"`!!G#MVT%Reals#Coq@()Notations$Init#Coq@%Logic$Init#Coq@*Logic_Type$Init#Coq@)Datatypes$Init#Coq@&Specif$Init#Coq@%Peano$Init#Coq@"Wf$Init#Coq@'Tactics$Init#Coq@%Tauto$Init#Coq@'Prelude$Init#Coq@)Notations$Init#Coq@0&v!D]hwnv %Logic$Init#Coq@0\͉!Ig)Datatypes$Init#Coq@0.i bYN Z*Logic_Type$Init#Coq@0 1jc6&Specif$Init#Coq@0;RWMi\N'Decimal$Init#Coq@0C涳N*ua#Nat$Init#Coq@0eʤģPSR蠠%Peano$Init#Coq@0 jha|ؠ"Wf$Init#Coq@0q+W,J+'Tactics$Init#Coq@0/9m+ a%Tauto$Init#Coq@0̂"&/rk0JqTttֱ'BinNums'Numbers#Coq@0dmk(5Ju<*EqdepFacts%Logic#Coq@0FI$ͼՋ`)Eqdep_dec%Logic#Coq@0u wWIϰ߼&Basics'Program#Coq@0!bs߯? :VU$Init'Classes#Coq@0](p{yOh.'Tactics'Program#Coq@03u%+Equivalence'Classes#Coq@07;ꮹ-SetoidTactics'Classes#Coq@0S_`nOU$&Setoid'Setoids#Coq@0D9AsWE!>$Bool#Coq@0j 2cZ`FW*Equalities*Structures#Coq@0όe얟)H.Ƞ2Relation_Operators)Relations#Coq@0%s鯰s4Operators_Properties)Relations#Coq@0U3y#h&)Relations#Coq@0r砠*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ&NZSqrt&NatInt'Numbers#Coq@0` .%m%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|&NZBits&NatInt'Numbers#Coq@0MlIpKt'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$&NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ)NMulOrder(Abstract'Natural'Numbers#Coq@04> Aat/ j $NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ'NMaxMin(Abstract'Natural'Numbers#Coq@0]v|Qg̟ʠ'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NLog(Abstract'Natural'Numbers#Coq@0KI'BinList+setoid_ring#Coq@0Au,Ring_polynom+setoid_ring#Coq@0gaKw9`UW+ListTactics%Lists#Coq@0,Jcy{+InitialRing+setoid_ring#Coq@0k/T=cN(Ring_tac+setoid_ring#Coq@0x2]%762f)Ring_base+setoid_ring#Coq@0fbU(2cNe$Ring+setoid_ring#Coq@0Msᬠ)ArithRing+setoid_ring#Coq@0ṔCgt?}%Arith#Coq@0I|кX*o4#Max%Arith#Coq@04=;3$>aU堠#Min%Arith#Coq@0Ce-Fѕ(PreOmega%omega#Coq@0\|چBb~w4%Omega%omega#Coq@0t.J'6\ϨrK(Zpow_def&ZArith#Coq@0f蓜DX;V*ZArithRing+setoid_ring#Coq@0{#'[{nm!/,Zcomplements&ZArith#Coq@0ʾq %RIneq%Reals#Coq@0JUڻIu)$w&DiscrR%Reals#Coq@0z41pV.%Rbase%Reals#Coq@0Jܡ\ c6{%R_Ifp%Reals#Coq@0c4+ZŠ,Fourier_util'fourier#Coq@0ϳ> 4`*r0'Fourier'fourier#Coq@0wV9TN*Rbasic_fun%Reals#Coq@0hܒiclE>%R_sqr%Reals#Coq@0X%MԹ%M+SplitAbsolu%Reals#Coq@0M)&qYlݹ5*SplitRmult%Reals#Coq@0sD\rt/$Even%Arith#Coq@0YO%q}d߫%$Div2%Arith#Coq@0n*Áht!,)ArithProp%Reals#Coq@0B+L?>*e˃a j*Rfunctions%Reals#Coq@0d¹d‹@&Rlimit%Reals#Coq@0*r0ē([HAE&Rderiv%Reals#Coq@0?KQ;^WU;H*Ranalysis1%Reals#Coq@0 n;qm.L%%RList%Reals#Coq@05g2NaA:7PropExtensionalityFacts%Logic#Coq@0 +_.ɓoFؘ'Hurkens%Logic#Coq@05[gNk2up.ClassicalFacts%Logic#Coq@0$RzqIF\(4.Classical_Prop%Logic#Coq@0Yh޿JdI1ƽ3Classical_Pred_Type%Logic#Coq@0m[6BZ5)Rtopology%Reals#Coq@0;Wo G` 73?Ww|YTӠР#MVT%Reals#Coq@A  @@@!f@,Rdefinitions%Reals#Coq@@!RӀ !g@!a!b#pr1!c&@%Logic$Init#Coq@@#andЖw@,Rdefinitions%Reals#Coq@@#Rlt=CAAB*Ranalysis1%Reals#Coq@@,derivable_pt8\EFB#pr2>c@=2DA8AC(@CDC@_@^S@#Rle=6AEJ@-continuity_pt?ZLIC@~@}G$!WZ%Logic$Init#Coq@@"ex @ƀHEI-!P P R6-@"eq @@@Ӏ@%Rmult׀@&Rminus&HJ/h@)derive_pt$FnKb E~ĩƠ@@@@@AA@@>@,Field_theory+setoid_ring#Coq@@&FEeval>@@A@A"s @,Ring_polynom+setoid_ring#Coq@@&PEeval"s @@A@BA@A@(MVT_cor1 @@\AM@LN:R9V"pr @)derivable$"C@,CBnM@#andЖw@E@wӀ+D.7Cqf j@@@@@(MVT_cor2 @@B@"f'@ŀ@BA@р@MTJQNL@0derivable_pt_lim92퀷{PwRj u t†׀|ۀ@@@@@(MVT_cor3 @@4C%@$&q@+-15@BA@!xB@@Ʃn|X7ꀠՀҩ򀠩݀䩛JÐ꩚:@%Rplus+1̐䩚$署@@@@@b%Rolle @@D@Fa@|qCAwABg"\@{@8DA>AC7wv@PD@IHY*倷2ĀGcg Qm o,Rdefinitions%Reals#Coq@@!RӀ v,Rdefinitions0/@@#IZR/r'BinNums'Numbers=@@!Z7@A@@@@@ 3nonneg_derivative_1 @@ME>@=?驚耐A@ K€:2NCAB̩@*increasingZ}ѐ@@@@@B3nonpos_derivative_0 @@Fs@rtA@0@*decreasing;BG }ut@@s7@A@@@@@9increasing_decreasing_opp @@G@@V&:*Ranalysis1@'opp_fct*'j@@@@@3nonpos_derivative_1 @@Hն@ԀրA@
YူCAB_ڀҩwe@@@@@֠3positive_derivative @@I@A@ӚހCAB@1strict_increasing/ z/@@@@@ %strictincreasing_strictdecreasing_opp @@KJ<@;=@@1strict_decreasing/tǀ@@@@@(3negative_derivative @@hKY@XZA@%f0eCAB㩚^V5@@@@@Z1null_derivative_0 @@L@65A@H@(constantVB_"A@@@@@5increasing_decreasing @@M@€@g7@Lq8>@@@@@1null_derivative_1 @@N@߀ံA@퀩 쀰CABj倐ݩjp@@@@@ᠠ;derive_increasing_interv_ax @@!O@ũĀA@퀠DC@!t3@  /AFʐU!yZ@4րڀ @A〠瀠@?穚C@T@`U5Y A GIgS@(Z,^ @5%g9k@E9B3<5M@@@@@8derive_increasing_interv @@PɚံȚ倶@ꀚ쀶A@DC@͚@ـ΀xҀ|wր󩚠ݚɚ"@WЩ@ ݩh@ Ð@@@@@([a@`b  A@4DC@Cu@OD$Hqi3 5S?@rFJ@!S%W޶@}1%.(!9@@@@@#IAF @@R϶@΀ЀԀ؀!k݀D@\DC@˚@ʀlipmht1r~d|f!@@@@@'IAF_var @@:S+@*, @137;䀐D橚뀐D@DC@0U@/рΩՀͩـagܐ造}ϐѐ$,@@@@@e3null_derivative_loc @@T@Id@tCAzABj%_@~@;DAAAC:zy@ـNSWa詚怰Cja܀ԩ@-constant_D_eq$(ـ{x|wy@@@@@3antiderivative_Ucte @@-U@"g1@%'"g2@-/37@@.antiderivative ۀ@驛2@!RӀ.  @%Logic$Init3@+Жw@@= ֩ө@"eq @(*@%Rplus+1@@@@@X'MVT_abs @@V@ն@}|@y@x*Rbasic_fun%Reals#Coq@@$Rmin; 〠CBA/A@$Rmax; UCB耰po6qҀd,Rdefinitions%Reals#Coq@@!RӀA@$Rabs; wcqkq w†j\@@@@@@@@ ӳ2@ ӳ2[)Datatypes$Init#Coq@@A@ Գq@ Գq\ @A@AB@cA@A.0TQ+Ring_theory+setoid_ring#Coq@@ABA.U>[J @B@@"O@(PeanoNat%Arith#Coq@#Nat@&of_int"O#Nat$Init#Coq@@ 6@A@A\@&BinInt&ZArith#Coq@!Z@'quotrem\)BinIntDef&ZArith#Coq@!Z@ /@A@\@@+pred_double\@/S@@A@As2@3@&shiftls2*@vY@A@BCs8@8@&shiftrs8/@vY@A@ѓ@>@&squareѓ5@y@A@@D@&to_intϑ;@@A@z@5@&doublez,@/!@A@ABCD/@O@)log2_iter/F@wd@A@NH/@B@&moduloNH/9@1,@A@A\d@G@&of_int\d>@1?A @A@bz@M@&of_natbzD@1?G!@A@#@S@&shiftl#J@1dV@A@#@Y@&shiftr#P@1d\@A@ABCD/x@&BinPos&PArith#Coq@#Pos@)pred_mask/x)BinPosDef&PArith#Coq@#Pos@ )X@A@6@x@&square6o@19@A@AV+L@}@&to_intV+Lt@2@A@V1b@@&to_natV1bz@2 @A@V5=@@&to_posV5=@2@A@ABCl@@)sqrt_iterl@!$:@A@@@6@(sub_mask@-@)@A@ADEF c@@'testbit c@!ć@A@7 B@D@'of_uint7 B;@*`]?@A@AG@I@)mask_rectG@@+ED@A@F˱@O@)add_carryF˱F@+p@A@AB^Ҷ@@'to_uint^Ҷ@#m@A@gL7@@'sqrtremgL7@40@A@Aq@@'testbitq@5)@A@ݎO@@+succ_doubleݎO@6r@A@A p@l@0double_pred_mask pc@0-+m@A@BCD T@&BinNat&NArith#Coq@!N@!t T)BinNatDef&NArith#Coq@!N@ 2@A@ @@#add @3 @A@A l@@#div l@3@A@ Y@%@#eqb Y@3@A@AB #@*@#gcd #!@3n@A@ T@0@#leb T'@3@A@ACEG "@5@#lor ",@3m@A@ q@?@#ltb q6@3@A@A @D@#max ;@3@A@ @J@#min A@3`@A@AB @O@#mul F@3B@A@ ~@U@#odd ~L@3@A@AC =@Z@#one =Q@3@A@ @b@#pow ˑY@3@A@A c@g@#sub c^@3@A@ @m@#two d@3J@A@AB hx@r@$div2 hxi@>@A@ @x@$even o@>4@A@ACD @}@$ggcd Бt@>U@A@ @@$iter }@>:@A@A 3"@@$land 3"@>m@A@ F)@@$log2 F)@>t@A@AB S@@$lxor S@>@A@ @@$pred @?U@A@AC @@$size ܑ@?'@A@ !@@$sqrt !@?@A@A ! @@$succ ! @?\@A@ !7@@$zero !7@@P@A@ *@@%ldiff *@@A@AB g_@1@+pred_double g_(@25\@A@CD m@6@÷ m-@2j@A@S@=@&of_intS㫑4@4}5@A@AS@B@&of_natS9@4};@A@BEFGH\R@G@(mask_ind\R>@4@A@\^@Q@(mask_rec\^H@4@A@A!,@V@&pred_N!,M@4s)@A@B@[@&shiftlR@5X@A@@b@&shiftrY@5X@A@A&@g@&square&ّ^@5,x@A@BC"@l@&to_int"c@5L@A@"@t@&to_nat"k@5L @A@AnTq@y@+testbit_natnTqp@6n@A@B@@(succ_posB@@A@I@@'abs_natI@?n@A@AB.@@'of_uint.@MS@A@3~@@'sqrtrem3~@7]%{@A@ACD,@ @'bitwise,@/v@A@>4'@@'testbit>4'@8g$@A@A{U@@,sqrtrem_step{U@8R@A@u^@9@(div_euclu^0@ @A@Afz@@'to_uintfz@9w@A@Bl@'@'comparel@3R@A@CDEFs8@,@+of_uint_accs8#@5+@A@}@R@,pos_div_eucl}I@&`@A@3x@(@'compare3x@]=@A@A@^@&doubleU@'޺_@A@BCq@@+of_succ_natq@$@A@w@i@&modulowɑ`@)1@A@ADK@n@&of_intKe@)j,I@A@K@v@&of_natKm@)j2_@A@AI@{@&shiftlIr@*O@A@O@@&shiftrOx@*O@A@AB,@@&square,}@*ow@A@Z@@&to_intZ@*81@A@ACE`@@&to_nat`@*9G@A@e@@+testbit_nateđ@+@A@A+{@@'sqrtrem+{ё@,J@A@5z@@'testbit5z@-T|@A@A @@'to_uint ͑@.@A@ @@+succ_double @.^4@A@A#@'@'compare#ݑ@ )Q@A@BCD%t2@,@(size_nat%t2#@ @A@%9@3@+of_uint_acc%9*@ ΋@A@A%V@8@+double_mask%V/@ S@A@%%@>@'div2_up%%5@ "@A@ABEF'ş@C@'Ndouble'ş:@ @A@(b0@K@*shiftl_nat(b0B@9-@A@A(nՖ@P@*shiftr_nat(nՖG@'@A@(@V@0succ_double_mask(M@@A@*W$@\@,compare_cont*W$S@!@A@.0@b@.sub_mask_carry.0Y@΂@A@ABCD.@@!t.@ ;@A@.먩@@#add.먩@ `@A@A.U@@#div.U@ @A@.B@@#eqb.B@ @A@A. @@#gcd. @ @A@.=@@#leb.=@ @A@ABCEGHI. @@#lor. @ @A@.Z@ @#ltb.Z@ @A@A.p@@#max.p@ '@A@B.@@#min. @ @A@.@@#mul.@ @A@AC.g@@#odd.g@ @A@.&@&@#one.&@ @A@A.뾴@+@#pow.뾴"@ k@A@.L@1@#sub.L(@ @A@.@7@#two..@ @A@ABCD.,a@<@$div2.,a3@ @A@.Xz@D@$even.Xz;@ ?1@A@A.@I@$iter.ؑ@@ @A@B. @N@$land. E@ @A@. @T@$log2. K@ @A@ACE.@Y@$lxor.P@ R@A@.y@`@$pred.yW@ `<@A@A.Ʉ@e@$sqrt.Ʉ\@ ;@A@.@l@$succ.c@ @A@.t @r@$zero.t i@ Z@A@AB/@w@.to_little_uint/n@ @A@CDF/@|@%ldiff/s@ H@A@00@@'compare00@?H{@A@A1P%@w@!t1P%n@  @A@B1P@|@#abs1Ps@ @A@1P&@@#add1P&z@ @A@A1P@@#div1Pґ@ y@A@BC1P@@#eqb1P@ f@A@1P@@#gcd1P@ 0@A@A1P@@#geb1P@ T@A@B1P@@#gtb1Pʑ@ q@A@1Pĺ@@#leb1Pĺ@ a@A@A1Pň@@#lor1Pň@ /@A@BCD1P@@#ltb1Pב@ ~@A@1P@@#max1P@ @A@A1P{@@#min1P{@ "@A@B1P]@@#mul1P]@ @A@1P@@#odd1P@ @A@A1Pɣ@@#one1Pɣ@ J@A@BC1P@@#opp1Pԑ@ {@A@1P1@@#pow1P1@ @A@A1P;@@#rem1P;@ @A@B1P@@#sgn1Pˑ@ r@A@1P@@#sub1Pɑ@ p@A@A1Pe@@#two1Pe@  @A@BCDE1[8@@$div21[8ޑ@ @A@1[d@@$even1[d@ I@A@A1[6@@$ggcd1[6@ i@A@B1[U@ @$iter1[U@ @A@1\@@$land1\@ /@A@A1\@@$log21\ @ 6@A@BC1\$@@$lxor1\$@ @A@1\Y@$@$of_N1\YÑ@ >j@A@A1\@)@$pred1\ @ j@A@B1\@.@$quot1\֑%@ }@A@1\@5@$sqrt1\,@ @A@A1\w@:@$succ1\w1@ @A@BC1\k@?@$to_N1\k6@ @A@1]@G@$zero1]>@ eD@A@A2:@L@%abs_N2:C@ @A@21@R@%ldiff21I@ ߵ@A@2=*@X@%quot22=*O@ @A@ABC2kF@@(size_nat2kF@{@A@3@x@(tail_add3o@^q@A@ADEFGH3@}@(tail_mul3t@^@A@5Z@@*shiftl_nat5Z@y/@A@5f}@@*shiftr_nat5f}@4@A@AB5a@@'iter_op5a@ @A@C6w~@@'of_uint6w~@^5@A@8j@@'of_uint8j@'"h@A@9E@@(div_eucl9Eđ@(*k@A@AB:x@6@,Nsucc_double:x-@ ʭ@A@CD@[@&divmod>R@C@A@>@b@&double>Y@NĴ@A@?2@S@,pos_div_eucl?2J@-u@A@AB?;@m@&modulo?;d@"i@A@CEFGIJ@%Arith#Coq@0I|кX*o4)ArithProp%Reals#Coq@0B+L?>*e˃a j)ArithRing+setoid_ring#Coq@0ṔCgt?}*Arith_base%Arith#Coq@0Ĕ}CS&Basics'Program#Coq@0!bs߯? :VU'Between%Arith#Coq@06v*0ur`C0&BinInt&ZArith#Coq@0BpHޞun^)BinIntDef&ZArith#Coq@0ådR4Tuy'BinList+setoid_ring#Coq@0Au&BinNat&NArith#Coq@0K11ڤs+Π)BinNatDef&NArith#Coq@03@1O,[{ 'BinNums'Numbers#Coq@0dmk(5Ju<&BinPos&PArith#Coq@0vyػ0= u)BinPosDef&PArith#Coq@0}H d.%,b$Bool#Coq@0j 2cZ`FW*CMorphisms'Classes#Coq@0qیZBeϠ0CRelationClasses'Classes#Coq@0TL;0RUfw1.ClassicalFacts%Logic#Coq@0$RzqIF\(43Classical_Pred_Type%Logic#Coq@0m[6BZ5.Classical_Prop%Logic#Coq@0Yh޿JdI1ƽ+Compare_dec%Arith#Coq@0jXF 8XWV@0.i bYN Z)Decidable%Logic#Coq@0ND걸풬/Oߠ'Decimal$Init#Coq@0C涳N*ua&DiscrR%Reals#Coq@0z41pV.$Div2%Arith#Coq@0n*Áht!,%EqNat%Arith#Coq@0AIgՋXRV *EqdepFacts%Logic#Coq@0FI$ͼՋ`)Eqdep_dec%Logic#Coq@0u wWIϰ߼*Equalities*Structures#Coq@0όe얟)H.Ƞ+Equivalence'Classes#Coq@07;ꮹ$Even%Arith#Coq@0YO%q}d߫%)Factorial%Arith#Coq@0@oehJd%Field+setoid_ring#Coq@0J _ȫ)Field_tac+setoid_ring#Coq@0d vDZl^۹H̐0B~uYٮ٠'Fourier'fourier#Coq@0wV9TN,Fourier_util'fourier#Coq@0ϳ> 4`*r0-GenericMinMax*Structures#Coq@0måj$"Gt%Arith#Coq@0䙛#c:D 'Hurkens%Logic#Coq@05[gNk2up$Init'Classes#Coq@0](p{yOh.+InitialRing+setoid_ring#Coq@0k/T=cN"Le%Arith#Coq@0d}Omq+$List%Lists#Coq@0>I+ListTactics%Lists#Coq@0,Jcy{0\͉!Ig*Logic_Type$Init#Coq@0 1jc6"Lt%Arith#Coq@0KZ-eJkP܏#Max%Arith#Coq@04=;3$>aU堠#Min%Arith#Coq@0Ce-Fѕ%Minus%Arith#Coq@0LFtR")Morphisms'Classes#Coq@0Imӽ%\$PD.Morphisms_Prop'Classes#Coq@0% :B'.>u%$Mult%Arith#Coq@0햖Qyb0$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI%NBits(Abstract'Natural'Numbers#Coq@0qteo_hɅ $NDiv(Abstract'Natural'Numbers#Coq@0bz$?[p(5$NGcd(Abstract'Natural'Numbers#Coq@08E-S ;j_Ҡ$NLcm(Abstract'Natural'Numbers#Coq@0 ~xZ9L{:$NLog(Abstract'Natural'Numbers#Coq@0K Aat/ j &NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf+NProperties(Abstract'Natural'Numbers#Coq@0unt"kwpYC%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ%NZAdd&NatInt'Numbers#Coq@00h`ZK4*NZAddOrder&NatInt'Numbers#Coq@0e~1>r砠(NZAxioms&NatInt'Numbers#Coq@0] ρ5r&NZBase&NatInt'Numbers#Coq@0^&8yUL&NZBits&NatInt'Numbers#Coq@0MlIpKt%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZMul&NatInt'Numbers#Coq@0ctR~6[Ƞ*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R'NZOrder&NatInt'Numbers#Coq@0 q;Ve7R W,(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x&NZSqrt&NatInt'Numbers#Coq@0` .%m#Nat$Init#Coq@0eʤģPSR蠠$Nnat&NArith#Coq@0$W;s #%M)Notations$Init#Coq@0&v!D]hwnv *NumPrelude'Numbers#Coq@05WUVŦ]xVXԠ%Omega%omega#Coq@0t.J'6\ϨrK+OmegaLemmas%omega#Coq@0TJ#Jes4Operators_Properties)Relations#Coq@0U3y#h&&Orders*Structures#Coq@0$Znl0\͗+OrdersFacts*Structures#Coq@05Mܿ獐ζΖLB)OrdersTac*Structures#Coq@05'4Ԗ+9%%Peano$Init#Coq@0 jha|ؠ(PeanoNat%Arith#Coq@0O~2$k[#lZ)Peano_dec%Arith#Coq@0Kݢ*k$Plus%Arith#Coq@04tmG$Pnat&PArith#Coq@0,?pr.gZ(PreOmega%omega#Coq@0\|چBb~w4'Prelude$Init#Coq@0JqTttֱ7PropExtensionalityFacts%Logic#Coq@0 +_.ɓoFؘ%Quote%quote#Coq@0J@ŹVz-,3%%RIneq%Reals#Coq@0JUڻIu)$w%RList%Reals#Coq@05g2NaA:%R_Ifp%Reals#Coq@0c4+ZŠ%R_sqr%Reals#Coq@0X%MԹ%M*Ranalysis1@0 n;qm.L%'Raxioms%Reals#Coq@0S]jnj][L%Rbase%Reals#Coq@0Jܡ\ c6{*Rbasic_fun%Reals#Coq@0hܒiclE>א0(2{Ze$ќ8&Rderiv%Reals#Coq@0?KQ;^WU;H)RealField+setoid_ring#Coq@0 >ʾq /RelationClasses'Classes#Coq@0Gz rA6ՠ4Relation_Definitions)Relations#Coq@0]4Ѐd{n^2Relation_Operators)Relations#Coq@0%s鯰s)Relations#Coq@0-SetoidTactics'Classes#Coq@0S_`nOU$&Specif$Init#Coq@0;RWMi\N+SplitAbsolu%Reals#Coq@0M)&qYlݹ5*SplitRmult%Reals#Coq@0sD\rt/'Sumbool$Bool#Coq@0sB ,$11.]m'Tactics$Init#Coq@0/9m+ a'Tactics'Program#Coq@032 Q@@@@#_10@ @A@@@@@@@@#_112M접#_12'`o@I.function_scope'R_scope  @@AAƠɠAAAA@2 Q@@A@#_13@"@A@@@@I@#_142M접 #_15'`o@EGDF@@@A@b2 Q@@@@#_16$@m"@A@@@@~@#_172M접 #_18'`o@F|~{}@@AA:=A@*2 Q@@A@#_19]@5"@A@@@@@#_202M접 #_21'`o@F@@AAsv@A@2 Q@@A@#_22@@A@@@@@#_232M접 #_24'`o@G렐@@@AAA|@2 Q@@A@#_25@o@A@@@@-@#_262M접 #_27'`o@C+@.@AA@}2 Q@@A@#_28@D@A@@@@X@#_292M접 #_30'`o@DV@@U@A@p2 Q@@A@#_31.@{!8o@A@@@@@#_322M접 #_33'`o@B@@A@r2 Q@@A@#_34U@}D@A@@@@@#_352M접 #_36'`o@C@@AA@k2 Q@@A@#_37@vu@A@@@@@#_382M접 #_39'`o@Cؠ@@A2A@a2 Q@@A@#_40@lr@A@@@@@#_412M접 #_42'`o@B@@A@k2 Q@@A@#_43@v5\g@A@@@@,@#_442M접 #_45'`o@C*@-@AA@d2 Q@@A@#_46@o .@A@@@@W@#_472M접 #_48'`o@DU@@T@Ax@^2 Q@@A@#_49-@i(v͹@A@@@@@#_502M접 #_51'`o@C@@@A۠@j2 Q@@A@#_52X@u /@A@@@@@#_532M접 #_54'`o@C@@A A@c2 Q@@A@#_55@n$I;@A@@@@@#_562M접 #_57'`o@E֠ؠߠ@@@A>d@Ǡ2 Q@@A@#_58@5$@A@@@@@#_592M접 #_60'`o@K  @@@@@@РӠA|Aࠐ㠐@2 Q@@A@#_61@d@A@@@@a@#_622M접 #_63'`o@KZ\c@@gdf@@@@"AˠA/2 @y2 Q@@@@#_64V@ @A@@@@@#_652M접 #_66'`o@G@@@Aknq렐A@[2 Q@@A@#_67@f4@A@@@@@#_682M접 #_69'`o@H점렐@@@@AAVY,A@12 Q@@A@#_70@< \*@A@@@@/@#_712M접 #_72'`o@F-*,357@AꠐAAA@2 Q@@A@#_73@X@A@@@@h@#_742M접 #_75'`o@Gfhjgi@@@AAA'*򠐑@2 Q@@A@#_76K@WH@A@@@@@#_772M접 #_78'`o@E@AA`cA@@@cq통 gZ@7;mvL@F,}o҄@{GK!Dx]rH#hxQw>\!f@,Rdefinitions%Reals#Coq@@!RӀ !g!a!b#pr1!c@%Logic$Init@#andЖw@*@#Rlt=CA B*Ranalysis16@,derivable_pt8\EF #pr2+D@)D!!H&!"H0<U@:Y@#Rle= .0E-@-continuity_pt?ZLI6"H1Un@SGCE7Ȑ"H2%RIneqz@&Rlt_le ADS+FȐ!h!y@&Rminus&H@%Rmult׀JH8Ks  #Ȑ"H3N@2derivable_pt_minus>窀Щ@(mult_fct)?@'fct_cte€AL51MM    @1derivable_pt_mult=Aƀ@2derivable_pt_const>ҥ S@B!X@ߠԠ]Ω֠e̠WY꠩;٩j@3continuity_pt_minusMBЩVQNNLOb]    @2continuity_pt_multn΀@7derivable_continuous_pt%f @/derivable_const#ڒ% M$   YC.G@B2K@0}!Ȑ"H4)RtopologyW@1continuity_ab_maj%!/D@"ex @h"MxkOUn@STBDZڐEܐK_%dN'PȐ"H5.@1continuity_ab_min&LpW+"mxtz@x>PhAj|C5$6'0@&ex_ind 5{>@UQXZ=<"VY'%!P@"eq @ʩ8AR9$@)derive_pt$FnSJS}淐"H6BJ^Р@Ԡé'*+ޠ/ͩQ頩  JH zTD;BUj.  L7#"H7:Ȑ"H8Ȑ(hyp_list)Datatypes@$list]@A @$prodt@,Ring_polynom+setoid_ringC@%PExprk@'BinNums'NumbersO@!Z7@+$Ȑ'fv_list2BdFfPW jV n[Bq@2RField_ring_lemma1!7𚠐(Ring_tac6@0ring_subst_niter!PMAF8FG= ?MDDE@(positive*@C M BTA Z'\^-b*d',f '@$Truey@AA@$boolZ'@A@ Ȑ#lmp@.mk_monpol_list(AB>&BinInt&ZArith@#add1P&)BinIntDef@ ̀@#mul1P] @ @#sub1P@ p@#opp1P@ {%Zbool!@(Zeq_bool0߀*@'quotrem\$@/ŀ٩֠ؠś@#Monf@@#Polj@ө@#Peqj*(@*norm_subst7:d0XUQA;5/'0ZWSC=71)iCn2"t8jҩk&Ȑ!Mk?Ȑ!m(DȐ"H9/H-"X%W@%pr_nu"_"j[РˠԠ[YZ\ǩؠᠩ  =Щ젩.! "O#QS8 #V X"˰\@)minus_fct%d'Ű@f}@&eq_ind Jΰ砩J@렩AK}  HΠTg TӠLiŷ!r3.7U\d]fz8Ai i@(eq_ind_r!2#کO 9/ 7,' ⩚@%Rplus+1WF<t\+?@:2kǩ%<72"60D/"t5_TyHW;XWO3FV[ԩ:]֩Xة^^fQ&'@#IZR/rWt.l0PTg@<z?pmBCEe%,*i|Q+RTɠt'7vȠ6 ^8_a֠?D6*i{jl=J3rgsuVFyq[v'Raxioms@)Rplus_0_l 6ʀg k@)Rmult_0_l+€t g@/derive_pt_const ~ũn@.derive_pt_multͩ u@/derive_pt_minus 勀ݰ*(#&R#C4/Lc>3Gb=ʶ ζoש NI~ vNvР@"or @BAAAA@@@@@D@1G@#notШ 栩۠թݠIG y@H>^*U HU3@'Req_dec3{0ܠ#H106G@<k/a:Ҡ45ՠ  ۷~|@*2~s__? ?2# #H11)Ȑ#H12AZ?$#B@'and_ind14ۀжNg@LY;=!"V[]zdݷ#H13$_tmpe+rf-h(жq@o5`_8aJ:1ũ2z@RBڰO#H14$MOa0@+Rle_antisym>`KMsitR`SaIib'Aƶ@lOrʶ@uwhөi\kYA@$Rdiv̀|;q@.Rmult_lt_reg_l>e )x@1Rplus_lt_0_compat-P@"R1Ȁ@'Rlt_0_14Cis@$Rinv8)+U栩.0{68b  Ii#EaV+HX-Kggv0 @1Rplus_lt_compat_l ]߀ppԩUr@&double {"_@)Rmult_1_l9f0@*Rinv_r_sym9lU䀠k@'IZR_neq%pݩ tw!e@@AA@AA@@@@@@D!zA=R@%Falsee@@〛À@ J ^@)False_induُQC+@+Rmult_assoc&@*Rmult_comm8Cl_2vi{un s ͠HѠLL֠SSX*Uܩ>@*Rplus_commq|A?86C0 ᩷O tAط٩yPN PYbZ3c\e =!© (ᠩ֠ ؠ DBt}SĩU%:(3/.34Gd U 쩚@0Rminus_diag_uniq)6 Xu6f8| *a? 9fD%={? @/deriv_constant2c 3O IGIJ#H15#?QOOR!!!xUy .%ʩ[\^?.!1 ~5 7AC o?;H tDC<ЩU W ʩf,-#H16 #H17c 4  8  ; y =  !`ة p ܩ      @)Rmult_1_r+1&  P4( R S  U $ à    C  Ϡ     O   b  ! f g  i נ ࠩ ? ޠ  ҩ   '*" . ߩ    L 0_1? P  M    ސ  "f'  x  v  = a  : t @ r 8 I 9 G ]@0derivable_pt_lim & e [ " 0   2  G H൩&Specif @#sig#* @A !l  |@0derivable_pt_abs팀 O   F A  C  @ Ƕ  @ j  Y W  ÷ Y𩚠 @'and_rec1@Щ    [  4  Z %   6 t   >    su    E  z   "   }    @  @       #     @멷   @  (     &  @ "X1  @ &    1  @+"X2  @1      4 $  @    @  }    s bt ` $  G W V    A    _ ! ^ Ҡ 4  5  u 9 [  m  = @ ࠩ &  w       K C z 8   !  7 r $  &  W ? X <  \ Ѡ   ̠ J  ֠  R G < V 6 > 8  8 ) # n V o S  s 蠩 &  䠩  ֩  j d _ T h N V P p 8  )  qh' l a { C c E  ; Z@.derive_pt_eq_0J Mv $  b@3derivable_pt_lim_idsT} ۰  ̰ X  O U D ; c  ٠ HJЩ   L  N   Y Z `  3  x  a k H c J RV    r O [     T \    ɩ  { j%& y  ϩ       R  ֩  e = - @ ܩ  w @ 0 &    P Yw   U i       P  +  ] _ h  } # Z W M `  C  ;  m v"   5 s    ө E  w'  l z  b u    Z  R       I    p Z       O $ k % c '  @&eq_sym X . b     $ dQ              9 7 8 ( 8 & 9   <@@        ٩!@(MVT_cor2"      3 L Щ           (    & ) )  \ D ] A  a ֠  D  " Ӡ ) ũ ݠ !   l T m Q  q 栩  1  7 㠩  թ   ;  | d } a ' c "   3    q  n 4 q 7 ΰ  {    /   '  f;Щ ڰ   8 c 9  -  g 3    w l  U  X   Ѡ  c       J^Щ  X x  z %  m  p   #  $ ; 4  E 4 i Q   u m  8     B      P   Z K E  (  J    /   W © Y   <  4   '                  v E  o } T M@ G J ? =     0  : 7 3 #        0  < 9 5 %       K0    ᐑi@   ַ ϶@ ̷  з  ^"     & SO(I |  I      @-@ Р23 Ӡ?> z x<  _ ` r o  T     y vi a N Y@4derivable_continuous\t@"W@b;&  \D]     b Р ٠%   5  נ :#@ oWp  w  x u 㠩  ^  H ꠩    e OE  $n 'mb c   ̰  w^g la{ %M@ 7}rsj   ݰ,i Ұ w  ְ{9} L O[ \          ]D E ©    {    ϩ  9p    9 ֩ ةF{  D{ KTx { { "T   Yb  ȩ T   Y @$Ropp΀ E =o !  6 3 Yv٩ 7 Ωr 詚 @+Rplus_opp_r {G R 6 #A  J< 9 "  k% c' G 4 Z Y _1  & n21 @.Rmult_eq_reg_lA   f;  < z>| m h @)Rmult_0_r+Ȁ@0Rminus_eq_contrawŀ   0 V   Y GZ1 h@ *2  𩚠@*Rlt_irreflnQ rC omkɷ n J BA!tu$Ȑ!s @-total_order_T=ҖX@%sumor$|@@'sumbool7̂K@ة ΰb^@#Rgt=<BAAAA@@@@@D)!V ^wXP7  z5 $BAAAA@@@@@D>.Yq [sdV |V H@.Rplus_le_reg_l -<ѐ**    ͩu ڐA8  ֩  ٩ e@(MVT_cor1"zEʠ&_ZZTYL@٠5nZTj+^Vh ܩ   ^ՐBBB@@@@D@RJ|KzIO}O̠  DV2Qک ˩ a6eh  YFlf@,Rmult_le_posN85  w & "  uJ K k mZ6)'   W Y    *' ΩX ĩZ ҩH   @    [ H k\ C0     y s m e ; nҩ 5 rз s%&B  O@)Rplus_0_rH€ cL ĩ  婚 @+Rplus_opp_l73· -ҩ - <>8tA;44 Bqɩڰ˩ aoW6 &DD,@,Rle_lt_trans*GӀKcK|{Cw@*increasingZ}8Kj@*decreasing;E km WbķũǩiP+̷ͩ ϩ^y  %Է^  ة  @     R n@,Rtotal_order%wB  0 ÷H@&or_ind" j iנ ܩ@ ӷ um#@1Rmult_lt_0_compat= ީ@0Rinv_0_lt_compatD 4 (C  ? 88  E >Л@'posreal̠@%delta /@ : @ *Rbasic_fun6@$Rabs; wƩ@#pos=D.ʩ n n7"# w p 1,35+3  f` $ ~ =G< A>4  @ 'Rmult_integral_contrapositive_currified  lNL Q4{= UU ~@ _ WM [PX ] ]  &C @(cond_pos 1y@1Rinv_neq_0_compat1j  F µs AV ? , C C? 86> C; B ztg  éH H  L   u# U    - `  ĩ dd ǩ0̩ l ϩ  s sLs`uCwG y J |   Ʃ KN 6 \  < U8C~@*Rabs_right |Tu@&Rle_ge @ H  Ϡ R8 T^Cک堩 C + $  䠩ڐ  T < 5   '_TmpHyp  2h, P J      Щ Cy= a [$  w$ %0%* t; n*  Щ05  y5+ E>   =3 .  H Isᠩ~*l렩A y yT=vQ Dp  "ְk    +'@0Ropp_minus_distr.3*1@9Ropp_mult_distr_l_reverse/MvC ؠ+Ciؠ ?  ⠩5 M(ĩ͐ ꠩=:~ A 6ҩېթ} Pz{w  l@4Ropp_ge_le_contravar>ŀ&Ʃ(fcjb ͵[ӷ@˩l @1Rplus_le_compat_l?z ~I C  8̩ *L!h"@ˠC0Iɩ Q  K©ؠ fmTѩk 4h=[Ha i   cI@q 'kͩ nS$>' 16˩^8ͩL0C<<@&Ropp_0 GU` ޠ:GH K  u |~ 8 l yY ְ q ǠH Р"Ԡé =ݠʐ̐0 Ʃ栩8ϩ AƩ٩"ܩN,*ө(V=+ -*t@/Ropp_involutive"2]Lz@/Ropp_plus_distr:OiTPSC<&")*&.{&0{ KCI +659sR |@4Rplus_le_lt_0_compat&_mi'Ep*ҠJ)0  ˰ t8C!頩ېcB۩vK%L@mZAs{uA6zgҠ(U`it 9t@ ,RG ~O5>R \aͩŰcϩwo*C3gCdi fnsrw'j@)Rcase_abs7̠k*g$ @#Rge=- @01⠩5TW@ u@AEea" ސLP$ #Hlt,G  <4\ ѩz|YR@LODB0?<8("0A>:*$Pʩ@*double_var?C[(.?0,&.m'@H5LTPTp\'VD F  EG֩DF@D1T@,0|xhb\VN$ W`}y}~lpt nw@q@IC} T1RАxO']@c1Bv(@Ơ ƠbΠn ȩ~)/<*ڠ-?"]E@,Rlt_le_trans9頩<ސ> .P@)Rlt_transC@"mff䐩\g@4Ropp_lt_gt_contravarY s~C@ ͩʐx@1Rplus_lt_compat_r8׀#Ƿ#Hge9\Ӡ2 +ڷG@ {,۩ũ<%WE2BC@xA:Ǡ~~hJC@.derive_pt_eq_1K]@0derivable_derive 0 xA?@A@̩꠩ FGҩߩթh-b/! %!$CYW@%@'opp_fct*'萑fd fBj@> n"?<$m@iV*yQ0,{sI l{}92ð+%@吷A /D@#AQ/0  QzVl "x0@-derive_pt_opp$ ҩék@0derivable_pt_oppQݩՐ{|w 2 @-derivable_opp9?ݩ    !"Iq MU.##'#a+Dϩ /2©  hک7é8;?k>N?y䩷jGKH|˩c""#,WdW Cq ԩ @3nonneg_derivative_1oK^e5> nC@@=>@ɩ砩砩GH@өC@@ 1@9increasing_decreasing_opp!8o `^  `7cd ۩@.Rplus_lt_reg_l5=Ӏu թpJqHB~  5y ?NJMhe E $Z $]DHwtа  #Űi # 2 ީqv \))AЩ հAv3 2o ]ڷ^C `'t ۠L#AZ^')ȩc0/Nxus6umge}e<@>#*jAjCv I#y`yC@1strict_increasing/ z/rj@ jn nC@\@1strict_decreasing/tǀ  Z @-@ ~ ~du!h"tyo'{mgZNH-<Z/71_x2 4S,C*5 &9!@3positive_derivativeuۀmzC@@_ GH &@ %strictincreasing_strictdecreasing_opprUS@(constantV[ ,7.#epsa?9@f@7@5?5ᠩ堩א EO6RAZ}|MUK`GV^T"LdLoVsqgqd}sȠ{m|sl㚠@'Rabs_R00٠ ,G0C ΐE C꠩ oCIMXXy :hXCWݶ@@n\ `k Ml@ /q@  t>ѩ pA l ~b  ˩ϰީ   CW~y r`  t $ z { | C0.@׶@x64 ɷ6t8 :k~B CG %x̩O) (Q+R V2)Ϸ \84"-J@@3nonpos_derivative_1DÀ6ΩH@5increasing_decreasing(v͹ >Aϐeucvzx ,*@!t@W\J1@j01 @o5&6 l@Ag ж@@ʩ=D@@@LC K!K5*S=   zɠ  ܩmР5a NVnW3 .  J#ķũɩ>* ѩ:  *#%ӷRuЩةM  éI  E   ͷéˠ[   "s SܠѠdӠ߷!נf-۠7ǩݠYЩ==?_ ?C mvxЩIvxkȩĠOO`MF3O$k% ͩ˰,Ͱ. թl0ǩNC4{5  S hV  D    [}^  EF  xM'N|Q yTV|zt8u^q   (ql <sdȷe @@?9iͷjbC+o >:87;>>20/-br`swu )'%%xy-*b@@ Z_4@m3rY5[@t: ; @FlyUʶ@@ CJ@@@RI Cж@)@v~ W"@@W}Y@et @=@cj5@/@@ri  C!G@Kȶ@sqԶ{ζF϶@#@{&}?@,-u@k}@;derive_increasing_interv_ax$I;DJ}Hs= [gk{gFwS?5zUx4!kUS @9pL  ^  cS f    ]! ʠ    ~  o3۠ g é ^ ܠ>&?#C r Щ@M5N2R%; q[Ơ u)C\ T@Cc Ѡ3ɩܠ ЩS٠˩>sᠩ\G x@ !G*bWRYTomC5^ ķ<Ű9Xj"@1Rmult_le_compat_lڀө ~OxǠ25TQOQCA Ҡ.#נ F~Tu_  j k N gr4tg;l F RKIISUNW  Cڶ@ʠߩ9Kdx`XiTƷ[[@d.ݷJթtl&h ͩ7 S }\= : } RZ {9, N<R )T CˠYY   Ϡ 86)7'7%8#565$=@4mة@/derivable_minus#X;T_ߩ%*(^, .f9%;=Щo)Y+ v렩1a3  X)h&Eq+[ca5202$"Ѱ!Bkɰ_ n'{ ,)41Ѱ5]Fv@QMB@WްK=@#IAF cR|c2.X0!'1~O,ȩ6˩sB>/@B}LH ?J ;  ccV7©{yxsC\jA:@47,*0'$  0)&" 8=۩$"i߷L&(wcөvԩ zrk@eh][ -0XUQA;5/'0ZWSC=71)in2VXE&@6 o>d$NL<L:M63QT" 0X  A ÷  ݠ2 0b1 7   ޠ?̩lΩn&=rWxv@˷yͩ^t-}@a+-ePKQ&Щ^_V!nc fa_4Щ=?zvtC`onn@ l!#*٠uJSyW[\VЩ_ vcD@)Rle_trans""<Ŷ@!dhЩqbsd ϩ0fz8 AA7۩- @r$1mɠ(&Xa^g" @A?qz 4wy;.Nᐷͷ@ l_]!R\YLl0r _ #2@! @@y3'B@@@ ݩ40 @qYw_"$&R%&u4g A+J[-m0`O+r wvx栩\yK꠩`_:]Oc''LҰ Yu 7^oolް*~(b {#Cm#svJ;^̩ Ω-ҩ$5#Heql`mq۩AE D$Fr=yCP,TP1}u9&Ʒ#Hgt748Q*?2c`ekeJgmC@-constant_D_eq$(ѷ"g1"g2  ѩ!@<Šyf*W۩0@Ѡr6 ,ж9@ڠmn{?l:B*CD@GeжO@U]'&ZB[ \@/_A}1eMfg@bjt=Ip{ŷsewxǰ[JI\ЩH ҰjQ "x1 5  `BWdF[^C=@>@  ٰ$l $  y [q~vdC*U@,(*{'"y~, ozqd©eWƩ*y[ȩ}fuȶ@ ˷Q=!8#:Ӷ@Yr ط^zЩ,ީ O3NWЩWĩK~yq ?8@25*(0%" 49rxx٩e v^^J ruĩ43ǩO 9ϩS H @6derivable_pt_lim_minus9 NNЩvc 'UZ   D  2F_  שЩ "x <i ) n  X  FZs  .#   Jo%)@3null_derivative_loc \*48 #  "J V©Ű9 )* \˰Ͱȩ bנũƷ g iY <CA q sr D E AC y wa x_ y i y g z@ F@.antiderivative ۀ ! 9 N Q@ F < U QE    z  x  @'Rle_dec3   @  @  In@$Rmin;  x Q zv@$Rmax; U_Q     I (GH  j!  m  $alebȐ!o -ܐ/@ @  ܶ@  > ^   9 aS K I    Π*  e` W `_` ܠ Y ̩  ΩT Ϡ"abJ+3! !  I! ؐ- x ! Z BW!搩;(  F 3! ՠN  נ M!3 !!!4r!6V )  ^! o!D!E!G  i  z!O)!P!R !V0!W!Y!( Ǡ!*!]7G ˠ<9> 9ULGXG!(!3<:4@&Rmin_l| 멚:@&Rmax_l?> C#anb!z!!{@!d!}@!b\  !!!k!!hİ!S  W Y!t!:,!d!!X!@!!@!' =!!!!!$derv!!@!:Kf!C!!9!mʷ@!f!d!!e7 W! T!!!!!&s@ ]!!!! !!!2! f!ȷ!!ɩ! !ͩ!D!!?!4!!!ٷ!ѷ@! !!N!Ơ!] !!!!̠ (! !\  !"hc$intc!ޠ!n*!!"!䠩 @" !sҐ !gՐ !é9"!|W"! Q" d!!!à!J!!Š!!PL"!!4l"&"  f"*!U j".  "!ؠ!c!!ڠ!!x"6Щ" ""N }"A!r!R  "E!!! !"*s["#!3" "P!5"a")"! "V"!  "$")")C,%N'@)Rabs_mult)S".-@)Rmin_left"fQ1"*""94@*Rmax_rightXB$blta"&!@*Rnot_le_gt. k"P ")" U"$""@"" "@"k"@"i!'""q""n"p"w"@"u";5P"-!"W"#"f"e!6""""} ٰ""" "  "r"l\@!F"""" """"""""&I"!!T"""""""""S@"!"ĩ"9!"4"="."a""!!m"Ϸ""Щ""!"ߩ""*"ܷ""ݩ"ݩ"à!!b"G"-""ˠ"͠""""""""f!:""ؠ #""f"o (""kܩʐ,!A#"頩""g""""<q# ؐW#!O#"""F"J""H##d#!\#  "  q f#$'4@)Rabs_Ropp&#9Щ#'#&#C!r#6""G !v#:""k" "ũ#OhP#"p#!#E"r#V## ".!#K# "0  ###CJYYa#mqg.g@*Rmin_right'>`#"#*&@)Rmax_left q<Sͨ,e ߶