"`-+- A&Machin%Reals#Coq@()Notations$Init#Coq@%Logic$Init#Coq@*Logic_Type$Init#Coq@)Datatypes$Init#Coq@&Specif$Init#Coq@%Peano$Init#Coq@"Wf$Init#Coq@'Tactics$Init#Coq@%Tauto$Init#Coq@'Prelude$Init#Coq@)Notations$Init#Coq@0&v!D]hwnv %Logic$Init#Coq@0\͉!Ig)Datatypes$Init#Coq@0.i bYN Z*Logic_Type$Init#Coq@0 1jc6&Specif$Init#Coq@0;RWMi\N'Decimal$Init#Coq@0C涳N*ua#Nat$Init#Coq@0eʤģPSR蠠%Peano$Init#Coq@0 jha|ؠ"Wf$Init#Coq@0q+W,J+'Tactics$Init#Coq@0/9m+ a%Tauto$Init#Coq@0̂"&/rk0JqTttֱ$Bool#Coq@0j 2cZ`FW&Basics'Program#Coq@0!bs߯? :VU$Init'Classes#Coq@0](p{yOh.'Tactics'Program#Coq@03u%+Equivalence'Classes#Coq@07;ꮹ-SetoidTactics'Classes#Coq@0S_`nOU$&Setoid'Setoids#Coq@0D9AsWE!>'BinNums'Numbers#Coq@0dmk(5Ju<*EqdepFacts%Logic#Coq@0FI$ͼՋ`)Eqdep_dec%Logic#Coq@0u wWIϰ߼*Equalities*Structures#Coq@0όe얟)H.Ƞ2Relation_Operators)Relations#Coq@0%s鯰s4Operators_Properties)Relations#Coq@0U3y#h&)Relations#Coq@0r砠*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ&NZSqrt&NatInt'Numbers#Coq@0` .%m%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|&NZBits&NatInt'Numbers#Coq@0MlIpKt'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$&NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ)NMulOrder(Abstract'Natural'Numbers#Coq@04> Aat/ j $NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ'NMaxMin(Abstract'Natural'Numbers#Coq@0]v|Qg̟ʠ'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NLog(Abstract'Natural'Numbers#Coq@0KI'BinList+setoid_ring#Coq@0Au$Pnat&PArith#Coq@0,?pr.gZ'ZAxioms(Abstract'Integer'Numbers#Coq@0\}zK=PK%ZBase(Abstract'Integer'Numbers#Coq@0 TL}2_} ؠ$ZAdd(Abstract'Integer'Numbers#Coq@0Y9Vgⲫ򐠠$ZMul(Abstract'Integer'Numbers#Coq@0Mtr\b"H#ZLt(Abstract'Integer'Numbers#Coq@0xK|j2[&=}۠)ZAddOrder(Abstract'Integer'Numbers#Coq@0w:}H#NK}{)ZMulOrder(Abstract'Integer'Numbers#Coq@0Dr~-~ECM'ZMaxMin(Abstract'Integer'Numbers#Coq@0bAX1'ZSgnAbs(Abstract'Integer'Numbers#Coq@02`ou{Z'ZParity(Abstract'Integer'Numbers#Coq@0S)*Dd$ZPow(Abstract'Integer'Numbers#Coq@0AşsאI)ZDivTrunc(Abstract'Integer'Numbers#Coq@0`]f5FԠ)ZDivFloor(Abstract'Integer'Numbers#Coq@0dj_TYQc|$ZGcd(Abstract'Integer'Numbers#Coq@0G0=$ZLcm(Abstract'Integer'Numbers#Coq@0(9g%MmN]%ZBits(Abstract'Integer'Numbers#Coq@0ܹCF5s+ZProperties(Abstract'Integer'Numbers#Coq@0Ve*ʞ_OV)BinIntDef&ZArith#Coq@0ådR4Tuy&BinInt&ZArith#Coq@0BpHޞun^,Ring_polynom+setoid_ring#Coq@0gaKw9`UW+ListTactics%Lists#Coq@0,Jcy{%Zeven&ZArith#Coq@0i?eK#aU堠#Min%Arith#Coq@0Ce-Fѕ(PreOmega%omega#Coq@0\|چBb~w4%Omega%omega#Coq@0t.J'6\ϨrK(Zpow_def&ZArith#Coq@0f蓜DX;V*ZArithRing+setoid_ring#Coq@0{#'[{nm!/,Zcomplements&ZArith#Coq@0ʾq %RIneq%Reals#Coq@0JUڻIu)$w&DiscrR%Reals#Coq@0z41pV.%Rbase%Reals#Coq@0Jܡ\ c6{,Fourier_util'fourier#Coq@0ϳ> 4`*r0'Fourier'fourier#Coq@0wV9TN%R_Ifp%Reals#Coq@0c4+ZŠ*Rbasic_fun%Reals#Coq@0hܒiclE>%R_sqr%Reals#Coq@0X%MԹ%M+SplitAbsolu%Reals#Coq@0M)&qYlݹ5*SplitRmult%Reals#Coq@0sD\rt/$Even%Arith#Coq@0YO%q}d߫%$Div2%Arith#Coq@0n*Áht!,)ArithProp%Reals#Coq@0B+L?>*e˃a j*Rfunctions%Reals#Coq@0d¹d‹@'Compare%Arith#Coq@0OM v먣5L:'Rseries%Reals#Coq@08]$u+?'SeqProp%Reals#Coq@0Lt2|9D }SSԻ)Rcomplete%Reals#Coq@0{ڸ4q 'PartSum%Reals#Coq@0j&2"(>S)AltSeries%Reals#Coq@0d US^(Binomial%Reals#Coq@0]JrHr#E&Rsigma%Reals#Coq@0䟄WCJҦ<%Rprod%Reals#Coq@0gȀn_}!W+Cauchy_prod%Reals#Coq@0K*ߞ4q(Alembert%Reals#Coq@0I͗Huz&)SeqSeries%Reals#Coq@0Npc$5|T ٠*Rtrigo_fun%Reals#Coq@0T+ɧK/۠*Rtrigo_def%Reals#Coq@0$xR`VcxIaƶ"x*Rtrigo_alt%Reals#Coq@0zsC^,%+OmegaTactic%omega#Coq@0@{4-EܭEUBW'Cos_rel%Reals#Coq@0%}ֺ|3J-tWK(Cos_plus%Reals#Coq@0IWEGն&Rlimit%Reals#Coq@0*r0ē([HAE&Rderiv%Reals#Coq@0?KQ;^WU;H*Ranalysis1%Reals#Coq@0 n;qm.L%)Rsqrt_def%Reals#Coq@0eA~%&Y?%RList%Reals#Coq@05g2NaA:7PropExtensionalityFacts%Logic#Coq@0 +_.ɓoFؘ'Hurkens%Logic#Coq@05[gNk2up.ClassicalFacts%Logic#Coq@0$RzqIF\(4.Classical_Prop%Logic#Coq@0Yh޿JdI1ƽ3Classical_Pred_Type%Logic#Coq@0m[6BZ5)Rtopology%Reals#Coq@0;Wo G#MVT%Reals#Coq@0cq통 gZ+PSeries_reg%Reals#Coq@0䝠|%n͠'Rtrigo1%Reals#Coq@0x'ml^*Ranalysis2%Reals#Coq@02N헛W*Ranalysis3%Reals#Coq@0Gz魸NJ,:7(Exp_prop%Reals#Coq@0D:L-*Rtrigo_reg%Reals#Coq@0QWk'&R_sqrt%Reals#Coq@0 @#DŽe+Rtrigo_calc%Reals#Coq@0"Jl<8iD4%Rgeom%Reals#Coq@09b'mdlsy(Sqrt_reg%Reals#Coq@0?N~K0,o^}*Ranalysis4%Reals#Coq@0kp+PA&Rpower%Reals#Coq@0x9^XQ-Ranalysis_reg%Reals#Coq@0$૔ B_QNAM-RiemannInt_SF%Reals#Coq@095Ի<&O jq*RiemannInt%Reals#Coq@0|ڭ~3vo+OrderedRing)micromega#Coq@0A Zl)+>(Ndiv_def&NArith#Coq@0AU|ڣTu)Nsqrt_def&NArith#Coq@0W58pG*~W-G(Ngcd_def&NArith#Coq@0OLMP"^e#Fin'Vectors#Coq@0r'gް؅/׸)VectorDef'Vectors#Coq@0]i>3 ٠*VectorSpec'Vectors#Coq@0GyK5%l6L(VectorEq'Vectors#Coq@0#'`ԶlxjT&Vector'Vectors#Coq@0_ċ|"Ʌhz'Bvector$Bool#Coq@0,rO3^~'Ndigits&NArith#Coq@032W}-RingMicromega)micromega#Coq@0{L䬃ɟh$Zdiv&ZArith#Coq@0gho4S*Zlogarithm&ZArith#Coq@0|P#ar&ZArith#Coq@0ߴ#ҤР+QArith_base&QArith#Coq@0#-\D7* Q,"f\&Qfield&QArith#Coq@0td;X񦐳#@`%Qring&QArith#Coq@0F%pw;}=O5}*Znumtheory&ZArith#Coq@0g2/#1ϳ\;R*Qreduction&QArith#Coq@0nDk%}Y&QArith#Coq@0H#oޞ6 78&Qreals&QArith#Coq@0 |-=ʈ%*RMicromega)micromega#Coq@0>e{&(_>Υ*QMicromega)micromega#Coq@0K׈qq~_E&VarMap)micromega#Coq@0Zգ#Lra)micromega#Coq@0 ?@D{@[]#*Ranalysis5%Reals#Coq@0ۤ$+]ݽN9%Ratan%Reals#Coq@0(쟭CKsEBÖZ##zSMqР&Machin%Reals#Coq@A(atan_sub @!u,Rdefinitions@@!RӀ!v @$Rdiv̀@&Rminus&HBA@%Rplus+1%@#IZR/r'BinNums'Numbers/@!Z7@B @(positive*@CA@%Rmult׀,@I,Rdefinitions%Reals#Coq@@!RӀJ |+k() 7!77 7! 7!7%'ࠒ hVhR\LHA@tN|@@@@@AA@@>@,Field_theory+setoid_ring#Coq@@&FEeval>@@A@A"s @,Ring_polynom+setoid_ring#Coq@@&PEeval"s @@A@BA@A@0atan_sub_correct @@@UTS@@RӀ @%Logic$Init#Coq@@#notШ@"eq @!w@+1Šܠ@@/r@׀BAA@%Logic$Init#Coq@@#andЖw@@#Rlt=@̀@$Ropp΀'Rtrigo1@"PI G吩B٩@&H%Ratan%Reals#Coq@@$atan%]C=F=5@aVSQB4`@\4-VD1iC =ne],Rdefinitions%Reals#Coq@@!RӀ_Eh.l86@@@@@$tech @@A!xP!y@[@#Rle=倐CyBB@ހӀ@@7@C瀠@B@΀󩚠0BҠѠ@@*@BЩ𩚠(̩ 1'Rtrigo1%Reals#Coq@@"PI Gq]BAB @@@@@Π*Machin_2_3 @@`B],BcBhBl@C[/@$Rinv8BB!CwҀB@A;C@@@@@3.Machin_4_5_239 @@C^€BBBeCBBBCـ~4 BbA BCR>BAAAA6BAAC@@@@@Р,Machin_2_3_7 @@bD_.BeBjBCBBCq̀BA4C/倐BAARC@@@@@J+PI_2_3_7_tg @!n)Datatypes$Init@#nat@ҩ%Ratan@)Ratan_seq*_@$Rinv8ȐÐAةԐϐ @4)Datatypes$Init#Coq@@#nat@o +k77 7 7! 77 7 7!77 7!7%' 7hxAA@HݐAAA@XE\lAB@t|P`@@@@@Ơ-PI_2_3_7_ineq @@XE!N)Datatypes$Init#Coq@@#nat@w*Rfunctions%Reals#Coq@@(sum_f_R0Yc)AltSeries%Reals#Coq@@&tg_alt d@0t+7B#Nat$Init#Coq@@#mul ƠŠ@@@B B@AA耐BBBUC ҀBBBuC{qj`BeBYAA@@@@@@@@ ӳ2@ ӳ2[)Datatypes$Init#Coq@@A@ Գq@ Գq\ @A@AB@cA@A.0TQ+Ring_theory+setoid_ring#Coq@@BA.U>[J @AB-A'EnvRing)micromega#Coq@A.0TQ+Ring_theory+setoid_ring#Coq@@-#BA.U>[J @AC@&Vector'Vectors#Coq@/VectorNotations)VectorDef'Vectors#Coq@ @A@"O@(PeanoNat%Arith#Coq@#Nat@&of_int"O#Nat$Init#Coq@@ 6@A@A\@&BinInt&ZArith#Coq@!Z@'quotrem\)BinIntDef&ZArith#Coq@!Z@ /@A@\@@+pred_double\@/S@@A@As2@3@&shiftls2*@vY@A@BCs8@8@&shiftrs8/@vY@A@ѓ@?@&squareѓ6@y@A@A@D@&to_intϑ;@@A@z@6@&doublez-@/!@A@A@j@(nth_map2*VectorSpec'Vectors#Coq@@ 8"@A@@w@*fold_left2q@6U@A@"W@}@*fold_right"Ww@6N@A@ABCDE/@h@)log2_iter/_@wd@A@NH/@[@&moduloNH/R@1,@A@A\d@`@&of_int\dW@1?A @A@bz@f@&of_natbz]@1?G!@A@#@l@&shiftl#c@1dV@A@#@r@&shiftr#i@1d\@A@ABCD/x@&BinPos&PArith#Coq@#Pos@)pred_mask/x)BinPosDef&PArith#Coq@#Pos@ )X@A@6@@&square6@19@A@AV+L@@&to_intV+L@2@A@V1b@@&to_natV1b@2 @A@V5=@@&to_posV5=@2@A@ABCl@@)sqrt_iterl@!$:@A@@@6@(sub_mask@-@)@A@ADEF c@@'testbit c@!ć@A@7 B@D@'of_uint7 B;@*`]?@A@AG@I@)mask_rectG@@+ED@A@F˱@O@)add_carryF˱F@+p@A@K5@@*Forall_indK5@9M@A@X@@/shiftrepeat_nthX@;\@A@ABCD^Ҷ@@'to_uint^Ҷ@#m@A@gL7@@'sqrtremgL7@40@A@Aq@@'testbitq@5)@A@BE@@-replace_order@:k@A@2s@!@,shiftin_last2s@=Nn@A@AxYe@&@!txYe @;z@A@Bx^@+@"Inx^ʑ%@;z!@A@xa @2@"hdxa ,@;zd@A@Axa@7@"tlxa1@;zP@A@BCx#@<@#eqbx#(VectorEq'Vectors#Coq@@ /@A@x[@J@#etax[@> .@A@AxI@O@#mapxII@;{&@A@BDx@T@#nthxN@;{)j@A@y@^@#revyX@;{-@A@AG8@c@$castG8'@/Y@A@B8[@h@$last8[b@;d@A@R@n@$map2Rh@;@A@ @t@$take n@;:c@A@ABCݎO@J@+succ_doubleݎOA@6r@A@HI@@%case0HIz@@A@ @x@$even o@>4@A@ACD @}@$ggcd Бt@>U@A@ @@$iter }@>:@A@A 3"@@$land 3"@>m@A@ F)@@$log2 F)@>t@A@AB S@@$lxor S@>@A@ @@$pred @?U@A@AC @@$size ܑ@?'@A@ !@@$sqrt !@?@A@A ! @@$succ ! @?\@A@ !7@@$zero !7@@P@A@A *@@%ldiff *@@A@ O@u@,take_prf_irr O @*@A@A g_@@+pred_double g_@25\@A@ q@@(take_app q@lm@A@ABCD m@@÷ m@2j@A@ @@+Exists2_ind Ñ@ @A@ k@@'nth_map k(@wF@A@ABS@@&of_intS㫑@4}5@A@S@@&of_natS@4};@A@ACEFGJ\R@@(mask_ind\R@4@A@\^@@(mask_rec\^@4@A@Aũ@@*Exists_indũ@@A@Ǜ@@'of_listǛ@@A@A!,@@&pred_N!,@4s)@A@BC@@&shiftl@5X@A@@#@&shiftr@5X@A@A&@(@&square&ّ@5,x@A@BD"@-@&to_int"$@5L@A@"@5@&to_nat",@5L @A@AnTq@:@+testbit_natnTq1@6n@A@B@3@(succ_posB*@@A@I@@'abs_natI@?n@A@AB.@>@'of_uint.5@MS@A@3~@R@'sqrtrem3~I@7]%{@A@ACD,@@'bitwise,@/v@A@>4'@_@'testbit>4'V@8g$@A@d;@ @*rev_appendd;@fh:@A@AB{U@j@,sqrtrem_step{Ua@8R@A@u^@c@(div_euclu^Z@ @A@Au@@&Existsu@@A@UA@"@&ForallUA@@A@#N@(@&In_ind#N"@%@A@ABCDfz@@'to_uintfz~@9w@A@l@@'comparel@3R@A@AA@:@&appendA4@ m@A@L9@@@&caseS'L9:@ x@A@ABW@E@'replaceWݑ?@ 4@A@K@K@&eq_decK@?w@A@K~@Q@&eqb_eqK~@?w@A@MĚ@W@)nth_orderMĚQ@ O@A@ABCDEFGs8@B@+of_uint_accs89@5+@A@@g@3to_list_of_list_opp@<@A@A}@@,pos_div_eucl}@&`@A@3x@C@'compare3x:@]=@A@`<@x@&t_rect`<r@ b@A@c`@~@&take_Oc`@3@A@ABCD@@&double@'޺_@A@(@@'shiftin(@*I@A@Aq@@+of_succ_natq@$@A@w@@&modulowɑ@)1@A@ABEK@@&of_intK@)j,I@A@K@@&of_natK@)j2_@A@H@@'Exists2H@uF@A@ABI@@&shiftlI@*O@A@O@@&shiftrO@*O@A@AC,@@&square,@*ow@A@Z@ @&to_intZ@*81@A@ADF`@@&to_nat`@*9G@A@@@'Forall2@?j@A@Ae@@+testbit_nateđ@+@A@'@@+Forall2_ind'@ ~@A@"@@'to_list"ӑ@O*@A@ABC+{@.@'sqrtrem+{ё%@,J@A@@@0shiftrepeat_last@@A@A5z@:@'testbit5z1@-T|@A@BD @?@'to_uint ͑6@.@A@ @G@+succ_double >@.^4@A@A!lK@@)const_nth!lK@@A@!K@@+fold_right2!K@x @A@A#@f@'compare#ݑ]@ )Q@A@$@@8fold_left_right_assoc_eq$@3@A@ABC%t2@q@(size_nat%t2h@ @A@%9@x@+of_uint_acc%9o@ ΋@A@A%V@}@+double_mask%Vt@ S@A@%%@@'div2_up%%z@ "@A@%R@/@)take_idem%R@-W@A@ABCDEG'ş@@'Ndouble'ş@ @A@(K|@=@*eqb_nat_eq(K|@w@A@A(b0@@*shiftl_nat(b0@9-@A@B(nՖ@@*shiftr_nat(nՖ@'@A@(@@0succ_double_mask(@@A@A*W$@@,compare_cont*W$@!@A@*@Z@(cons_inj*@!@A@*A@`@(shiftout*AZ@@A@AB.0@@.sub_mask_carry.0@΂@A@CDE.@P@!t.G@ ;@A@.먩@W@#add.먩N@ `@A@A.U@\@#div.US@ @A@.B@c@#eqb.BZ@ @A@A. @h@#gcd. _@ @A@.=@n@#leb.=e@ @A@ABCFHIK. @s@#lor. j@ @A@.Z@@#ltb.Zw@ @A@A.p@@#max.p|@ '@A@B.@@#min.@ @A@.@@#mul.@ @A@AC.g@@#odd.g@ @A@.&@@#one.&@ @A@A.뾴@@#pow.뾴@ k@A@.L@@#sub.L@ @A@.@@#two.@ @A@ABCD.,a@@$div2.,a@ @A@.Xz@@$even.Xz@ ?1@A@A.@@$iter.ؑ@ @A@B. @@$land. @ @A@. @@$log2. @ @A@ACE.@@$lxor.@ R@A@.y@@$pred.y@ `<@A@A.Ʉ@@$sqrt.Ʉ@ ;@A@.@@$succ.@ @A@.t @@$zero.t @ Z@A@AB/@@.to_little_uint/@ @A@CDF/@@%ldiff/@ H@A@00@c@'compare00Z@?H{@A@A1P%@@!t1P%@  @A@B1P@@#abs1P@ @A@1P&@@#add1P&@ @A@A1P@@#div1Pґ@ y@A@BC1P@@#eqb1P@ f@A@1P@ @#gcd1P@ 0@A@A1P@@#geb1P@ T@A@B1P@@#gtb1Pʑ @ q@A@1Pĺ@@#leb1Pĺ@ a@A@A1Pň@!@#lor1Pň@ /@A@BCD1P@&@#ltb1Pב@ ~@A@1P@/@#max1P&@ @A@A1P{@4@#min1P{+@ "@A@B1P]@9@#mul1P]0@ @A@1P@@@#odd1P7@ @A@A1Pɣ@E@#one1Pɣ<@ J@A@BC1P@J@#opp1PԑA@ {@A@1P1@R@#pow1P1I@ @A@A1P;@W@#rem1P;N@ @A@B1P@\@#sgn1PˑS@ r@A@1P@c@#sub1PɑZ@ p@A@A1Pe@h@#two1Pe_@  @A@BCDE1[8@m@$div21[8ޑd@ @A@1[d@v@$even1[dm@ I@A@A1[6@{@$ggcd1[6r@ i@A@B1[U@@$iter1[Uw@ @A@1\@@$land1\~@ /@A@A1\@@$log21\@ 6@A@BC1\$@@$lxor1\$@ @A@1\Y@@$of_N1\YÑ@ >j@A@A1\@@$pred1\@ j@A@B1\@@$quot1\֑@ }@A@1\@@$sqrt1\@ @A@A1\w@@$succ1\w@ @A@BC1\k@@$to_N1\k@ @A@1]@@$zero1]@ eD@A@A2:@@%abs_N2:@ @A@21@@%ldiff21@ ߵ@A@2=*@@%quot22=*@ @A@ABC2kF@N@(size_nat2kFE@{@A@3s&@ @*eq_nth_iff3s&@*@A@A3@@(tail_add3@^q@A@BDEFGH3@@(tail_mul3@^@A@5Z@i@*shiftl_nat5Z`@y/@A@5f}@o@*shiftr_nat5f}f@4@A@AB5a@@'iter_op5ay@ @A@C6w~@@'of_uint6w~ @^5@A@6W @5@)fold_left6W /@*Za@A@A8j@ @'of_uint8j@'"h@A@8V@@@.nth_order_last8V@/71@A@AB9E@@(div_eucl9Eđ @(*k@A@:El@L@/rev_append_tail:ElF@.G@A@A:x@@,Nsucc_double:x@ ʭ@A@BCD@#R@A@A=9R@L@.to_little_uint=9RˑC@#b@A@=Y@@+shiftin_nth=Yӑ@3뗦@A@A=@X@%ggcdn=͑O@$*@A@=U@^@%ldiff=UU@$'R@A@ABCD>@@&divmod>@C@A@>@@&double>@NĴ@A@>@@+shiftrepeat>@2Y@A@AB?2@@,pos_div_eucl?2@-u@A@?;@@&modulo?;@"i@A@ACEFGIL@(Alembert%Reals#Coq@0I͗Huz&)AltSeries%Reals#Coq@0d US^%Arith#Coq@0I|кX*o4)ArithProp%Reals#Coq@0B+L?>*e˃a j)ArithRing+setoid_ring#Coq@0ṔCgt?}*Arith_base%Arith#Coq@0Ĕ}CS&Basics'Program#Coq@0!bs߯? :VU'Between%Arith#Coq@06v*0ur`C0&BinInt&ZArith#Coq@0BpHޞun^)BinIntDef&ZArith#Coq@0ådR4Tuy'BinList+setoid_ring#Coq@0Au&BinNat&NArith#Coq@0K11ڤs+Π)BinNatDef&NArith#Coq@03@1O,[{ 'BinNums'Numbers#Coq@0dmk(5Ju<&BinPos&PArith#Coq@0vyػ0= u)BinPosDef&PArith#Coq@0}H d.%,b(Binomial%Reals#Coq@0]JrHr#E$Bool#Coq@0j 2cZ`FW'Bvector$Bool#Coq@0,rO3^~*CMorphisms'Classes#Coq@0qیZBeϠ0CRelationClasses'Classes#Coq@0TL;0RUfw1+Cauchy_prod%Reals#Coq@0K*ߞ4q.ClassicalFacts%Logic#Coq@0$RzqIF\(43Classical_Pred_Type%Logic#Coq@0m[6BZ5.Classical_Prop%Logic#Coq@0Yh޿JdI1ƽ'Compare%Arith#Coq@0OM v먣5L:+Compare_dec%Arith#Coq@0jXF 8(Cos_plus%Reals#Coq@0IWEGն'Cos_rel%Reals#Coq@0%}ֺ|3J-tWKdcb@0.i bYN Z)Decidable%Logic#Coq@0ND걸풬/Oߠ'Decimal$Init#Coq@0C涳N*ua&DiscrR%Reals#Coq@0z41pV.$Div2%Arith#Coq@0n*Áht!,#Env)micromega#Coq@0=rΜL杠tsr@0s<#"#8r;%EqNat%Arith#Coq@0AIgՋXRV *EqdepFacts%Logic#Coq@0FI$ͼՋ`)Eqdep_dec%Logic#Coq@0u wWIϰ߼*Equalities*Structures#Coq@0όe얟)H.Ƞ+Equivalence'Classes#Coq@07;ꮹ$Even%Arith#Coq@0YO%q}d߫%(Exp_prop%Reals#Coq@0D:L-)Factorial%Arith#Coq@0@oehJd%Field+setoid_ring#Coq@0J _ȫ)Field_tac+setoid_ring#Coq@0d vDZl^۹H }0B~uYٮ٠#Fin'Vectors#Coq@0r'gް؅/׸'Fourier'fourier#Coq@0wV9TN,Fourier_util'fourier#Coq@0ϳ> 4`*r0-GenericMinMax*Structures#Coq@0måj$"Gt%Arith#Coq@0䙛#c:D 'Hurkens%Logic#Coq@05[gNk2up$Init'Classes#Coq@0](p{yOh.+InitialRing+setoid_ring#Coq@0k/T=cN"Le%Arith#Coq@0d}Omq+$List%Lists#Coq@0>I+ListTactics%Lists#Coq@0,Jcy{ 0\͉!Ig*Logic_Type$Init#Coq@0 1jc6#Lra)micromega#Coq@0 ?@D{@[]#"Lt%Arith#Coq@0KZ-eJkP܏#MVT%Reals#Coq@0cq통 gZ#Max%Arith#Coq@04=;3$>aU堠#Min%Arith#Coq@0Ce-Fѕ%Minus%Arith#Coq@0LFtR")Morphisms'Classes#Coq@0Imӽ%\$PD.Morphisms_Prop'Classes#Coq@0% :B'.>u%$Mult%Arith#Coq@0햖Qyb0$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ&NArith#Coq@0S22b%&*NArithRing+setoid_ring#Coq@0_ .Ys!Р'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI%NBits(Abstract'Natural'Numbers#Coq@0qteo_hɅ $NDiv(Abstract'Natural'Numbers#Coq@0bz$?[p(5$NGcd(Abstract'Natural'Numbers#Coq@08E-S ;j_Ҡ$NLcm(Abstract'Natural'Numbers#Coq@0 ~xZ9L{:$NLog(Abstract'Natural'Numbers#Coq@0K Aat/ j &NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf+NProperties(Abstract'Natural'Numbers#Coq@0unt"kwpYC%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ%NZAdd&NatInt'Numbers#Coq@00h`ZK4*NZAddOrder&NatInt'Numbers#Coq@0e~1>r砠(NZAxioms&NatInt'Numbers#Coq@0] ρ5r&NZBase&NatInt'Numbers#Coq@0^&8yUL&NZBits&NatInt'Numbers#Coq@0MlIpKt%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZMul&NatInt'Numbers#Coq@0ctR~6[Ƞ*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R'NZOrder&NatInt'Numbers#Coq@0 q;Ve7R W,(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x&NZSqrt&NatInt'Numbers#Coq@0` .%m#Nat$Init#Coq@0eʤģPSR蠠'Ndigits&NArith#Coq@0&Orders*Structures#Coq@0$Znl0\͗+OrdersFacts*Structures#Coq@05Mܿ獐ζΖLB)OrdersTac*Structures#Coq@05'4Ԗ+9%+PSeries_reg%Reals#Coq@0䝠|%n͠'PartSum%Reals#Coq@0j&2"(>S%Peano$Init#Coq@0 jha|ؠ(PeanoNat%Arith#Coq@0O~2$k[#lZ)Peano_dec%Arith#Coq@0Kݢ*k$Plus%Arith#Coq@04tmG$Pnat&PArith#Coq@0,?pr.gZ(PreOmega%omega#Coq@0\|چBb~w4'Prelude$Init#Coq@0JqTttֱ7PropExtensionalityFacts%Logic#Coq@0 +_.ɓoFؘ&QArith#Coq@0H#oޞ6 78+QArith_base&QArith#Coq@0#-\D7* Q,"f\*QMicromega)micromega#Coq@0K׈qq~_E&Qfield&QArith#Coq@0td;X񦐳#@`&Qreals&QArith#Coq@0 |-=ʈ%*Qreduction&QArith#Coq@0nDk%}Y%Qring&QArith#Coq@0F%pw;}=O5}%Quote%quote#Coq@0J@ŹVz-,3%%RIneq%Reals#Coq@0JUڻIu)$w%RList%Reals#Coq@05g2NaA:*RMicromega)micromega#Coq@0>e{&(_>Υ%R_Ifp%Reals#Coq@0c4+ZŠ%R_sqr%Reals#Coq@0X%MԹ%M&R_sqrt%Reals#Coq@0 @#DŽe*Ranalysis1%Reals#Coq@0 n;qm.L%*Ranalysis2%Reals#Coq@02N헛W*Ranalysis3%Reals#Coq@0Gz魸NJ,:7*Ranalysis4%Reals#Coq@0kp+PA*Ranalysis5%Reals#Coq@0ۤ$+]ݽN9-Ranalysis_reg%Reals#Coq@0$૔ B_QNAM%Ratan%Reals#Coq@0(쟭CK'Raxioms%Reals#Coq@0S]jnj][L%Rbase%Reals#Coq@0Jܡ\ c6{*Rbasic_fun%Reals#Coq@0hܒiclE>)Rcomplete%Reals#Coq@0{ڸ4q А0(2{Ze$ќ8&Rderiv%Reals#Coq@0?KQ;^WU;H)RealField+setoid_ring#Coq@0 >ʾq $Refl)micromega#Coq@0h <0P/RelationClasses'Classes#Coq@0Gz rA6ՠ4Relation_Definitions)Relations#Coq@0]4Ѐd{n^2Relation_Operators)Relations#Coq@0%s鯰s)Relations#Coq@0-SetoidTactics'Classes#Coq@0S_`nOU$&Specif$Init#Coq@0;RWMi\N+SplitAbsolu%Reals#Coq@0M)&qYlݹ5*SplitRmult%Reals#Coq@0sD\rt/(Sqrt_reg%Reals#Coq@0?N~K0,o^}'Sumbool$Bool#Coq@0sB ,$11.]m'Tactics$Init#Coq@0/9m+ a'Tactics'Program#Coq@0332W}&VarMap)micromega#Coq@0Zգ&Vector'Vectors#Coq@0_ċ|"Ʌhz)VectorDef'Vectors#Coq@0]i>3 ٠(VectorEq'Vectors#Coq@0#'`ԶlxjT*VectorSpec'Vectors#Coq@0GyK5%l6L"Wf$Init#Coq@0q+W,J+$Wf_Z&ZArith#Coq@0`&i2 Q@@@@#_17R@A@@@@@@@@#_182M접 ⠠#_19'`o@B'R_scope@x{@12 Q@@A@#_20@<<@A@@@@-@#_212M접 #_22'`o@E*,@@@@ORI@l2 Q@@A@#_29@w0I@A@@@@b@#_302M접 #_31'`o@D_a@@@ؠGJ@2 Q@@A@#_47D@1V@A@@@@@#_482M접 #_49'`o@@@@2 Q@@A@$_110c@"s,S@A@@@@@$_1112M접 $_112'`o@@@@!2 Q@@A@$_143@,<,@A@@@@@$_1442M접 $_145'`o@@@@Ơ2 Q@@@@$_146@$_1472M접 ޠ$_148'`o@A)nat_scope@@n2 Q@@A@$_203@y>DZ@A@@@@@$_2042M접 $_205'`o@A%@@@@Z,cqL@K:Z2u@zMp- xZ""|@vS_Nk*.oI؄%IS.!u,Rdefinitions%Reals#Coq@@!RӀ!v#pn0%Logic$Init@#notШ @"eq @&'@%Rplus+1.@#IZR/r'BinNums'Numbers7@!Z7@B @(positive*@CJ@%Rmult׀BA%A%uvintI@#andЖw@c@#Rlt=j@$Rdiv̀q@$Ropp΀'Rtrigo1w@"PI GRMBBF@&Rminus&H%Ratan@$atan%]C K94( $aintHB=&Machin@(atan_sub4-VDQȐ!HȐ!a-@*atan_bounddYLEic^9f-oBBB@@@@D@ysnIFx?ʐਗ਼*Rtrigo_def@#cos㹀\G9"H0 W%RIneq@*Rgt_not_eq3ڀrH@(cos_gt_0 @&eq_ind J!rũIɩ~@(Ropp_div?hyЩ%E`8pnf_Xِ<W"H1=;Ȑ!tz3!b6!c9 <4@ B$DȐ(list_hyp)Datatypes9@$list]@A @$prodt@,Ring_polynom+setoid_ring_@%PExprk@4"Ȑ+field_lemma~@3RField_field_lemma1(Mk(Ring_tac@0ring_subst_niter!8Bĩ֩?9,Field_theory.@%FExprs@D,T E13F8@$Truey@A#lmp@Y[HT@#Monf@[@#Polj@V@d@.mk_monpol_list(_u&BinInt&ZArith@#add1P&)BinIntDef@ ̀@#mul1P] @ @#sub1P@ p@#opp1P@ {%Zbool!@(Zeq_bool0߀*@'quotrem\$@/ŀ$nfe1q@&linear@@ z@%Fnormw$D4.("$nfe2@ $L<60*Ķ@@$boolZ'@@#Peqj*:@*norm_subst7:d0cSMGA9SGǩ@#num:u@%denum00 xhb\VNh٩ .A@@%PCondS<P#)ߩ2#@#nat@&BinNat&NArithX!N@&to_nat`)BinNatDef @*9G(Rpow_defh@#pow#׀rLuK+@#appʀ @)condition.©h@&FEeval>@=bhE%@$Rinv8*fC=,M'@IntQ*1 1mJD3Ȑ#resUȐ&res_eqAW@(BXx[Ȑ$res0AJXD#\CStbȐ'res_eq0 t@Ȑ$res1`nEe4tFk!Ȑ'res_eq1@ȩ )C9@ȩ@-RField_lemma55vuojk$lock"le2A(lock_defװ 8qe@(eq_ind_r!2#8{NrNjC< Q@@$Fapp{F@&Fcons2w$UE?93+éI;eѶj#$%@(v+A-C@*tan_is_inj93Щ8N v>:Ѡ@#tan 쀀E\ 7I+K 9OWSQBT6VѠ 4/c_sN`BbݠN@;ok>ZlNn!KF*$#ѠvI8M@.atan_right_invpPR:ABL @)tan_minusu9 :X'/B @'and_ind14ۀЩ:5h<jt"H2B ЩFAJMOJ,' "H3"H4[1N&.)''*%#2!g.$5 ͷЩzשŐu]\>Coq_Reals_Machin_tech_subproof!x䶐!y2@#Rle=|Ɛtv_Wb vqOs?Coq_Reals_Machin_tech_subproof0$"|%tȐ"ut@(PI_RGT_0" @#Rgt=<η?!="mɠ=CݩEe@נKM @ޠ⠩ܠש{C󐷐#xm1"x1c +@2.ؠw#ym1"y1?Р[@"or @BAAAA@@@@@D@Y~b[n @|]y٩" Eᩚ@&Rlt_le A @/atan_increasingdS4@(atan_opp*b%#@&atan_15Ql2Ѡj̷֠3@(Rle_refl ?7!vߠکDͩkBA4A;/-'q h@]w-/Ql ]ZxT dOyBķ 9 rNG [w#eVRX  z(uA3<OnϩB$@%6,Fourier_util'fourier)@2Rfourier_not_ge_lt#M瀰7ˠ8@"R1Ȁ3new_hyp_for_fourierA@#Rge=-J!@.Rfourier_le_ltI؀ *  Ȑ2"4$6&8(:*<,.0@*!%::sJ@.Rfourier_le_leIɀ ' %Q@+Rfourier_leS5L@,X@1Rfourier_ge_to_le1 4SG6_@0Rlt_mult_inv_pos8şV6e@*Rlt_zero_1&րk@2Rlt_zero_pos_plus1-@@ @ @ @nnVDZaX<He\@*Rnot_lt_lt;EĀirixo<[a@&eq_sym XΩ@@&Rinv_1 ;9ۀ کܩ@"R0ǀ\ǠɠI~vxzusGxCLktv I(J©ĩA57&ΩЩ=,A0C2H @PN@-QG$vpjdRBT@3WM$!|vpjM@@@<Y,2 +ذ[͐?ܰ_ѐ\fCc@e8>7gِPlqo@nAG$@ fĩ nx@++OSW͠S b&d٠)_h,ǩޠ.d7m "$&~BDFH$JL-2O]HT.V& Y  \EGIKMOQSUWY;\N^P`+{dVfXh3ll^n`p62@  5E_ݰ8w8|xQ jC< Q@@Ǡ4DW] ʩ@(Rnot_lt0!TߠoCݛ@%Falsee@~$@)False_induُ2C.]?[@YIՐJ M$@.Rfourier_lt_leK` -/ \ ݰة;=ACEeq9`rTtP#RT64  5 "$~L&i(o*m, db.024r6t8`:@@]@$DZz(]@@g<`h*AbHa[J1=3[5Y0B2@jr4KR-RkeT;G=Y?g:ũ:@rz<SZ5Zsm\>)'&$VS}acegi kmo%T'Hq #s6Hvxz|~XXcYK2 l^npbrtfvh $8@QQ $;Ke"M8}I 8  oC< V@E©  2fwC& $Coq_Reals_Machin_Machin_2_3_subproofݩ %Coq_Reals_Machin_Machin_2_3_subproof0K %Coq_Reals_Machin_Machin_2_3_subproof1Q %Coq_Reals_Machin_Machin_2_3_subproof2ݠ %Coq_Reals_Machin_Machin_2_3_subproof3Ȑ'utility@)PI2_RGT_0iGS˷BT6V0ʐ-̐ΐ1,4hd>ؐ=W@'f_equal=ppJ  tt /- (Rްvk}{q'ܶ@ɶ@m$%;[>@s$+AaD@@N<GlrO(I/kHB1#{@KpvS,33oLF5$@MrxU.55qNH7:$J&L(N@""F /Uݵ@## fe۩ذ0ӷͷǩks8lt6MnTmgV6 Cy<rz<StZsm\<ts@C^j>@0atan_sub_correct<ٰ}'@$tech0Iπ&Bt/Q/0m j e``  @*Rnot_le_le;Ѐ  FG6(Ƿ  6&~, Ѡz|us@`'%@ ($]MGA;ն+@ .$$cSMGA۶@@  0@ 2   !@ 4   ϩP?|z@xBi}@r " B@RT: FD5 G 5a0"@3Rlt_not_le_frac_opp>v  %'JC/UzX[w߰] uyq }aqu_ k3Z l N n % 렩 +mro0.  )}:]igoi׶@Ķ@ h$  6 V 9}@ n$& < \ ?@{@ t  @  D i o L  % ,, hE?.@  F k q N  ' . . jGA035v?@ε@ T  9 F =eaKw&My   ^ ^\Cp@2Rfourier_not_gt_le#߽{  @+Rfourier_ltSD۩@1Rfourier_gt_to_ltvڀ yީ hܩ     ө   NligbS ީ>s;42@@@ Ű$}    @Ҷ@R ˰ c@      e | ^ ee@      g ~ ` gTRDQOIE3~.3@B(  ذ  q.   CLǷ© M NHC  Z W XG9  ط    ʠ 6 ũ   ˩ xv@c*(@ +!$  `PJD>  ض.@ 1'$  fVPJD ޶@@  3@ 5        @ 7        ҩԩ C~@|Fm@v  & F 3z Z @ L6$@*Rle_not_ltg+@0Rle_mult_inv_pos $"2@2Rle_zero_pos_plus1:QX)8@*Rle_zero_1R  8C3@@2Rfourier_not_le_gt#>݀ I9 (;6  ©  ) 3 5   z N u  i   B D  I G $ !    B + -| /~  1 3@߶@@ $ = S s V@@  #@  [   c % < C C \VE %  +ݵ@ c  H /:<  Lt i igC (Coq_Reals_Machin_Machin_4_5_239_subproof   { 8   K { )Coq_Reals_Machin_Machin_4_5_239_subproof0 )Coq_Reals_Machin_Machin_4_5_239_subproof1 )Coq_Reals_Machin_Machin_4_5_239_subproof2 w )Coq_Reals_Machin_Machin_4_5_239_subproof3 } )Coq_Reals_Machin_Machin_4_5_239_subproof4̠     n' )Coq_Reals_Machin_Machin_4_5_239_subproof5  )Coq_Reals_Machin_Machin_4_5_239_subproof6 ̩ )Coq_Reals_Machin_Machin_4_5_239_subproof7$ )Coq_Reals_Machin_Machin_4_5_239_subproof8" )Coq_Reals_Machin_Machin_4_5_239_subproof9젩  ܩ    ې 吩 Q ũ *Coq_Reals_Machin_Machin_4_5_239_subproof103 *Coq_Reals_Machin_Machin_4_5_239_subproof119 *Coq_Reals_Machin_Machin_4_5_239_subproof12N *Coq_Reals_Machin_Machin_4_5_239_subproof13L *Coq_Reals_Machin_Machin_4_5_239_subproof14   ꠩ ̠   F   z 󩷐 *Coq_Reals_Machin_Machin_4_5_239_subproof15a$ *Coq_Reals_Machin_Machin_4_5_239_subproof16g $ *Coq_Reals_Machin_Machin_4_5_239_subproof17| *Coq_Reals_Machin_Machin_4_5_239_subproof18z O [ӷ J \ > ^  נ o Ԑ ֐ؐ ; 6>@BD e{ w Q 됩 ! Ȑ(hyp_list 7 Ȑ'fv_list  #  #    @2RField_ring_lemma1!7  > ?Ű 'ݩǰ )ߩɰ +˰ -ޠ /ʩɰ 1 o 3 @       9  ~0 ; Q q       , T 0 = S s       . V b   I K M O AOU       A gO   ZC  x v S P N I : q ZE? \ ) ^ `Ƞ b 6 dǩ - & $@   ֶ@  ٩ $ m          ܶ@  ߩ $ s        @ ȶ@H   Y@      [ r y T y    { [! [@      ] t { V {    } ]! J H : G E ? ; 9 F:  + )@ ' >   7   p s  u  @. x  >  & :@$$IC ߰       Y    z b!     c  Vc [        ũ       ^X  %  z x@ e , *@  - #$    b R L F @ ڶ  0@  3 )$    h X R L F @ @  5 @ 7              ! @ 9                       ԩ & %    F  @     ư   Ȱ  ʰ U ̰ V S z @$$C 3 SHI I UJ D V 8 XN ^ Z 4 ΐ U N ` B b  d d         C j 5l 2I  հ ^ ް oy ն  ̶@   ~@ ]  w$  + K      . r @ c  }$  1 Q      4@ p@ i  @  9 ^ d A   !  ! ] : 4 # ! @  ; ` f C   #  # _ < 6 %          ( & %  9   ׵ @ ө  1  3 i f  8 n !f $ J & Lj ( N * Pn  ص @..C  |S  ~       X ,      oW    ĩ 6 Vb  ȩ   ya   =   b _ ] X I  i 6 kk  ? mЩ pȠ rڠ tt < 5 3@   @ İ  $ |          @ ʰ  $    #     @ ׶@W а  h@      j   c      j! j@      l   e      l Y W I V T N J H  A y  { k }   o   C A@"" ? V    L  4 H@##WC  QG\g ۩JL   EP  ,A; A X _` ʩ WY +  R]   NH y  l ש ?dAf 8G &_EjA; [U /  y,  o q Cw Tk v* SR.ic:٩  R  #    jҰ  h lf pdj   R ^& M _ A a   א  ࠩ b$` % #      r / Ta X ذ z ^g   vKa ۶  Ҷ@   @ c  }$  1 Q      4 x @ i  $ ! 7 W      :@ v@ o  @  ? d j G   '  ' c @ : ) " @  A f l I  " )  ) e B < +          .  0 q   ܵ @   ɵ @ O  A N  E`\HJ!JL   Y Y|WCːgqoj  :nͩ5p f˩ ϠcVeX        © y Tja ?T_   ] Z X S D {ϰ d f] 3 hR[ 0 ) '@   ٶ@  ܩ $ p          ߶@   $ v        @ ˶@K İ  \@      ^ u | W |    ~ ^ ^@      ` w ~ Y ~     ` M K = J H B > <  5    1 /@ -   2@A'  װ 5 p  9vca  C&P  ߠϩ  թ թ Ġ٩ ٩ Ƞ۷֩  a b\2W 0 . ՠ8p2 m n]O & ' ) ࠩ            ! # % ' ) + - / 1 !3 #5 %7 '9 ); += -? /  ِC 3E 5G 7I 9K ;M =O ?Q AS CN 4v|t 9 7     2 C     !  #  %  '  )  +  -  /  1  3  5  7  9  ;  =  ?  A  C  E  G  I  K  M ! O # Q % S ' U ) W Y - [ / ] 1 _© 3 aĩ 5 cƩ 7 eȩ 9 gʩ ; i̩ = kN 8 mڰ o q E s֩ u w K yܩ {© O } n G @ >@ +  @ϰ  $  (    n  @հ  $  .    "@ @b۰ s@u n     uz u@w p     w* d b T a _ Y U S  L  ݐkvu  J H@ F   7 K@Z @"Ȱ ĠƠȠʠ̠ΠРҠԠ֠ؠڠܠޠ       ( ˠ ͠ Ϡ Ѡ Ӡ ՠ נ ٠ ۠C ݠC ߠC C C C C C C C C C C C C C C C C C C C C C C C C C C  R YY|WC[ q ͩf˩UV X   ©yT         oqQf]oljeV v xLz ݩN| ߩP~ R T V X Z \ 13WvTMK@8  @ܰ $5%  @ $;+%@ @o @  {   , @  }    q oa n l f b ` Y ꐩ 琩 鐩 ( [ Y@"" W! H \@k QΩ!_%c ٰacϠcѠcӠcՠcנc٠c۠cݠcߠҩҩҩҩҩҩҩҩҩ 5, C簩+  R w  n z   ~t p txl  Zf .UgIi G 7I 9K ;M =O ?Q AS CU EW GY I[ K] M_ Oa Qc Se Ug Wi Yk [m ]o _q as cu ew gy i{ k} m o q s u w y { }                          à Š Ǡ ɠ ˠ ͠ Ϡ Ѡ Ӡ éՠ ũנ ǩ٠ ɩ۠ ˩ݠ ͩߠ ϩ ѩ ө թ ש ٩ ۩ ݩ ߩ                           ! # % ' ) + - / 1 !3 #5 %7 '9 ); += -? /A 1C 3E 5G 7I 9K ;M =O ?Q AS CU EW GY I[ K] M_ Oa Qc Se Ug Wi Yk [m ]o _q as cu ew gy i{ k} m o q s u w y { }                    O`XVxusn_  U W Y [ ] _ a c e g i k m o q s u w y { }           " $ & ( * , . 0 2 4 6 8 : < > @ B D F H J L N P Rð TŰ Vǰ Xɰ Z˰ \Ͱ ^ϰ `Ѱ bӰ dհ fװ hٰ j۰  lݰ  n߰  p r t v x z | ~  ! # % ' ) + - / 1 3 5  7  9  ; = ? A C E G I K M !O #Q %S 'U )W +Y -[ /] 1_ ©3a ĩ5c Ʃ7e ȩ9g ʩ;i ̩=k Ω?m ЩAo ҩCq ԩEs ֩Gu ةIw کKy ܩM{ ީO} Q S U W Y [ ] _ a c e g i k m o q s u w y { }           " $ & ( * , . 0 2 4 6 8 : < > @ B D F H J L N P Rð Ty I`ʩ b F˰ \ fö@nl@Koe$9`r@Quk$ ?"@^@ ީWw@y'LR/K("@{)NT1 M*$ѩȠYˠQ [ ]  3 ѵ@))ͩ+@((  Fy0 =4 W S2 4"444444444 4"4$4&4(4*4,4.40424446484:4<4>4@4B4D4F4H4J4L4N4P4R4T4V4X4Z4\4^4`4b4d4f4h4j4l4n4p4r4t4v4x4z4|4~4444444444444444444444444444444444 4Ġ4Ơ4Ƞ4ʠ4̠4Π4Р4Ҡ4Ԡ4֠4ؠ4ڠ4ܠ4ޠ4444444444444444444444 4 4444444444 4"4$4&4(4*4,4.40424446484:4<4>4@4B4D4F4H4J4L4N4P4R4T4V4X4Z4\4^4`4b4d4f4h4j4l4n4p4r4t4v4x4z4|K~KKKKKKKKp  C y t˩*  z P u Nؠ L V P{m8D 3E'GِƠ H* F  XG` D8˰\fBDϰ`jF MǶ@rp@Osi$= dv@Uyo$ #C&@b@ [{@}+PV3 O,&(@-RX5Q.($թ̠]  J Iʵ@ @ =pI V M~ H3A C5CJGGj EC w  u_ x |   ~ T Ck Dm F֩ugBmi- BgpnKHFA2iRzTe!V @c@Ƕ@ʩ$^twͶ@Щ$dz}@@ 9ҩJ@LcjEj}lLL@NelGlnN;9+860,*q#s\^   #!@   $@ 3ɰ9b =ש  Y C ֐ ϠGH "      QRA3 ҷ  Ġ~r ̠ "ʩ۠  &  *~@k20@3)$hXRLF$6@9/$n^XRL@"@ ;@="@?کܩ ߩʐ!ɩϰ V@'' [@&& ;[NԠ [S_R  5 C ^  <0+P3 7  9    *  o{Cj|^~5 | : | z?=8! xy $& ui- u@Ӷ@w$/EeH@}$5KkN@@ @Sx~[4;;wTN=@Uz]6==yVP?   B s @ڵ@ `5,B ũ9 kW fY Zjj hC Đ  X [  _  ީ a w ܩfW gY iѩөe pVO dUmjhcT߰t kTBw aS?86@#@ǰ$   @Ͱ$& @ڶ@ZӰk@mfmm@oho\ZLYWQMKD 4[O@>@<-A@P63  7  l C  ܩˠ 8٩/;de ?515֠9 - no^P'( *ᠩ֩ *!ũ:ϩ( A%;E @MK@*ND$smga?Q@0TJ$ysmg@=@6V@X+1*!@Z-3, 8 M08 W m@##  !r@""RrH UjvL0, #  % !))L'C  7    XH7J ;Eѩ 8B  [v ԩ OTR/,*%M ҩ6 8 :< -@@ Զ@$F\|_@@ Щ,@dl.EL'Le_N.      @ l 8 C6 } rrpC  &Coq_Reals_Machin_Machin_2_3_7_subproofs} 'Coq_Reals_Machin_Machin_2_3_7_subproof0 'Coq_Reals_Machin_Machin_2_3_7_subproof1 'Coq_Reals_Machin_Machin_2_3_7_subproof2y 'Coq_Reals_Machin_Machin_2_3_7_subproof3 'Coq_Reals_Machin_Machin_2_3_7_subproof4Πà 'Coq_Reals_Machin_Machin_2_3_7_subproof5  'Coq_Reals_Machin_Machin_2_3_7_subproof6 'Coq_Reals_Machin_Machin_2_3_7_subproof7 'Coq_Reals_Machin_Machin_2_3_7_subproof8yޠz| jE^    ̩RjTKU8oTH@}e{ >0bRLF@80dTNHB:/ ש +/)5$68*::, Щũک?éAK@RP@/SI$xrlfDV@5YO$#~xrl@B@©;[@] 06/ @_ 281yh@~q@CQqD_gsFbtVvlE|xR 쐩l~`/OHzz?=8b!# %~( z@Զ@x$0FfI@~$6LlO@@ @Ty\5<<xUO>@V{^ 7>>zWQ@    C o,R q.TƩ0V2X@!! P |9_ ~@"" CDhfΰrةj2PzzCqٰ}!uѩ*Z]()faacg45$аrkvrq_u^WU@B @ $?/)# @$E5/)#@@y@@{ykxvpljwk\Z@X"I]@lRϩ"2?4&6ܰƩCI*{|0L2JNSթDUug2>-?!A éQשL O@VT@3WM$!|vpj HZ@9]S$'|vp @F@Ʃ?_@a4:3 @c6<5  l@o@Oo.gs2-)&&I$CȰC>cɩI F|r<RT7TV+J;;^9CݰSxީ75673/Q=iL?k EPPsNC;o^)˷l 5 _ĩȠi68tOg3 ;9{!~[XVQByͰbd 2g<԰i=kΩذmL5.,@޶@$u@ð${ @ж@Pɰa@cz\c!c@e|^eRPBOMGCA:t:86@4K  I';@J0CyPGnlC!2Y ֩Š2ө)5^_ 9/+/Р3'hiXJ!"$ݠ1+5-@v=;@+=@@6$ ue_YS@)@"B@DKMt@}-M Ơ6EQ #C 'Coq_Reals_Machin_PI_2_3_7_ineq_subproofo (Coq_Reals_Machin_PI_2_3_7_ineq_subproof0u| (Coq_Reals_Machin_PI_2_3_7_ineq_subproof1zZ (Coq_Reals_Machin_PI_2_3_7_ineq_subproof2`= (Coq_Reals_Machin_PI_2_3_7_ineq_subproof3񩷐 (Coq_Reals_Machin_PI_2_3_7_ineq_subproof4#epsw"epa+*,0" (Coq_Reals_Machin_PI_2_3_7_ineq_subproof5 (Coq_Reals_Machin_PI_2_3_7_ineq_subproof6& (Coq_Reals_Machin_PI_2_3_7_ineq_subproof7++ (Coq_Reals_Machin_PI_2_3_7_ineq_subproof80* (Coq_Reals_Machin_PI_2_3_7_ineq_subproof95@ )Coq_Reals_Machin_PI_2_3_7_ineq_subproof10 )Coq_Reals_Machin_PI_2_3_7_ineq_subproof11{ )Coq_Reals_Machin_PI_2_3_7_ineq_subproof12> )Coq_Reals_Machin_PI_2_3_7_ineq_subproof13ϩ )Coq_Reals_Machin_PI_2_3_7_ineq_subproof14R )Coq_Reals_Machin_PI_2_3_7_ineq_subproof15 )Coq_Reals_Machin_PI_2_3_7_ineq_subproof16OȐ$dec3e_ }bgaȐ$dec7a[Zic]Ȑ$decr;@4Ratan_seq_decreasing;7ဠt'SeqProp@-Un_decreasing"?‐L@)Ratan_seq*_" ݵ!n@/Rplus_le_compatz9tB|!# % @1Rmult_le_compat_lڀ  ʩqC:c@+PI_2_3_7_tg0t+Ȑ"cv]@4Ratan_seq_converging9ႀ'Rseries@%Un_cvɀLh Fٵ-Ȑ#ep' Ȑ!etΠ詛(@"ex @\@%Peano3@"ge Uw*RfunctionsR@&R_dist $BBB@@@@D@.(@' 7!1"#@0&n(x)"N1-#Pn1O(ҩK5E67@D':<%x22@YCSDE@R50=bL\MN@[>+-Q"N2U#Pn2qA]m^_@lO<A#Nat@ `ll"Nn{q,ǩwwʩh{Sb@,Rle_lt_trans*GӀЩbTZp@+R_dist_plus.  _7}xZ[̰xmrаotoWPN@;@߰$8("@@@<  @ ~@vtfsqkgeLdtYW@UlFZ1 E\lC@;75/8ө8&-=8+é-U&C<1 t@#3 ̠۩РƩ1=֠ڠF䠩"ϩtxJ`@/Rplus_lt_compat":Ȁ    VbSe*Rbasic_funh@$Rabs; wK'*,my0 +l~\83z= by)&G+e, 4G%9TN8{U(0\(^7MHc/]'Raxioms@1Rmult_lt_compat_l`9%\Π#)Decidable@+dec_not_notHɀ0Ʃ+Compare_dec%Arith@&dec_ge*c,:N&Omega3 4ͩ3m65[ @^9Š>ɠYVkL5ONZ0:@xSߠŐ\̷`IcbʐWN@gِ+p+OmegaLemmas%omega@/fast_Zplus_comm11[d@} @4fast_Zopp_plus_distrpe)ir@{@7fast_Zopp_eq_mult_neg_1=Ҁ5~@#թ% ©@Ǡ.0":Ω;@2fast_Zplus_permute+Sܩ-޷&@ܠݩJ@1fast_Zred_factor0#1@©NPɩB[@1fast_Zred_factor6)B@ө_/aS&Omega4ީj1l^6p5橷[YީD"W[c۶@#h omX<t@*X4/}G~@4 7MRAc_ַ@AK*F&Omega2J%KVʵߠ9@*comparison;f@CCo @'compare3x@]=cC C@"gt1P,+auxiliary_2 +auxiliary_1@,fast_OMEGA10H(yY堩נ}頩۠va@1fast_Zred_factor5(l@,fast_OMEGA12J © wb@{&Omega9-@,fast_OMEGA13Ké ⩚(@,fast_OMEGA14L鵵=ᐩװsmm˩yC@ꐩ|qxC@֩C@&OMEGA2.$DC5.G9.:R@&OMEGA7.$I RDpʩVs4G)auxiliaryW@(Zlt_left,ڀA' @(Zge_leftskLX3穚w@'intro_Zz,7_WE@&inj_lt8Fp@&inj_ge8F7f@¬_ge+B @+Rmult_assoc&ѩ@+Rabs_pos_equ]穚@)Rabs_mult)M@2Rmult_plus_distr_l0ylɀ @9Ropp_mult_distr_r_reverse)!2@)Rmult_0_r+Ȁ\C(1M۠ӰKЩީ9:J>W{zq?oЩD^lfudH^YIW_UtSV[lPQaU9nOVM,Щ[/uIS{G@d~}/,6j!bl@é /o1sܰשͰȷ  9[Ұ^ߐ J#N@)Rplus_0_l 6ʀCbC   "@(sum_f_R0Yc)AltSeries @&tg_alt d'k@F /1A۩Cݩ!5 1@'ps_atan1Yܷ& 8ߠS1 9YI E=5 Gb@ &  h%Ȑ!s@&in_int6:j &Specif K@'sumbool7̂K@   WBAAAA@@@@@D 3$ m S 2#  /!hР&@#sig#* @BBB@@@@@< !l {XI L L  @0ps_atan_exists_12&  @ V&>M<ǩM Q E  Y1/`$ " xi l l    @  qAڠK s _s\u y p©   SOD61i- %  "a00?MZBBB@@@@DV ߩ Š  pla Mm>T4   "v3 #Pv3d HJ  ݠ   EU J  "v7!#Pv7ZȐ$mainE@'CV_plusoැ!iΩ ֠ g өS@'CV_mult   k!. yK@ Ҡ   vQ J B!>  -!? ݠ    @)R_dist_eq>x܀  +b!$-!&I  @)Un_cv_ext'P IDp^!ZN@ !L! ! P!b!D!d!>!Z!\W! `!l`R!I^!"!" b!t!V!v!%'PartSum!w@&sum_eqcǀm!/d0 ̩>@ UxT@:!!A! y!> }!!q!!k!B   R P - * ( # !7k !ϩ ! !R  ; =(  @ ~ B "  D F1    @@!$ N!d!!g@!$ T!j!!m@@w<!!p!!!x!:!Qr X!qkZ A!ĩ] E!ȩn I!̩   FX!!ЩH@!!!!!!J!a!hC h!{j Q!ԩma U!ة~e Y!ܩ i V;V@!!!!!!X!o!vQ v!x6EC 5B@:64 { }  8\4/-+@::)@ Ű ?) ɰ  (g?:"6@??! !"!9!I!c!! ; !!8"!!!!!{! !1 8"!!!!!! ! "  "4 "8    sC<"!!!!!! !Z!!@ C!"!8!ͩ !ϩ!֠!s@*Rmult_comm8"o@(plus_sumMt!@(scal_sumWJ!!"!!!b!!+@6alternated_series_ineq 39"!!!]!!D!b@@D@  !iG"-" !ɩ! Rr /" L[ʀy# " ]"C e@"!%@C0 !"j"P rƩRO!吩l#  "n09@WD 5",~  _"<|(!xCO @"7"oIRl " @/atan_eq_ps_atant  H H  4 1!@,Machin_2_3_7<, ! yt|!" Щ "iΩ"X̩"s" " !"!"ũ""ǩ"~ ; "C"!!!c!`!^!Y!J"հ!j !8!mڰ!oǠ!q z!9!2!0@!  @"  $!y""!! !  "  @"ǰ  $!""! !! ! "@ Զ@T"Ͱ" e@""""""g"~" `!"   !g g@""""""i"" b!"   !i V T!F S Q K G E!  <  7 5@ 3  $ 8@G-""ݰ"6"vC!#:k""CVZ̩]"W"XRa (Mc"&"XdZ"a"bQC"#" #"#"Ԡ"W"V!!!!!!!"թ)!U!!T!!!@!m!4!2@#!5!+$!""!j!Z!T!N!H "!&!8@#!;!1$!"#!p!`!Z!T!N"@!$@##= @#?"##"""" !#   ! @#A"##"""" !#   !  !     !ܩ !ީ  !M  @ !P w @"#0#P3"ɠ"H#T7>##*C $D ""* z w# v " } G"]#i yS5 7  K##?C m 4Y "" s C# B " A "r#~ =h2 -" ( #1#1T/C} \ IG ""թ   #>  """#_"##z# # "V"T"1".","'"#O ""8  "!!@!!!@ !!@#!!$"B#X#x!!!!! #[@!@## !(@##`###h#*#A#H!#"H#!a![!J"*!!"!!! ! !   !  !  @#h## =#4? ة"# Ayu_:a5!#r#rpC ,##RM#ש"# z|O|~<>##C F-0#*#+h4c6#+i-k#4#5$"#"##а##)#ki("""""""p#"&"]"g%"Z"S"Q@">""@#"!$"##";"+"%"" #!" @#" "$"##"A"1"+"%"#@!@u#$!@$#######!"#!!!"!@$#######!"#!!!"!w!u"g!t!r!l!h!f" ]"!X!V@!T"!E!Y@hN#˩#$.#d#$"2ܩذʩ##C LO#x#ySIU#G K#OC##tf#1$=#,$>$ $@-##;""""֩"""#,""M"1)"""@""U"S@+"C"U@$4"X"N$"$$"""}"w"q"k$@"A@$:$Z'!@$\$ $/$5$###!"$." "!"!!"!!!!%"c! ;!'"e!!@$$E$e#ޠ2#]$i##5375$$?C 吵;4 YG##AF$EF#B#r$~8h2$-$-P+C  $  Z$$6$IG##թB $D$&#/# $DҰ#$G֩$5$s$R $w!$V $ $}$\$>#G$-$b ###ک#$y#$$$ة$-$-$o #$$s$U#^%#z#x#U#R#P#K#C$##>$uɩ#)#^#2#`5Ͱ#b #B#6#dѰ#f#h#Hհ#j #2#+#)@#""۶@""ݶ@$""$#t$$##"""$@"ɶ@"<$$$$$$Z$q"#x$"""z!"l$İ$"\@$$$$$$^$u$|"W#|$"""~#e$!#`"`@$$$$$$b$y$"[#$"""$"O"M#?"L"J"D"@|"".y")"@#"!#"?"?O#r#Q "" "4@$  $ $7$G$a$$""!"""" $߰"$"8%$$$$$y$"#$""""""8%$$$$$~$"#$"""#%#"#gC"<% $$$$$$"#$""""N$$@!=$$% $fl$%$$$̠ $U$$Р3$$[$$C rnCr! E$n$oixI?dD<$Cyo$vB$"%.>֩$$C ڐX!$$~^TyQ$ [$$7%C-$$C 1G N