"`-򄕦- v+Integration%Reals#Coq@4)NewtonInt%Reals#Coq@-RiemannInt_SF%Reals#Coq@)Notations$Init#Coq@%Logic$Init#Coq@*Logic_Type$Init#Coq@)Datatypes$Init#Coq@&Specif$Init#Coq@%Peano$Init#Coq@"Wf$Init#Coq@'Tactics$Init#Coq@%Tauto$Init#Coq@'Prelude$Init#Coq@*RiemannInt%Reals#Coq@)Notations$Init#Coq@0&v!D]hwnv %Logic$Init#Coq@0\͉!Ig)Datatypes$Init#Coq@0.i bYN Z*Logic_Type$Init#Coq@0 1jc6&Specif$Init#Coq@0;RWMi\N'Decimal$Init#Coq@0C涳N*ua#Nat$Init#Coq@0eʤģPSR蠠%Peano$Init#Coq@0 jha|ؠ"Wf$Init#Coq@0q+W,J+'Tactics$Init#Coq@0/9m+ a%Tauto$Init#Coq@0̂"&/r'Prelude$Init#Coq@0JqTttֱ'BinNums'Numbers#Coq@0dmk(5Ju<*EqdepFacts%Logic#Coq@0FI$ͼՋ`)Eqdep_dec%Logic#Coq@0u wWIϰ߼&Basics'Program#Coq@0!bs߯? :VU$Init'Classes#Coq@0](p{yOh.'Tactics'Program#Coq@03u%+Equivalence'Classes#Coq@07;ꮹ-SetoidTactics'Classes#Coq@0S_`nOU$&Setoid'Setoids#Coq@0D9AsWE!>$Bool#Coq@0j 2cZ`FW*Equalities*Structures#Coq@0όe얟)H.Ƞ2Relation_Operators)Relations#Coq@0%s鯰s4Operators_Properties)Relations#Coq@0U3y#h&)Relations#Coq@0r砠*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ&NZSqrt&NatInt'Numbers#Coq@0` .%m%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|&NZBits&NatInt'Numbers#Coq@0MlIpKt'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$&NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ)NMulOrder(Abstract'Natural'Numbers#Coq@04> Aat/ j $NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ'NMaxMin(Abstract'Natural'Numbers#Coq@0]v|Qg̟ʠ'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NLog(Abstract'Natural'Numbers#Coq@0KI'BinList+setoid_ring#Coq@0Au,Ring_polynom+setoid_ring#Coq@0gaKw9`UW+ListTactics%Lists#Coq@0,Jcy{+InitialRing+setoid_ring#Coq@0k/T=cN(Ring_tac+setoid_ring#Coq@0x2]%762f)Ring_base+setoid_ring#Coq@0fbU(2cNe$Ring+setoid_ring#Coq@0Msᬠ)ArithRing+setoid_ring#Coq@0ṔCgt?}%Arith#Coq@0I|кX*o4#Max%Arith#Coq@04=;3$>aU堠#Min%Arith#Coq@0Ce-Fѕ(PreOmega%omega#Coq@0\|چBb~w4%Omega%omega#Coq@0t.J'6\ϨrK(Zpow_def&ZArith#Coq@0f蓜DX;V*ZArithRing+setoid_ring#Coq@0{#'[{nm!/,Zcomplements&ZArith#Coq@0ʾq %RIneq%Reals#Coq@0JUڻIu)$w&DiscrR%Reals#Coq@0z41pV.%Rbase%Reals#Coq@0Jܡ\ c6{%R_Ifp%Reals#Coq@0c4+ZŠ,Fourier_util'fourier#Coq@0ϳ> 4`*r0'Fourier'fourier#Coq@0wV9TN*Rbasic_fun%Reals#Coq@0hܒiclE>%R_sqr%Reals#Coq@0X%MԹ%M+SplitAbsolu%Reals#Coq@0M)&qYlݹ5*SplitRmult%Reals#Coq@0sD\rt/$Even%Arith#Coq@0YO%q}d߫%$Div2%Arith#Coq@0n*Áht!,)ArithProp%Reals#Coq@0B+L?>*e˃a j*Rfunctions%Reals#Coq@0d¹d‹@'Compare%Arith#Coq@0OM v먣5L:'Rseries%Reals#Coq@08]$u+?'SeqProp%Reals#Coq@0Lt2|9D }SSԻ)Rcomplete%Reals#Coq@0{ڸ4q 'PartSum%Reals#Coq@0j&2"(>S)AltSeries%Reals#Coq@0d US^(Binomial%Reals#Coq@0]JrHr#E&Rsigma%Reals#Coq@0䟄WCJҦ<%Rprod%Reals#Coq@0gȀn_}!W+Cauchy_prod%Reals#Coq@0K*ߞ4q(Alembert%Reals#Coq@0I͗Huz&)SeqSeries%Reals#Coq@0Npc$5|T ٠*Rtrigo_fun%Reals#Coq@0T+ɧK/۠*Rtrigo_def%Reals#Coq@0$xR`VcxIaƶ"x*Rtrigo_alt%Reals#Coq@0zsC^,%+OmegaTactic%omega#Coq@0@{4-EܭEUBW'Cos_rel%Reals#Coq@0%}ֺ|3J-tWK(Cos_plus%Reals#Coq@0IWEGն&Rlimit%Reals#Coq@0*r0ē([HAE&Rderiv%Reals#Coq@0?KQ;^WU;H*Ranalysis1%Reals#Coq@0 n;qm.L%)Rsqrt_def%Reals#Coq@0eA~%&Y?%RList%Reals#Coq@05g2NaA:7PropExtensionalityFacts%Logic#Coq@0 +_.ɓoFؘ'Hurkens%Logic#Coq@05[gNk2up.ClassicalFacts%Logic#Coq@0$RzqIF\(4.Classical_Prop%Logic#Coq@0Yh޿JdI1ƽ3Classical_Pred_Type%Logic#Coq@0m[6BZ5)Rtopology%Reals#Coq@0;Wo G#MVT%Reals#Coq@0cq통 gZ+PSeries_reg%Reals#Coq@0䝠|%n͠'Rtrigo1%Reals#Coq@0x'ml^*Ranalysis2%Reals#Coq@02N헛W*Ranalysis3%Reals#Coq@0Gz魸NJ,:7(Exp_prop%Reals#Coq@0D:L-*Rtrigo_reg%Reals#Coq@0QWk'&R_sqrt%Reals#Coq@0 @#DŽe+Rtrigo_calc%Reals#Coq@0"Jl<8iD4%Rgeom%Reals#Coq@09b'mdlsy(Sqrt_reg%Reals#Coq@0?N~K0,o^}*Ranalysis4%Reals#Coq@0kp+PA&Rpower%Reals#Coq@0x9^XQ-Ranalysis_reg%Reals#Coq@0$૔ B_QNAMO095Ի<&O jq0|ڭ~3vo+OrderedRing)micromega#Coq@0A Zl)+>(Ndiv_def&NArith#Coq@0AU|ڣTu)Nsqrt_def&NArith#Coq@0W58pG*~W-G(Ngcd_def&NArith#Coq@0OLMP"^e#Fin'Vectors#Coq@0r'gް؅/׸)VectorDef'Vectors#Coq@0]i>3 ٠*VectorSpec'Vectors#Coq@0GyK5%l6L(VectorEq'Vectors#Coq@0#'`ԶlxjT&Vector'Vectors#Coq@0_ċ|"Ʌhz'Bvector$Bool#Coq@0,rO3^~'Ndigits&NArith#Coq@032W}-RingMicromega)micromega#Coq@0{L䬃ɟh$Zdiv&ZArith#Coq@0gho4S*Zlogarithm&ZArith#Coq@0|P#ar&ZArith#Coq@0ߴ#ҤР+QArith_base&QArith#Coq@0#-\D7* Q,"f\&Qfield&QArith#Coq@0td;X񦐳#@`%Qring&QArith#Coq@0F%pw;}=O5}*Znumtheory&ZArith#Coq@0g2/#1ϳ\;R*Qreduction&QArith#Coq@0nDk%}Y&QArith#Coq@0H#oޞ6 78&Qreals&QArith#Coq@0 |-=ʈ%*RMicromega)micromega#Coq@0>e{&(_>Υ*QMicromega)micromega#Coq@0K׈qq~_E&VarMap)micromega#Coq@0Zգ#Lra)micromega#Coq@0 ?@D{@[]#*Ranalysis5%Reals#Coq@0ۤ$+]ݽN9%Ratan%Reals#Coq@0(쟭CK&Machin%Reals#Coq@0Z,cq麠&Rtrigo%Reals#Coq@03Lcrǡ2))Ranalysis%Reals#Coq@0q ' = 0n\%XVkfx̯BirA<Р+Integration%Reals#Coq@A@@@ ӳ2@ ӳ2[)Datatypes$Init#Coq@@A@ Գq@ Գq\ @A@AB@cA,Ring_polynom+setoid_ring#Coq@A.0TQ+Ring_theory+setoid_ring#Coq@@BA.U>[J @AB-A'EnvRing)micromega#Coq@A.0TQ+Ring_theory+setoid_ring#Coq@@-#BA.U>[J @AC@&Vector'Vectors#Coq@/VectorNotations)VectorDef'Vectors#Coq@ @A@"O@(PeanoNat%Arith#Coq@#Nat@&of_int"O#Nat$Init#Coq@@ 6@A@A\@&BinInt&ZArith#Coq@!Z@'quotrem\)BinIntDef&ZArith#Coq@!Z@ /@A@\@@+pred_double\@/S@@A@As2@3@&shiftls2*@vY@A@BCs8@8@&shiftrs8/@vY@A@ѓ@?@&squareѓ6@y@A@A@D@&to_intϑ;@@A@z@6@&doublez-@/!@A@A@j@(nth_map2*VectorSpec'Vectors#Coq@@ 8"@A@@w@*fold_left2q@6U@A@"W@}@*fold_right"Ww@6N@A@ABCDE/@h@)log2_iter/_@wd@A@NH/@[@&moduloNH/R@1,@A@A\d@`@&of_int\dW@1?A @A@bz@f@&of_natbz]@1?G!@A@#@l@&shiftl#c@1dV@A@#@r@&shiftr#i@1d\@A@ABCD/x@&BinPos&PArith#Coq@#Pos@)pred_mask/x)BinPosDef&PArith#Coq@#Pos@ )X@A@6@@&square6@19@A@AV+L@@&to_intV+L@2@A@V1b@@&to_natV1b@2 @A@V5=@@&to_posV5=@2@A@ABCl@@)sqrt_iterl@!$:@A@@@6@(sub_mask@-@)@A@ADEF c@@'testbit c@!ć@A@7 B@D@'of_uint7 B;@*`]?@A@AG@I@)mask_rectG@@+ED@A@F˱@O@)add_carryF˱F@+p@A@K5@@*Forall_indK5@9M@A@X@@/shiftrepeat_nthX@;\@A@ABCD^Ҷ@@'to_uint^Ҷ@#m@A@gL7@@'sqrtremgL7@40@A@Aq@@'testbitq@5)@A@BE@@-replace_order@:k@A@2s@!@,shiftin_last2s@=Nn@A@AxYe@&@!txYe @;z@A@Bx^@+@"Inx^ʑ%@;z!@A@xa @2@"hdxa ,@;zd@A@Axa@7@"tlxa1@;zP@A@BCx#@<@#eqbx#(VectorEq'Vectors#Coq@@ /@A@x[@J@#etax[@> .@A@AxI@O@#mapxII@;{&@A@BDx@T@#nthxN@;{)j@A@y@^@#revyX@;{-@A@AG8@c@$castG8'@/Y@A@B8[@h@$last8[b@;d@A@R@n@$map2Rh@;@A@ @t@$take n@;:c@A@ABCݎO@J@+succ_doubleݎOA@6r@A@HI@@%case0HIz@@A@ @x@$even o@>4@A@ACD @}@$ggcd Бt@>U@A@ @@$iter }@>:@A@A 3"@@$land 3"@>m@A@ F)@@$log2 F)@>t@A@AB S@@$lxor S@>@A@ @@$pred @?U@A@AC @@$size ܑ@?'@A@ !@@$sqrt !@?@A@A ! @@$succ ! @?\@A@ !7@@$zero !7@@P@A@A *@@%ldiff *@@A@ O@u@,take_prf_irr O @*@A@A g_@@+pred_double g_@25\@A@ q@@(take_app q@lm@A@ABCD m@@÷ m@2j@A@ @@+Exists2_ind Ñ@ @A@ k@@'nth_map k(@wF@A@ABS@@&of_intS㫑@4}5@A@S@@&of_natS@4};@A@ACEFGJ\R@@(mask_ind\R@4@A@\^@@(mask_rec\^@4@A@Aũ@@*Exists_indũ@@A@Ǜ@@'of_listǛ@@A@A!,@@&pred_N!,@4s)@A@BC@@&shiftl@5X@A@@#@&shiftr@5X@A@A&@(@&square&ّ@5,x@A@BD"@-@&to_int"$@5L@A@"@5@&to_nat",@5L @A@AnTq@:@+testbit_natnTq1@6n@A@B@3@(succ_posB*@@A@I@@'abs_natI@?n@A@AB.@>@'of_uint.5@MS@A@3~@R@'sqrtrem3~I@7]%{@A@ACD,@@'bitwise,@/v@A@>4'@_@'testbit>4'V@8g$@A@d;@ @*rev_appendd;@fh:@A@AB{U@j@,sqrtrem_step{Ua@8R@A@u^@c@(div_euclu^Z@ @A@Au@@&Existsu@@A@UA@"@&ForallUA@@A@#N@(@&In_ind#N"@%@A@ABCDfz@@'to_uintfz~@9w@A@l@@'comparel@3R@A@AA@:@&appendA4@ m@A@L9@@@&caseS'L9:@ x@A@ABW@E@'replaceWݑ?@ 4@A@K@K@&eq_decK@?w@A@K~@Q@&eqb_eqK~@?w@A@MĚ@W@)nth_orderMĚQ@ O@A@ABCDEFGs8@B@+of_uint_accs89@5+@A@@g@3to_list_of_list_opp@<@A@A}@@,pos_div_eucl}@&`@A@3x@C@'compare3x:@]=@A@`<@x@&t_rect`<r@ b@A@c`@~@&take_Oc`@3@A@ABCD@@&double@'޺_@A@(@@'shiftin(@*I@A@Aq@@+of_succ_natq@$@A@w@@&modulowɑ@)1@A@ABEK@@&of_intK@)j,I@A@K@@&of_natK@)j2_@A@H@@'Exists2H@uF@A@ABI@@&shiftlI@*O@A@O@@&shiftrO@*O@A@AC,@@&square,@*ow@A@Z@ @&to_intZ@*81@A@ADF`@@&to_nat`@*9G@A@@@'Forall2@?j@A@Ae@@+testbit_nateđ@+@A@'@@+Forall2_ind'@ ~@A@"@@'to_list"ӑ@O*@A@ABC+{@.@'sqrtrem+{ё%@,J@A@@@0shiftrepeat_last@@A@A5z@:@'testbit5z1@-T|@A@BD @?@'to_uint ͑6@.@A@ @G@+succ_double >@.^4@A@A!lK@@)const_nth!lK@@A@!K@@+fold_right2!K@x @A@A#@f@'compare#ݑ]@ )Q@A@$@@8fold_left_right_assoc_eq$@3@A@ABC%t2@q@(size_nat%t2h@ @A@%9@x@+of_uint_acc%9o@ ΋@A@A%V@}@+double_mask%Vt@ S@A@%%@@'div2_up%%z@ "@A@%R@/@)take_idem%R@-W@A@ABCDEG'ş@@'Ndouble'ş@ @A@(K|@=@*eqb_nat_eq(K|@w@A@A(b0@@*shiftl_nat(b0@9-@A@B(nՖ@@*shiftr_nat(nՖ@'@A@(@@0succ_double_mask(@@A@A*W$@@,compare_cont*W$@!@A@*@Z@(cons_inj*@!@A@*A@`@(shiftout*AZ@@A@AB.0@@.sub_mask_carry.0@΂@A@CDE.@P@!t.G@ ;@A@.먩@W@#add.먩N@ `@A@A.U@\@#div.US@ @A@.B@c@#eqb.BZ@ @A@A. @h@#gcd. _@ @A@.=@n@#leb.=e@ @A@ABCFHIK. @s@#lor. j@ @A@.Z@@#ltb.Zw@ @A@A.p@@#max.p|@ '@A@B.@@#min.@ @A@.@@#mul.@ @A@AC.g@@#odd.g@ @A@.&@@#one.&@ @A@A.뾴@@#pow.뾴@ k@A@.L@@#sub.L@ @A@.@@#two.@ @A@ABCD.,a@@$div2.,a@ @A@.Xz@@$even.Xz@ ?1@A@A.@@$iter.ؑ@ @A@B. @@$land. @ @A@. @@$log2. @ @A@ACE.@@$lxor.@ R@A@.y@@$pred.y@ `<@A@A.Ʉ@@$sqrt.Ʉ@ ;@A@.@@$succ.@ @A@.t @@$zero.t @ Z@A@AB/@@.to_little_uint/@ @A@CDF/@@%ldiff/@ H@A@00@c@'compare00Z@?H{@A@A1P%@@!t1P%@  @A@B1P@@#abs1P@ @A@1P&@@#add1P&@ @A@A1P@@#div1Pґ@ y@A@BC1P@@#eqb1P@ f@A@1P@ @#gcd1P@ 0@A@A1P@@#geb1P@ T@A@B1P@@#gtb1Pʑ @ q@A@1Pĺ@@#leb1Pĺ@ a@A@A1Pň@!@#lor1Pň@ /@A@BCD1P@&@#ltb1Pב@ ~@A@1P@/@#max1P&@ @A@A1P{@4@#min1P{+@ "@A@B1P]@9@#mul1P]0@ @A@1P@@@#odd1P7@ @A@A1Pɣ@E@#one1Pɣ<@ J@A@BC1P@J@#opp1PԑA@ {@A@1P1@R@#pow1P1I@ @A@A1P;@W@#rem1P;N@ @A@B1P@\@#sgn1PˑS@ r@A@1P@c@#sub1PɑZ@ p@A@A1Pe@h@#two1Pe_@  @A@BCDE1[8@m@$div21[8ޑd@ @A@1[d@v@$even1[dm@ I@A@A1[6@{@$ggcd1[6r@ i@A@B1[U@@$iter1[Uw@ @A@1\@@$land1\~@ /@A@A1\@@$log21\@ 6@A@BC1\$@@$lxor1\$@ @A@1\Y@@$of_N1\YÑ@ >j@A@A1\@@$pred1\@ j@A@B1\@@$quot1\֑@ }@A@1\@@$sqrt1\@ @A@A1\w@@$succ1\w@ @A@BC1\k@@$to_N1\k@ @A@1]@@$zero1]@ eD@A@A2:@@%abs_N2:@ @A@21@@%ldiff21@ ߵ@A@2=*@@%quot22=*@ @A@ABC2kF@N@(size_nat2kFE@{@A@3s&@ @*eq_nth_iff3s&@*@A@A3@@(tail_add3@^q@A@BDEFGH3@@(tail_mul3@^@A@5Z@i@*shiftl_nat5Z`@y/@A@5f}@o@*shiftr_nat5f}f@4@A@AB5a@@'iter_op5ay@ @A@C6w~@@'of_uint6w~ @^5@A@6W @5@)fold_left6W /@*Za@A@A8j@ @'of_uint8j@'"h@A@8V@@@.nth_order_last8V@/71@A@AB9E@@(div_eucl9Eđ @(*k@A@:El@L@/rev_append_tail:ElF@.G@A@A:x@@,Nsucc_double:x@ ʭ@A@BCD@#R@A@A=9R@L@.to_little_uint=9RˑC@#b@A@=Y@@+shiftin_nth=Yӑ@3뗦@A@A=@X@%ggcdn=͑O@$*@A@=U@^@%ldiff=UU@$'R@A@ABCD>@@&divmod>@C@A@>@@&double>@NĴ@A@>@@+shiftrepeat>@2Y@A@AB?2@@,pos_div_eucl?2@-u@A@?;@@&modulo?;@"i@A@ACEFGIL@(Alembert%Reals#Coq@0I͗Huz&)AltSeries%Reals#Coq@0d US^%Arith#Coq@0I|кX*o4)ArithProp%Reals#Coq@0B+L?>*e˃a j)ArithRing+setoid_ring#Coq@0ṔCgt?}*Arith_base%Arith#Coq@0Ĕ}CS&Basics'Program#Coq@0!bs߯? :VU'Between%Arith#Coq@06v*0ur`C0&BinInt&ZArith#Coq@0BpHޞun^)BinIntDef&ZArith#Coq@0ådR4Tuy'BinList+setoid_ring#Coq@0Au&BinNat&NArith#Coq@0K11ڤs+Π)BinNatDef&NArith#Coq@03@1O,[{ 'BinNums'Numbers#Coq@0dmk(5Ju<&BinPos&PArith#Coq@0vyػ0= u)BinPosDef&PArith#Coq@0}H d.%,b(Binomial%Reals#Coq@0]JrHr#E$Bool#Coq@0j 2cZ`FW'Bvector$Bool#Coq@0,rO3^~*CMorphisms'Classes#Coq@0qیZBeϠ0CRelationClasses'Classes#Coq@0TL;0RUfw1+Cauchy_prod%Reals#Coq@0K*ߞ4q.ClassicalFacts%Logic#Coq@0$RzqIF\(43Classical_Pred_Type%Logic#Coq@0m[6BZ5.Classical_Prop%Logic#Coq@0Yh޿JdI1ƽ'Compare%Arith#Coq@0OM v먣5L:+Compare_dec%Arith#Coq@0jXF 8(Cos_plus%Reals#Coq@0IWEGն'Cos_rel%Reals#Coq@0%}ֺ|3J-tWKgfe@0.i bYN Z)Decidable%Logic#Coq@0ND걸풬/Oߠ'Decimal$Init#Coq@0C涳N*ua&DiscrR%Reals#Coq@0z41pV.$Div2%Arith#Coq@0n*Áht!,#Env)micromega#Coq@0=rΜL杠tsr@0s<#"#8r;%EqNat%Arith#Coq@0AIgՋXRV *EqdepFacts%Logic#Coq@0FI$ͼՋ`)Eqdep_dec%Logic#Coq@0u wWIϰ߼*Equalities*Structures#Coq@0όe얟)H.Ƞ+Equivalence'Classes#Coq@07;ꮹ$Even%Arith#Coq@0YO%q}d߫%(Exp_prop%Reals#Coq@0D:L-)Factorial%Arith#Coq@0@oehJd%Field+setoid_ring#Coq@0J _ȫ)Field_tac+setoid_ring#Coq@0d vDZl^۹H,Field_theory+setoid_ring#Coq@0B~uYٮ٠#Fin'Vectors#Coq@0r'gް؅/׸'Fourier'fourier#Coq@0wV9TN,Fourier_util'fourier#Coq@0ϳ> 4`*r0-GenericMinMax*Structures#Coq@0måj$"Gt%Arith#Coq@0䙛#c:D 'Hurkens%Logic#Coq@05[gNk2up$Init'Classes#Coq@0](p{yOh.+InitialRing+setoid_ring#Coq@0k/T=cN"Le%Arith#Coq@0d}Omq+$List%Lists#Coq@0>I+ListTactics%Lists#Coq@0,Jcy{%Logic$Init#Coq@0\͉!Ig*Logic_Type$Init#Coq@0 1jc6#Lra)micromega#Coq@0 ?@D{@[]#"Lt%Arith#Coq@0KZ-eJkP܏#MVT%Reals#Coq@0cq통 gZ&Machin%Reals#Coq@0Z,cq麠#Max%Arith#Coq@04=;3$>aU堠#Min%Arith#Coq@0Ce-Fѕ%Minus%Arith#Coq@0LFtR")Morphisms'Classes#Coq@0Imӽ%\$PD.Morphisms_Prop'Classes#Coq@0% :B'.>u%$Mult%Arith#Coq@0햖Qyb0$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ&NArith#Coq@0S22b%&*NArithRing+setoid_ring#Coq@0_ .Ys!Р'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI%NBits(Abstract'Natural'Numbers#Coq@0qteo_hɅ $NDiv(Abstract'Natural'Numbers#Coq@0bz$?[p(5$NGcd(Abstract'Natural'Numbers#Coq@08E-S ;j_Ҡ$NLcm(Abstract'Natural'Numbers#Coq@0 ~xZ9L{:$NLog(Abstract'Natural'Numbers#Coq@0K Aat/ j &NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf+NProperties(Abstract'Natural'Numbers#Coq@0unt"kwpYC%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ%NZAdd&NatInt'Numbers#Coq@00h`ZK4*NZAddOrder&NatInt'Numbers#Coq@0e~1>r砠(NZAxioms&NatInt'Numbers#Coq@0] ρ5r&NZBase&NatInt'Numbers#Coq@0^&8yUL&NZBits&NatInt'Numbers#Coq@0MlIpKt%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZMul&NatInt'Numbers#Coq@0ctR~6[Ƞ*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R'NZOrder&NatInt'Numbers#Coq@0 q;Ve7R W,(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x&NZSqrt&NatInt'Numbers#Coq@0` .%m#Nat$Init#Coq@0eʤģPSR蠠'Ndigits&NArith#Coq@0&Orders*Structures#Coq@0$Znl0\͗+OrdersFacts*Structures#Coq@05Mܿ獐ζΖLB)OrdersTac*Structures#Coq@05'4Ԗ+9%+PSeries_reg%Reals#Coq@0䝠|%n͠'PartSum%Reals#Coq@0j&2"(>S%Peano$Init#Coq@0 jha|ؠ(PeanoNat%Arith#Coq@0O~2$k[#lZ)Peano_dec%Arith#Coq@0Kݢ*k$Plus%Arith#Coq@04tmG$Pnat&PArith#Coq@0,?pr.gZ(PreOmega%omega#Coq@0\|چBb~w4'Prelude$Init#Coq@0JqTttֱ7PropExtensionalityFacts%Logic#Coq@0 +_.ɓoFؘ&QArith#Coq@0H#oޞ6 78+QArith_base&QArith#Coq@0#-\D7* Q,"f\*QMicromega)micromega#Coq@0K׈qq~_E&Qfield&QArith#Coq@0td;X񦐳#@`&Qreals&QArith#Coq@0 |-=ʈ%*Qreduction&QArith#Coq@0nDk%}Y%Qring&QArith#Coq@0F%pw;}=O5}%Quote%quote#Coq@0J@ŹVz-,3%%RIneq%Reals#Coq@0JUڻIu)$w%RList%Reals#Coq@05g2NaA:*RMicromega)micromega#Coq@0>e{&(_>Υ%R_Ifp%Reals#Coq@0c4+ZŠ%R_sqr%Reals#Coq@0X%MԹ%M&R_sqrt%Reals#Coq@0 @#DŽe)Ranalysis%Reals#Coq@0q ' =렠*Ranalysis1%Reals#Coq@0 n;qm.L%*Ranalysis2%Reals#Coq@02N헛W*Ranalysis3%Reals#Coq@0Gz魸NJ,:7*Ranalysis4%Reals#Coq@0kp+PA*Ranalysis5%Reals#Coq@0ۤ$+]ݽN9-Ranalysis_reg%Reals#Coq@0$૔ B_QNAM%Ratan%Reals#Coq@0(쟭CK'Raxioms%Reals#Coq@0S]jnj][L%Rbase%Reals#Coq@0Jܡ\ c6{*Rbasic_fun%Reals#Coq@0hܒiclE>)Rcomplete%Reals#Coq@0{ڸ4q ,Rdefinitions%Reals#Coq@0(2{Ze$ќ8&Rderiv%Reals#Coq@0?KQ;^WU;H)RealField+setoid_ring#Coq@0 >ʾq $Refl)micromega#Coq@0h <0P/RelationClasses'Classes#Coq@0Gz rA6ՠ4Relation_Definitions)Relations#Coq@0]4Ѐd{n^2Relation_Operators)Relations#Coq@0%s鯰s)Relations#Coq@0-SetoidTactics'Classes#Coq@0S_`nOU$&Specif$Init#Coq@0;RWMi\N+SplitAbsolu%Reals#Coq@0M)&qYlݹ5*SplitRmult%Reals#Coq@0sD\rt/(Sqrt_reg%Reals#Coq@0?N~K0,o^}'Sumbool$Bool#Coq@0sB ,$11.]m'Tactics$Init#Coq@0/9m+ a'Tactics'Program#Coq@0332W}&VarMap)micromega#Coq@0Zգ&Vector'Vectors#Coq@0_ċ|"Ʌhz)VectorDef'Vectors#Coq@0]i>3 ٠(VectorEq'Vectors#Coq@0#'`ԶlxjT*VectorSpec'Vectors#Coq@0GyK5%l6L"Wf$Init#Coq@0q+W,J+$Wf_Z&ZArith#Coq@0`&i@@vHCc(w#g?@ׂ9ENZsO9B%ބ@jVH<&u@T@A0uM.-$!