ʠ ̠ Ǡѩ "0 #  ]V ~ q0$ s&&   7+   $00  &2 d  9<   2>A  -    9        G      R   ٩ ` [ . ] C 6   I K 2 i * q  l ? n T G 1     ֩ ԰ v ְ x ذ z ڰ |  ܰ ~ ް   0 W U X   C T  RT ? ]; F A  X ( E c _ Z  G e d  8"F0 ;"F1 >      ũ (   t p u BBB@@@@D@  n @        ׷ ة   CA } l  @#notШ é @'Rle_dec3 f  ޷ $ Z   _^ `    . :@ 8  ܶ@ĩ /    p   Ҡ- ( ޷ F   ؠ   ΐ   c  @ \ Z@  S M   ͩ e P K  i Ӡ   U   ް  ҷ   } Ch &c D  *     Ϸ  3v7@    ũ  "  |  B    F 3  # N V  o :  / /"  5 [ SM  8 g !G B ]W ޠ = C r ?R Š  = x, ?eͩ ~Ϡ ҩ   D  lst   ^  P U D W}cؐe e 4h   \ qr > x x 7W   x |  z    L    u z i |  Y ѷ  ) ]^ S  X!  3 & ' ka  @ @   pf  2  Ȑ!e g  , & k     m  4BBB@@@@D@ > 8 z - İ   4 ̩ G A   B = "I  \ Ơ  P`a K I  U Ӱ  Ƿ ک [" V" %n / u ߠ thii )  s8b6 #eps ,"H9  )  3q      7ub H@.derive_pt_eq_1K|  w     )@'posreal̠@%delta !h N@ $ S * @ Ġ*Rbasic_fun f@$Rabs; w q F@#pos=D.  ՠ O l@$Rdiv̀ Xm 7 Pq Q @ ͠;5<3 @1@- - k o" N g g  OIPG @E@A A 0 S f  f   G   o j   rM Rm    _$   b   S  #H10PȐ!D{@$Rmin; 〠y   2 Ȑ#H11 '̠ > ˠ( @+ Y  ؠ J  ؠ 8  ͠    Q  9  @(cond_pos 1y  ] @*Rlt_Rminus % Cީ ͷζ@ö@  ѷ   | j i'd  c     y ~ % ש@} ķ    h A N#H12#H13 Ġ K  G  ) ӠMQ!4Z ̠ 4 ԩw  d >    AXi ݩ]<Ou Ґg -1  Ul5 Ω eo 5^ $,O  $ O>at  t R Tf } K   e W fX ]"r0/  m ֩ @,Rlt_le_trans9Щ d by@&Rmin_l| Ǡ) $C> o  =EР@%Falsee@@@D@ `ڠޠ;A  g ֐r rQְRK5T Ƞ J O@1Rplus_lt_compat_l ]߀ Q   ; @(RRle_abs O @.Rplus_le_reg_l -< f " 㠩  g  ' ꠩ 1 .  /   r  5 7  :;@&Rmin_rj C  'C@*Rplus_commq  ةK@)Rplus_0_l 6ʀ 0;@+Rplus_opp_l73=UY@+Rplus_assoc D  퀷 &~@x ֠PT$7rӠ ֩ķ ש9aũ PY Y  C !x {@1 @0derivable_pt_abs팀\K^t _ =  e  i j x Ctcv ĩ U |    / * ө q  /8 ] ^ L M  ! a; 'O \ $SF  zH |  d aŰ    -U   |  LFƩ@GBBB E `ʠM  {  | L հ S Щ` 0 U ް ) \0@.qk (`&{z G v " ru  20 w Q 5 s    9 wn<  u@e   ֩ J s ݰ     >    @$N   S@@ Š?C > !:h"#f@@ ؠUp *$+"n@ @ ࠩZ ^  ;T4B;@,Р>8?6@4@0 0nrBU{U n ڐ6 ڐ^ Y  a((Wj  Ip7@72?q#H14I"x3w#H15q@o@k/kZO79KXȐ#H162zKʠ<(uA'FC_ Cé@@h⠩ɩaɠ HN I iӠ ηl ֠h cҷ } bh&c  y O1#H17巐#H18~u . %!퐩+ܠ/ 8 U j c QG hV - SŠ nE  4fM DNW -.렩'ei 9L r0ϐd*kS 1 V?~ D-- mIQ+٩ЩNA2F `lJ C9ZȐ#H19{x_zXc4 (19MK(%#ũmf)/+3&$#9; =  @C0Ev, v ߩŠlǠsˠPYӠ ml $ G."CUioַW@r젩 Jq ݩ搩 [ fk C ͷ x `c!^ 7}砩 !; 1 %2  & {236  # 0>{ T X ^ CI  6& UQ3=  O  m+ x4c &+f - SŠC dn  44[ N O PPV{>H ةPI  UR)M ĩߠUU^\de   ˩u㠩ݠ 2i [ 'qЩ +r ad -z4{ jm6     v   m S B~xv¶@t@p4p_ Z  h g֩"Զ@@FqĠ  ͠?p '*% G    ࠩRR :=8 lV  o J8C64/ Z . T kk QX ̷ߩ w-'c!+{ > ,c*$ mC]C@3@@ᐩР#  ,  ݩI      :   Z 7 &au ^ Q ݠW[ +> d֠>  Ð ZG  J Y @TdLEd#Hle3 ?}.&<U     : x$HnleE$, Y % YH k~ ~ \ ^T PP7hK$Hle'&@.Rplus_lt_reg_l5=Ӏf 0 0'geB?=l? ':872M,OQ @ ǩWש0Y@0[B ư  Mkԩ堩שà Qlig i k fdc^Vy{} F\O @9@9.,ݩ0) n8!d i䠩 . mb)1, > :0 4ސ57 &@)Rabs_Ropp&#oF޵NCKI#    g:렩>Zdc q_ la8a;:۷%Hnle'˩ɰk˰mͰoϰqȩJGEEݩI71@OYFiAA0/}wqkcZVk]oL 9u->|-q$-)9ЩHƠC}C?  ^OC   @)Rle_trans"HK[i 1j /kķŷ Ʒ -Vg $b\]^_o жն@5  *ɶ@ 1@pjk{lj}  ˷ @DBC/;(y6  䠩 ޠeũɰ  ӷA  蠩o@԰B ' ᠷR T W79Y "@ ysh.m Rr4Ӡ 1Щ \ $$#Rq)C:AȰ?=7'% CA W̰VT%`@ d A,:i-DCǠs4oFl <5Ӡ >; ?ӠRIנK8٠:OT<QYYX^C^[2 3 4  }0Mg +%&Sq'(8sUжc@ {@ @i;5675iͷ; QA  (XH     2QNSP ]W UYW   C_amgnip o TL@EC éE+tĩЩMo>7}_@8Щkkϰ=C#|*t(&l y C* @x?=s @l'jkQ&sywh,az@~ߩp.mCeDڷ53+4 \5#Hab#Hbc۷"X0٠M~ Oڷ꠩/1 H!  =k?m 1l  f _  ev e2.Z2.<ww!" MUK OWMWQ[éS]V@1antiderivative_P2xۀ [fͩ_ alж^@w r8p1trķvx  9B:@| ~ Dk8ACж@ w _g%Zӷ/ 頩`i  CVCڶ۶ܶ@@@E@HJsS÷@(sig_rect^ j wze n+{Jzް  V{6_ͷa<\fhClڷnө$Hlt'׵ٷکȠ ͷ9    ,  t% l dکݠy !#꠩Y   Ġ +Y ɩ nE K C0 2`ְ.i   g ] . _Uia ʩ  ILr$pж>y@ y̠P C s   O>  ( O v(c"  rm#Rж_@ q c L ө :4n]G nE  HA J Ǡ VCC$Heq'c]@'eq_rect=߀ũ+\$Hgt'ȠA ʠĠKprF9w* ,ѠXRGEŠ%Hlt'' SUnYW[!Y_EaG 4ж @l  aNH ?.o9 Cssq3-*w08+:{:N?~A&@1antiderivative_P3x܀ >QJ ȠBUNDPK H  7ж@@dHcZ\ep]jdgfbhh00>11W4Uж#^@ \895d61 e S }yx{~{FFC%Heq''d@)eq_rect_ry |zSѠU%Hgt''',-`b$^`&CADж\@  &- ǩj uM&/81: -| v>}?9B4{y{|{жy@֩  ߩࠩW^ݠl-жӶ@ & kr2 zorCcȩtOx ·r3ȷ6Vɠ:<͠?.,$ѠB#Ԡ At_E]n4%f ж@5m,m"5.m9s&23-60/+1.1'@1antiderivative_P4x݀ 7JC;GB?DA 1ж:@|B\(g _Y!!ivEEжN@@Dr|lj"e`o..Cky`аd.f0jlbж0k@_  Bq5q[HPPxv|yyZ MTWwQݩ rYYsжO@֩ݠa]ͩ"XmjnnMNkKu(Cj@o :8|||Ȑ"X1zx|zȐ"X2EGKI@,NewtonInt_P7+M: RPh·÷׷@,NewtonInt_P8+M:4|m}kefvghx#zxrpstru@ ѠW2(-@ڠ;s͐#Hor&JCACEٰe#ˠEJRTV@ `#_SkƷ$Hor0!piQ% H_.頩D3D3v׷$Hor1]y0|) ;!%0JL26) RI83NHƩ3b1Bɩ6eKI(OIB!ZEt Gv\h9`hSR BAAAA@@@@@D@`u{ߩRyvv @0*(,*se6-@C= ? Ky+= T}  g ʷ$ ̩Xi > 7s =0 <̩/߷@A?7 Kg٠K/61vOԩ&@`^B 6ذnȠЩhLSNl֠saũݠȩe #n%gffhp0mm$2o 7t|4@)Rlt_transC{C˩|Lmةð $SGU"Y"Hgcs ) Qz s t) pCrX7L6] _ G~?4Gmߠǩʐ&N$I+cxkUJ]< d  O P5HN_rgzY e\̩|'©m + ݩ3: 5$HleaH)(.+РB-ӠޠP;РM ҷT-堩S  ĠK ǠP l 堷$Hlec++٠`d-(%Hnlec9&T('*(,. z|o 'f_@_TR+0O?93-%0QA;5/' `%HnleacN4X{*ư*YQM2Vj `4c14Xж&a@!8gT}|x~~F83wH^ԩlж:u@sȠL{۷igRg5DkW9nЩffжX@  j54 x>x0NxnjycLtxz(_ĩΩ^ʩ`Z\'f`-+b-/]f3h5+% foqِXܩݐG0ǩE@WUA aϰyة*@d# 8ڰ ʠް ΠUĩӠǷ۠ͩ),. "7ߩ9;  o} 2ng@g\Z#3 0WGA;5-$ 0YIC=7/& hЩ'ǰ+Z2  հ6eYg>Tbж0k@ˠy  CAp1ȩc6gg֠?RBJs.FFw1MOOddaжV@ 12j/ pcx.xbV@)Rplus_0_rH€kʩ̩@+Rplus_opp_r {GCy@Q[D+)\,жö@Pߠ(ڠ%7TFD[GW`+b-IԩQ 3hޠS7ҩȠR<k$РCթԠ3ǩB@Ȱ0)/eV.K۩-@۰ ˠөkWVQڷo٠fߠԷ wj(eͩ24Ʃ >-H˷ "O"Q9, D24]47շ"c<*#R>mS0W4)<bԠ̩}TB i?F;NtHϐJJ+M6RN/k Ck-[_Z;ߩ{ <Z>swyLHA©}rc &U &\Z74246/8:y532-%HJ)L+NP h/jS @ ɩY0[B  H ɰHFFؐж@ec \V_KqPհQRRWQqAE +;u(4-pio=zn ?g/+3/K? 5]67@̩ :+>RKQP*XHpIJ@&"QOJCIH +1ڷCZ&]&L'g,SC pCr>3Z\OCz;0Ci۠өƐ"I2^&^YNuRGZ֩ݐ9`"]yx$V}?mO5sh{ ZVRj~zFdEJ!D[  ?(砩e&$8 93" &$ɠ;&6qΠ٠K36ˠ)NߠZCؠ 6#jge :g i ck l3dc^Vy {Zn[~]֩KC<@<1/0, q;zA=@7 ' \R 8̩:Щ /ж 8@C  3MMzG9 ˀ    L $ ǰ ( W K Y 0xFϩTϷ˷JH 5d* a0 d b 5 d% L2p k n l  G?A IA I   EC  EG K M Q A h   Z J qz& e h   Z @թ k [ t    e @ĩ t d } x h  4ж v @P9  w. T     ~  é a Ʃ  ȩ   XV30. 0  2 4 /-,'  B!Do@ Jʩ0L}3  0N5   T  R ۩  V  ŷY ж  @ F  3  ʰ - $ ̰ R@.@ @ Ұ!Z *E !@) X ߷ E  ܰ! M ܷV    !g!! !  ֠  *}!!!!#|zyt  lZZRK@ K@>0;+%! J! 7 ] ! ^ 0ж !9@{FkA 4zg@@Y? g} < (Ƕ!!B@@=. +UR!!!!M8 3 pbi!!! !Lt!M!!N@_!Qy!R!!S@Q>!U Rݩ Qж!!Z@EE2!4 G (!_!`!3!b!H!;+ /!f!g!:!i!O ,!'!D^!B~ FT!HP ߩ!F ]JV!L!L {!L!L>t BR$!M!|!b ?!f!Y?8)#!] \)!!!#+  ж!W!@  !i! $ !w =!w (!12:!34<3 /   % }!!!<!v!eO  vҩ!jk@~!!q&[%$ ȩ!mn!!!!Ƿ!ȶ!!ɶ@!)!! !!ߠpP- ?!_O !^!ܷ!ݶ!!޶@!!ߩ Ӡ >ة !j!5 ! slrJq u!۠!˷!!˰!Ʃ !!թ " ] Ǡ!ܷ" !ܰ" ש ̠!! Рŷ!o"Pmpno ؠ`A!`ηbx!" ߠr" pion "O! "  !" }{[" "; Ʃ"#!U"TS!z"-/!O! !Q""m!HL"#"RFO>!;J"-".!!"X^"["Y","["A!ש! "G"I!&!(    ͩ ˰"m Ͱ"o ϰ"q Ѱ"s   ʩ  "L"I  @I   b  @"O    Y F  i  A0 !/!  } w q k c "Z {"Z!!   ݩ  "_"\Z ϰ \  Ӱ  հ  ȩb J  ٰ R  @"h    r _! Z Z0!!H!5      | "s @"r"":I!d"6ʩ"!j_"r"͠ K% ϩ!r?"O!!v!""+ +7""o""*~r"4 4""  Tu~""3mk "!!ɩ F ("""]""Ӡ pŷ -ة!"2 Ha""Ơ |޷ 9˩!"ʠ)"""8""""@""!""& % L$!^"ݠxA" "ѩ}"#"""@"]"["S"հ# !Š  a!ˠ"# X!#!Ѡ렷  m!נ""!#!ݠנ ȷ yܩ! " #%"#'!蠩##!Ѡ ͷ ֩!<#  z |ϩ# #8˩!# !# ˷ ǩ"ũ#*#"  "  ##%   #&#U"#=""a"#5  ""I#I"k#<"b3z4-"Sb#F#E"9#pv#s#q#D#s"4#["8!":!#a" "!!!߰#$!#!#!!#!!!ީ!!#`#]$!а! ]!!M!!!@#c!!!!m!Z!!} !U0!"C"0!!!!!!w!#n!#n "$""!!!#ϩ!#!#"#"?"#!!!!#}#z x!" z"1!"!"!ߩ "0!h "2p!۵!@#!!!!!}" ! x!x0"""f"S!!!!!!" #!ӷ!Rշ@ϩ##"#"""{#!#ɩ!g"b!$!"#V]#^##E!E\##) ##D~\|#N!N^##&2`#4#Me # "A"ж##@#<#)##   b!"   @ ##.#"! > !#"##ΰ##" #!"$"!$#ڰ$ "ʠ5 "ΠP#"$"Ҡn!!$#$# "$C$##8 ?y##: A#{ a### +}# -   #$,#m#X #'ж#$0@T U!T#^ LǩGFBHEH$!$#e  #J V#L Xd#-#;ж$ $D@R? -`!h#3(`>[ V\$$ $$#:#w`  pi]$($%#$S{$T$$U@$)$X]#X$2$\$]$#$^@cI$`#]#,$c#$$$9"$f$9$h#)$A!Z#-&!^#;$r#3$H"$u$H$w#8#:3$SI##""ߩ"ݰ$7"߰$$Y"$""H,$[ʩ#B)#@? )P$aM#=H;$d$a!#N~#B#R!C$i$$~|#[ 3$ 1$u  G!&$/"0 8 6$1"2 8 :+##ж$n$@ # g# h$$s e L!# ʠ &Šͩ $#$#!?&$ W#'# I!# ؠ !Ӡ۩ $#$#0!M$V  # _$X  a % X##ж$$ж@$0$% $ $$ t $3 1 M! $  +$ #"q$$ #_ !r  ? A $$$v$$젷" "F#$נ 3 7 J  z3  ŷ$$ߠ""R#$ux X $$֩$Q%)%$%@ é$װ% #Ǡ$% ?8"> "e=#Ϡ$$$$ %<%$%@$v$J$%#ܠ " "x#$ p %$ o h$ ж$%)@$,$~$x H%$m%%3:$r$ B%% $ G} { u%$q$%<#%+%D""$ :%""%K%%M%3%&ߩ$$%S$ %%W","$M%5"%^%1%`%F$#ᠷ#"$)%P  %&%C"!"%B%q%W$4)dc#"ѩ$: %a $$>3%Fl$ޠ©ɐ%%^#$"$K $é$M)%e%e%%z#$W5$ ۩%s!i""R" %s%%$eZ%m%%%#K ӷ#$r Y%  $R$v$x S% M N$X F%#X 9$I$G$$$!$% $!%#P$#% $$%% $'% !$"$ $$%%"$5$$7$$9"$;S$$$=%##@%#####$C#é#0$E$$v######$,%#0$G$$x######$.% ##7 Z@%%%ʠ$7#u$$ K9#y %Đ%`#`F%İ% 4!t%Ƞ F%_ % %̠ %c%%"%$C%ΰ%%%%6% 8$%% %:%%xN.4yR.5'؇