"`%D%(H(Exp_prop%Reals#Coq@()Notations$Init#Coq@%Logic$Init#Coq@*Logic_Type$Init#Coq@)Datatypes$Init#Coq@&Specif$Init#Coq@%Peano$Init#Coq@"Wf$Init#Coq@'Tactics$Init#Coq@%Tauto$Init#Coq@'Prelude$Init#Coq@)Notations$Init#Coq@0&v!D]hwnv %Logic$Init#Coq@0\͉!Ig)Datatypes$Init#Coq@0.i bYN Z*Logic_Type$Init#Coq@0 1jc6&Specif$Init#Coq@0;RWMi\N'Decimal$Init#Coq@0C涳N*ua#Nat$Init#Coq@0eʤģPSR蠠%Peano$Init#Coq@0 jha|ؠ"Wf$Init#Coq@0q+W,J+'Tactics$Init#Coq@0/9m+ a%Tauto$Init#Coq@0̂"&/rk0JqTttֱ'BinNums'Numbers#Coq@0dmk(5Ju<*EqdepFacts%Logic#Coq@0FI$ͼՋ`)Eqdep_dec%Logic#Coq@0u wWIϰ߼&Basics'Program#Coq@0!bs߯? :VU$Init'Classes#Coq@0](p{yOh.'Tactics'Program#Coq@03u%+Equivalence'Classes#Coq@07;ꮹ-SetoidTactics'Classes#Coq@0S_`nOU$&Setoid'Setoids#Coq@0D9AsWE!>$Bool#Coq@0j 2cZ`FW*Equalities*Structures#Coq@0όe얟)H.Ƞ2Relation_Operators)Relations#Coq@0%s鯰s4Operators_Properties)Relations#Coq@0U3y#h&)Relations#Coq@0r砠*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ&NZSqrt&NatInt'Numbers#Coq@0` .%m%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|&NZBits&NatInt'Numbers#Coq@0MlIpKt'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$&NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ)NMulOrder(Abstract'Natural'Numbers#Coq@04> Aat/ j $NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ'NMaxMin(Abstract'Natural'Numbers#Coq@0]v|Qg̟ʠ'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NLog(Abstract'Natural'Numbers#Coq@0KI'BinList+setoid_ring#Coq@0Au,Ring_polynom+setoid_ring#Coq@0gaKw9`UW+ListTactics%Lists#Coq@0,Jcy{+InitialRing+setoid_ring#Coq@0k/T=cN(Ring_tac+setoid_ring#Coq@0x2]%762f)Ring_base+setoid_ring#Coq@0fbU(2cNe$Ring+setoid_ring#Coq@0Msᬠ)ArithRing+setoid_ring#Coq@0ṔCgt?}%Arith#Coq@0I|кX*o4#Max%Arith#Coq@04=;3$>aU堠#Min%Arith#Coq@0Ce-Fѕ(PreOmega%omega#Coq@0\|چBb~w4%Omega%omega#Coq@0t.J'6\ϨrK(Zpow_def&ZArith#Coq@0f蓜DX;V*ZArithRing+setoid_ring#Coq@0{#'[{nm!/,Zcomplements&ZArith#Coq@0ʾq %RIneq%Reals#Coq@0JUڻIu)$w&DiscrR%Reals#Coq@0z41pV.%Rbase%Reals#Coq@0Jܡ\ c6{%R_Ifp%Reals#Coq@0c4+ZŠ,Fourier_util'fourier#Coq@0ϳ> 4`*r0'Fourier'fourier#Coq@0wV9TN*Rbasic_fun%Reals#Coq@0hܒiclE>%R_sqr%Reals#Coq@0X%MԹ%M+SplitAbsolu%Reals#Coq@0M)&qYlݹ5*SplitRmult%Reals#Coq@0sD\rt/$Even%Arith#Coq@0YO%q}d߫%$Div2%Arith#Coq@0n*Áht!,)ArithProp%Reals#Coq@0B+L?>*e˃a j*Rfunctions%Reals#Coq@0d¹d‹@'Compare%Arith#Coq@0OM v먣5L:'Rseries%Reals#Coq@08]$u+?'SeqProp%Reals#Coq@0Lt2|9D }SSԻ)Rcomplete%Reals#Coq@0{ڸ4q 'PartSum%Reals#Coq@0j&2"(>S)AltSeries%Reals#Coq@0d US^(Binomial%Reals#Coq@0]JrHr#E&Rsigma%Reals#Coq@0䟄WCJҦ<%Rprod%Reals#Coq@0gȀn_}!W+Cauchy_prod%Reals#Coq@0K*ߞ4q(Alembert%Reals#Coq@0I͗Huz&)SeqSeries%Reals#Coq@0Npc$5|T ٠*Rtrigo_fun%Reals#Coq@0T+ɧK/۠*Rtrigo_def%Reals#Coq@0$xR`VcxIaƶ"x*Rtrigo_alt%Reals#Coq@0zsC^,%+OmegaTactic%omega#Coq@0@{4-EܭEUBW'Cos_rel%Reals#Coq@0%}ֺ|3J-tWK(Cos_plus%Reals#Coq@0IWEGն&Rlimit%Reals#Coq@0*r0ē([HAE&Rderiv%Reals#Coq@0?KQ;^WU;H*Ranalysis1%Reals#Coq@0 n;qm.L%)Rsqrt_def%Reals#Coq@0eA~%&Y?%RList%Reals#Coq@05g2NaA:7PropExtensionalityFacts%Logic#Coq@0 +_.ɓoFؘ'Hurkens%Logic#Coq@05[gNk2up.ClassicalFacts%Logic#Coq@0$RzqIF\(4.Classical_Prop%Logic#Coq@0Yh޿JdI1ƽ3Classical_Pred_Type%Logic#Coq@0m[6BZ5)Rtopology%Reals#Coq@0;Wo G#MVT%Reals#Coq@0cq통 gZ+PSeries_reg%Reals#Coq@0䝠|%n͠'Rtrigo1%Reals#Coq@0x'ml^"vkMrFk/JHCݠР(Exp_prop%Reals#Coq@A"E1 @!x,Rdefinitions@@!RӀ!N)Datatypes$Init@#nat@*Rfunctions@(sum_f_R0Yc!k&@%Rmult׀-@$Rinv8'Raxioms4@#INRr)Factorial%Arith?@$fact>【A(Rpow_defK@#pow#׀C  @X,Rdefinitions%Reals#Coq@@!RӀY)Datatypes$Init#Coq@@#nat@ +k() +7%'7! 7 7 7 7%'ࠒbt@d6T^Z|Vp@@@@@AA@@>@,Field_theory+setoid_ring#Coq@@&FEeval>@@A@A"s @,Ring_polynom+setoid_ring#Coq@@&PEeval"s @@A@BA@A@&E1_cvg @@@]'Rseries%Reals#Coq@@%Un_cvɀ@%vV8A*Rtrigo_def%Reals#Coq@@#exp3A@@@@@N'Reste_E @巐!yܩѠߩԠ!l̠ΠɐĐB#Nat@#add `BE頩䐩ߐא@#sub ɩҠD @$pred `<ߩ @,ԀH؀'΀ހ +k()7  +7%'7!7 +7%'7!7! 7!7 7 7 7! 7!97! 7!97 7 7 7!7%'$%Hd젒CP$<̠$-td#|p?h@@@@@̠(exp_form @@uAe !n@%Peano$Init#Coq@@"lt Uxcrq@@q@AA%Logic$Init#Coq@@"eq @,Rdefinitions%Reals#Coq@@AӀ @&Rminus&H@׀쀠d@@wj+@%Rplus+1u@@@@@=+maj_Reste_E @Էշɩ@#IZR/r'BinNums'Numbers@!Z7@B@(positive*@B  C@$Rdiv̀*Rbasic_fun@$Rmax; U61 @$Rabs; wƩ@#mul (*Aᩚ%RIneq+@$Rsqr=MW(PeanoNat:@$div2.,a>@ @Gc󀶐B通 +k()7 7 7 7 7 77! 7 7 7!77 7!7!7!77 7%'<|AA@dĠAeqРPdABB@ܠIHGpfl[Tu|A@@@@@@+div2_double @@B;)Datatypes$Init#Coq@@#nat@{%Arith#Coq@#Nat@$div2.,a#Nat$Init#Coq@@$div2 ˠ$Init#Coq@@#mul [@BBeAAA@@@@@\-div2_S_double @@C蛠mTGB8/B4BAAA@@@@@+div2_not_R0 @@3D@QBAA0@@@@@+Reste_E_maj @@WEGc󀶐B逶@ဠAA@#Rle=\%Reals#Coq@@$Rabs; wSg@Y#m@@@@@렠/maj_Reste_cv_R0 @@F,0ӀBA@@/rA@@@@@*Reste_E_cv @@GUɚYBA)#@@@@@4(exp_plus @@H͚u隠yI,Rdefinitions%Reals#Coq@@!RӀ$BAB%B*A@@@@@n+exp_pos_pos @@I@r@#Rlt=}wA =<5@@<7@A\!@@@@@'exp_pos @@HJ80vA@@@@@6derivable_pt_lim_exp_0 @@cK*Ranalysis1%Reals#Coq@@0derivable_pt_lim*Rtrigo_def^@#exp3Z@@@@@ܠ4derivable_pt_lim_exp @@Lu&AA@@@@@@@@ ӳ2@ ӳ2[)Datatypes$Init#Coq@@A@ Գq@ Գq\ @A@AB@cA@A.0TQ+Ring_theory+setoid_ring#Coq@@ABA.U>[J @B@@"O@(PeanoNat%Arith#Coq@#Nat@&of_int"O#Nat$Init#Coq@@ 6@A@A\@&BinInt&ZArith#Coq@!Z@'quotrem\)BinIntDef&ZArith#Coq@!Z@ /@A@\@@+pred_double\@/S@@A@As2@3@&shiftls2*@vY@A@BCs8@8@&shiftrs8/@vY@A@ѓ@>@&squareѓ5@y@A@@D@&to_intϑ;@@A@z@5@&doublez,@/!@A@ABCD/@O@)log2_iter/F@wd@A@NH/@B@&moduloNH/9@1,@A@A\d@G@&of_int\d>@1?A @A@bz@M@&of_natbzD@1?G!@A@#@S@&shiftl#J@1dV@A@#@Y@&shiftr#P@1d\@A@ABCD/x@&BinPos&PArith#Coq@#Pos@)pred_mask/x)BinPosDef&PArith#Coq@#Pos@ )X@A@6@x@&square6o@19@A@AV+L@}@&to_intV+Lt@2@A@V1b@@&to_natV1bz@2 @A@V5=@@&to_posV5=@2@A@ABCl@@)sqrt_iterl@!$:@A@@@6@(sub_mask@-@)@A@ADEF c@@'testbit c@!ć@A@7 B@D@'of_uint7 B;@*`]?@A@AG@I@)mask_rectG@@+ED@A@F˱@O@)add_carryF˱F@+p@A@AB^Ҷ@@'to_uint^Ҷ@#m@A@gL7@@'sqrtremgL7@40@A@Aq@@'testbitq@5)@A@ݎO@@+succ_doubleݎO@6r@A@A p@l@0double_pred_mask pc@0-+m@A@BCD T@&BinNat&NArith#Coq@!N@!t T)BinNatDef&NArith#Coq@!N@ 2@A@ @@#add @3 @A@A l@@#div l@3@A@ Y@%@#eqb Y@3@A@AB #@*@#gcd #!@3n@A@ T@0@#leb T'@3@A@ACEG "@5@#lor ",@3m@A@ q@?@#ltb q6@3@A@A @D@#max ;@3@A@ @J@#min A@3`@A@AB @O@#mul F@3B@A@ ~@U@#odd ~L@3@A@AC =@Z@#one =Q@3@A@ @b@#pow ˑY@3@A@A c@g@#sub c^@3@A@ @m@#two d@3J@A@AB hx@r@$div2 hxi@>@A@ @x@$even o@>4@A@ACD @}@$ggcd Бt@>U@A@ @@$iter }@>:@A@A 3"@@$land 3"@>m@A@ F)@@$log2 F)@>t@A@AB S@@$lxor S@>@A@ @@$pred @?U@A@AC @@$size ܑ@?'@A@ !@@$sqrt !@?@A@A ! @@$succ ! @?\@A@ !7@@$zero !7@@P@A@ *@@%ldiff *@@A@AB g_@1@+pred_double g_(@25\@A@CD m@6@÷ m-@2j@A@S@=@&of_intS㫑4@4}5@A@AS@B@&of_natS9@4};@A@BEFGH\R@G@(mask_ind\R>@4@A@\^@Q@(mask_rec\^H@4@A@A!,@V@&pred_N!,M@4s)@A@B@[@&shiftlR@5X@A@@b@&shiftrY@5X@A@A&@g@&square&ّ^@5,x@A@BC"@l@&to_int"c@5L@A@"@t@&to_nat"k@5L @A@AnTq@y@+testbit_natnTqp@6n@A@B@@(succ_posB@@A@I@@'abs_natI@?n@A@AB.@@'of_uint.@MS@A@3~@@'sqrtrem3~@7]%{@A@ACD,@ @'bitwise,@/v@A@>4'@@'testbit>4'@8g$@A@A{U@@,sqrtrem_step{U@8R@A@u^@9@(div_euclu^0@ @A@Afz@@'to_uintfz@9w@A@Bl@'@'comparel@3R@A@CDEFs8@,@+of_uint_accs8#@5+@A@}@R@,pos_div_eucl}I@&`@A@3x@(@'compare3x@]=@A@A@^@&doubleU@'޺_@A@BCq@@+of_succ_natq@$@A@w@i@&modulowɑ`@)1@A@ADK@n@&of_intKe@)j,I@A@K@v@&of_natKm@)j2_@A@AI@{@&shiftlIr@*O@A@O@@&shiftrOx@*O@A@AB,@@&square,}@*ow@A@Z@@&to_intZ@*81@A@ACE`@@&to_nat`@*9G@A@e@@+testbit_nateđ@+@A@A+{@@'sqrtrem+{ё@,J@A@5z@@'testbit5z@-T|@A@A @@'to_uint ͑@.@A@ @@+succ_double @.^4@A@A#@'@'compare#ݑ@ )Q@A@BCD%t2@,@(size_nat%t2#@ @A@%9@3@+of_uint_acc%9*@ ΋@A@A%V@8@+double_mask%V/@ S@A@%%@>@'div2_up%%5@ "@A@ABEF'ş@C@'Ndouble'ş:@ @A@(b0@K@*shiftl_nat(b0B@9-@A@A(nՖ@P@*shiftr_nat(nՖG@'@A@(@V@0succ_double_mask(M@@A@*W$@\@,compare_cont*W$S@!@A@.0@b@.sub_mask_carry.0Y@΂@A@ABCD.@@!t.@ ;@A@.먩@@#add.먩@ `@A@A.U@@#div.U@ @A@.B@@#eqb.B@ @A@A. @@#gcd. @ @A@.=@@#leb.=@ @A@ABCEGHI. @@#lor. @ @A@.Z@ @#ltb.Z@ @A@A.p@@#max.p@ '@A@B.@@#min. @ @A@.@@#mul.@ @A@AC.g@@#odd.g@ @A@.&@&@#one.&@ @A@A.뾴@+@#pow.뾴"@ k@A@.L@1@#sub.L(@ @A@.@7@#two..@ @A@ABCD.,a@<@$div2.,a3@ @A@.Xz@D@$even.Xz;@ ?1@A@A.@I@$iter.ؑ@@ @A@B. @N@$land. E@ @A@. @T@$log2. K@ @A@ACE.@Y@$lxor.P@ R@A@.y@`@$pred.yW@ `<@A@A.Ʉ@e@$sqrt.Ʉ\@ ;@A@.@l@$succ.c@ @A@.t @r@$zero.t i@ Z@A@AB/@w@.to_little_uint/n@ @A@CDF/@|@%ldiff/s@ H@A@00@@'compare00@?H{@A@A1P%@w@!t1P%n@  @A@B1P@|@#abs1Ps@ @A@1P&@@#add1P&z@ @A@A1P@@#div1Pґ@ y@A@BC1P@@#eqb1P@ f@A@1P@@#gcd1P@ 0@A@A1P@@#geb1P@ T@A@B1P@@#gtb1Pʑ@ q@A@1Pĺ@@#leb1Pĺ@ a@A@A1Pň@@#lor1Pň@ /@A@BCD1P@@#ltb1Pב@ ~@A@1P@@#max1P@ @A@A1P{@@#min1P{@ "@A@B1P]@@#mul1P]@ @A@1P@@#odd1P@ @A@A1Pɣ@@#one1Pɣ@ J@A@BC1P@@#opp1Pԑ@ {@A@1P1@@#pow1P1@ @A@A1P;@@#rem1P;@ @A@B1P@@#sgn1Pˑ@ r@A@1P@@#sub1Pɑ@ p@A@A1Pe@@#two1Pe@  @A@BCDE1[8@@$div21[8ޑ@ @A@1[d@@$even1[d@ I@A@A1[6@@$ggcd1[6@ i@A@B1[U@ @$iter1[U@ @A@1\@@$land1\@ /@A@A1\@@$log21\ @ 6@A@BC1\$@@$lxor1\$@ @A@1\Y@$@$of_N1\YÑ@ >j@A@A1\@)@$pred1\ @ j@A@B1\@.@$quot1\֑%@ }@A@1\@5@$sqrt1\,@ @A@A1\w@:@$succ1\w1@ @A@BC1\k@?@$to_N1\k6@ @A@1]@G@$zero1]>@ eD@A@A2:@L@%abs_N2:C@ @A@21@R@%ldiff21I@ ߵ@A@2=*@X@%quot22=*O@ @A@ABC2kF@@(size_nat2kF@{@A@3@x@(tail_add3o@^q@A@ADEFGH3@}@(tail_mul3t@^@A@5Z@@*shiftl_nat5Z@y/@A@5f}@@*shiftr_nat5f}@4@A@AB5a@@'iter_op5a@ @A@C6w~@@'of_uint6w~@^5@A@8j@@'of_uint8j@'"h@A@9E@@(div_eucl9Eđ@(*k@A@AB:x@6@,Nsucc_double:x-@ ʭ@A@CD@[@&divmod>R@C@A@>@b@&double>Y@NĴ@A@?2@S@,pos_div_eucl?2J@-u@A@AB?;@m@&modulo?;d@"i@A@CEFGIJ@(Alembert%Reals#Coq@0I͗Huz&)AltSeries%Reals#Coq@0d US^%Arith#Coq@0I|кX*o4)ArithProp%Reals#Coq@0B+L?>*e˃a j)ArithRing+setoid_ring#Coq@0ṔCgt?}*Arith_base%Arith#Coq@0Ĕ}CS&Basics'Program#Coq@0!bs߯? :VU'Between%Arith#Coq@06v*0ur`C0&BinInt&ZArith#Coq@0BpHޞun^)BinIntDef&ZArith#Coq@0ådR4Tuy'BinList+setoid_ring#Coq@0Au&BinNat&NArith#Coq@0K11ڤs+Π)BinNatDef&NArith#Coq@03@1O,[{ 'BinNums'Numbers#Coq@0dmk(5Ju<&BinPos&PArith#Coq@0vyػ0= u)BinPosDef&PArith#Coq@0}H d.%,b(Binomial%Reals#Coq@0]JrHr#E$Bool#Coq@0j 2cZ`FW*CMorphisms'Classes#Coq@0qیZBeϠ0CRelationClasses'Classes#Coq@0TL;0RUfw1+Cauchy_prod%Reals#Coq@0K*ߞ4q.ClassicalFacts%Logic#Coq@0$RzqIF\(43Classical_Pred_Type%Logic#Coq@0m[6BZ5.Classical_Prop%Logic#Coq@0Yh޿JdI1ƽ'Compare%Arith#Coq@0OM v먣5L:+Compare_dec%Arith#Coq@0jXF 8(Cos_plus%Reals#Coq@0IWEGն'Cos_rel%Reals#Coq@0%}ֺ|3J-tWK@0.i bYN Z)Decidable%Logic#Coq@0ND걸풬/Oߠ'Decimal$Init#Coq@0C涳N*ua&DiscrR%Reals#Coq@0z41pV.$Div2%Arith#Coq@0n*Áht!,%EqNat%Arith#Coq@0AIgՋXRV *EqdepFacts%Logic#Coq@0FI$ͼՋ`)Eqdep_dec%Logic#Coq@0u wWIϰ߼*Equalities*Structures#Coq@0όe얟)H.Ƞ+Equivalence'Classes#Coq@07;ꮹ$Even%Arith#Coq@0YO%q}d߫%)Factorial%Arith#Coq@0@oehJd%Field+setoid_ring#Coq@0J _ȫ)Field_tac+setoid_ring#Coq@0d vDZl^۹H 0B~uYٮ٠'Fourier'fourier#Coq@0wV9TN,Fourier_util'fourier#Coq@0ϳ> 4`*r0-GenericMinMax*Structures#Coq@0måj$"Gt%Arith#Coq@0䙛#c:D 'Hurkens%Logic#Coq@05[gNk2up$Init'Classes#Coq@0](p{yOh.+InitialRing+setoid_ring#Coq@0k/T=cN"Le%Arith#Coq@0d}Omq+$List%Lists#Coq@0>I+ListTactics%Lists#Coq@0,Jcy{ i0\͉!Ig*Logic_Type$Init#Coq@0 1jc6"Lt%Arith#Coq@0KZ-eJkP܏#MVT%Reals#Coq@0cq통 gZ#Max%Arith#Coq@04=;3$>aU堠#Min%Arith#Coq@0Ce-Fѕ%Minus%Arith#Coq@0LFtR")Morphisms'Classes#Coq@0Imӽ%\$PD.Morphisms_Prop'Classes#Coq@0% :B'.>u%$Mult%Arith#Coq@0햖Qyb0$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI%NBits(Abstract'Natural'Numbers#Coq@0qteo_hɅ $NDiv(Abstract'Natural'Numbers#Coq@0bz$?[p(5$NGcd(Abstract'Natural'Numbers#Coq@08E-S ;j_Ҡ$NLcm(Abstract'Natural'Numbers#Coq@0 ~xZ9L{:$NLog(Abstract'Natural'Numbers#Coq@0K Aat/ j &NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf+NProperties(Abstract'Natural'Numbers#Coq@0unt"kwpYC%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ%NZAdd&NatInt'Numbers#Coq@00h`ZK4*NZAddOrder&NatInt'Numbers#Coq@0e~1>r砠(NZAxioms&NatInt'Numbers#Coq@0] ρ5r&NZBase&NatInt'Numbers#Coq@0^&8yUL&NZBits&NatInt'Numbers#Coq@0MlIpKt%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZMul&NatInt'Numbers#Coq@0ctR~6[Ƞ*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R'NZOrder&NatInt'Numbers#Coq@0 q;Ve7R W,(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x&NZSqrt&NatInt'Numbers#Coq@0` .%m#Nat$Init#Coq@0eʤģPSR蠠$Nnat&NArith#Coq@0$W;s #%M)Notations$Init#Coq@0&v!D]hwnv *NumPrelude'Numbers#Coq@05WUVŦ]xVXԠ%Omega%omega#Coq@0t.J'6\ϨrK+OmegaLemmas%omega#Coq@0TJ#Jes+OmegaTactic%omega#Coq@0@{4-EܭEUBW4Operators_Properties)Relations#Coq@0U3y#h&&Orders*Structures#Coq@0$Znl0\͗+OrdersFacts*Structures#Coq@05Mܿ獐ζΖLB)OrdersTac*Structures#Coq@05'4Ԗ+9%+PSeries_reg%Reals#Coq@0䝠|%n͠'PartSum%Reals#Coq@0j&2"(>S ΐ0 jha|ؠ(PeanoNat%Arith#Coq@0O~2$k[#lZ)Peano_dec%Arith#Coq@0Kݢ*k$Plus%Arith#Coq@04tmG$Pnat&PArith#Coq@0,?pr.gZ(PreOmega%omega#Coq@0\|چBb~w4'Prelude$Init#Coq@0JqTttֱ7PropExtensionalityFacts%Logic#Coq@0 +_.ɓoFؘ%Quote%quote#Coq@0J@ŹVz-,3% _%Reals#Coq@0JUڻIu)$w%RList%Reals#Coq@05g2NaA:%R_Ifp%Reals#Coq@0c4+ZŠ%R_sqr%Reals#Coq@0X%MԹ%M*Ranalysis1%Reals#Coq@0 n;qm.L%'Raxioms%Reals#Coq@0S]jnj][L%Rbase%Reals#Coq@0Jܡ\ c6{*Rbasic_fun%Reals#Coq@0hܒiclE>)Rcomplete%Reals#Coq@0{ڸ4q  B0(2{Ze$ќ8&Rderiv%Reals#Coq@0?KQ;^WU;H)RealField+setoid_ring#Coq@0 >ʾq /RelationClasses'Classes#Coq@0Gz rA6ՠ4Relation_Definitions)Relations#Coq@0]4Ѐd{n^2Relation_Operators)Relations#Coq@0%s鯰s)Relations#Coq@0-SetoidTactics'Classes#Coq@0S_`nOU$&Specif$Init#Coq@0;RWMi\N+SplitAbsolu%Reals#Coq@0M)&qYlݹ5*SplitRmult%Reals#Coq@0sD\rt/'Sumbool$Bool#Coq@0sB ,$11.]m'Tactics$Init#Coq@0/9m+ a'Tactics'Program#Coq@032 Q@@@@#_17@A@@@@@@@@#_182M접 BB@A#_19'`o@B'R_scope)nat_scope@t@02 Q@@A@#_20@;0AQ@A@@@@,@#_212M접 #_22'`o@A+@@"2 Q@@@@#_23O#N@#_242M접 CC@A#_25'`o@CLNM@ˠΠ@Ϡ2 Q@@A@#_26C@ q-@A@@@@{@#_272M접 #_28'`o@Dz|{@@򠐑@2 Q@@@@#_291@#_302M접 Ơ#_31'`o@C@*-"@2 Q@@A@#_32@i '@A@@@@@#_332M접 #_34'`o@A@F@ 2 Q@@A@#_35@2u@A@@@@@#_362M접 #_37'`o@A@j@2 Q@@A@#_38@ќ@A@@@@"@#_392M접 #_40'`o@B@@@2 Q@@A@#_41@>t@A@@@@J@#_422M접 #_43'`o@DIKJ@@ɠ̠@2 Q@@A@#_44D@@A@@@@|@#_452M접 #_46'`o@B{}@@2 Q@@A@#_47m@|@A@@@@@#_482M접 #_49'`o@B@!$@2 Q@@A@#_50@ r5@A@@@@@#_512M접 #_52'`o@B͠@JM@2 Q@@A@#_53@$@A@@@@@#_542M접 #_55'`o@B@@r@2 Q@@A@#_56@M@A@@@@@#_572M접 #_58'`o@A@@2 Q@@A@#_59 @= @A@@@@C@#_602M접 #_61'`o@@@@2 Q@@A@#_62*@(]2@A@@@@b@#_632M접 #_64'`o@Aa@@@@D:L-Ą@8 Re/;턕@'Pü)Ki@q2+RE2`)59(s4!x,Rdefinitions%Reals#Coq@@!RӀР&Specif$Init@#sig#* @BBB@@@@D!s&!l)*Rtrigo_def*@&exp_in8ՀBA'Rseries6@%Un_cvɀ(Exp_prop@@"E1%vV8;@)proj1_sigYP*Q(C  +@)exist_exp$Z#'"x0_!e#epsg@i@#Rgt=<;p@#IZR/r'BinNums'Numbersx@!Z7@A%Logicu@"ex @)Datatypes@#nat@!N !n@%Peano@"ge Uwst@#Rlt=*Rfunctions@&R_dist @(sum_f_R0Yc!i5@%Rmult׀@$Rinv8'Raxioms@#INRr)Factorial%Arith@$fact>(Rpow_def@#pow#׀HFECE@,infinite_sum(䀠;n94ʶ@~ulvjw@h^Yʠة° QOJ.J⩜ AG,+C蠩Ωذ#$D)Cҩ.C@#exp3ܐ;9!y<!H@"lt UxcA@(eq_ind_r!2#RS@%Rplus+1!kѩ!p֩y5#Natc@#sub H HIĠ#Ǡ[ B @#add ` נҐ͐Ő0}3@$pred `<:Ze!r.@"eq @@&Rminus&H@'Reste_E@wsm<栩{|ө|[@$Ropp΀b1ߩ/t640^3a,.) 22'PartSum@&sum_eqcǀxC>"طL"H0s@"le UxT@ĩa\Z\(Binomial!@!C87D;~,|.voqqPupkc @) FHN]y+!"i0ʷ"H1K^^L?YuŰwCàL:I=ɐIԠ֠ؠ̐ĐzאB8=4ݐ t",#hRn!t'xũ'-!~˩ f +3"Щ 'Q֩f4>-۩+2\T^@&eq_ind JyuBy@(positive*@CIGN7x9p;o˩'AXV]F֩H|Ȑ(hyp_list@$list]@A@$prodt@,Ring_polynom+setoid_ring"@%PExprk@Ȑ'fv_list&B:<> @1B%RIneqD@2RField_ring_lemma1!7𚠐(Ring_tac+@0ring_subst_niter!!"6G-;D2p 46uBy<>}ADH J"L @$Truey@AA@$boolZ'@A@߰ Ȑ#lmps@.mk_monpol_list(n%&BinInt&ZArith$@1P&)BinIntDef)@ ̀@#mul1P] @ @;1P@< p@#opp1P@ {%Zbool@(Zeq_bool0߀(@'quotrem\#@/ŀ@#Monf@@#Polj@@#Peqj*(@*norm_subst7:d0tO@:5/'0vQB<71)y`L@/Rinv_mult_distrE@.INR_fact_neq_0,8@)Rmult_1_r+1+@*Rinv_l_sym9`g~nl>;@+Rmult_assoc&lvKpxS v_z[F@*Rmult_comm8`g~g|^`~df©C|.lnp5@$Rdiv̀C={}#-L@(scal_sumWJ2h/@(binomialqɀfe#驚@)Rplus_0_rH€@+Rplus_opp_r {G@+Rplus_assoc Cp pACİv&T'GĠ#OPˠ*ĠdV+Cauchy_prod@-cauchy_finite6mр`_CݠՠZ)[Ii$]LzMm @'nat_indJ (PeanoNat>@$div2.,aB@ H@ 35|B8~/9%HrecN\@@7@ O͐Q)ArithRing@0natr_ring_lemma1 ,MEC &BinNat&NArithf@&of_natK)BinNatDefl@)j2_F468":<P @a(CDAHB/)@ "@3 .@x '@y3B *U4@#eqb Y.@3:@(div_euclu^4@  gkei_jZ0l)&"" V\0n+($$ 8CC  oũƐȐ̩Ω ԩ֩ ٩Gؠڠ&:C  ??ɰΐJC71԰ِ%,>8+'@@A@A@@@@D*M"n'  >fC.8-jj dbpзjhccnlg+@)False_induُup  @'nlt_0_r4Ao(2zA@B@B@@@@@@D5B@@"GHSS@"or @/T ֩3X&ک7\*g@'f_equal=ddega3[h6!Ej6In: Ȑ"H2ʩNs?uAiv.cUzF3B̠MM^OOQ#!m FgEék/641ɩ w{<>2~@'d_wLz-)jAK@+lt_le_trans ŵ @.lt_succ_diag_r#c!:!@68+ߠ$]@&or_ind"1ð50ʐ" [$Even@,even_odd_dec&{fw@'sumbool7̂K@@$even ͢@uAyBAAAA@@@@@D}~d_v#Heq #%r $Div2@)even_div2&η23@)lt_0_succ5%!@(odd_div2+߷v[C:DMC*~۷ܷFPȐ!M*Rbasic_fun@$Rmax; U  @$Rabs; wT@)Rle_trans"Щ>;IwLz>@$Rsqr=MW@8puq@+maj_Reste_EW)Щ2ilegFkfaYQH$#N(@C@(Rsum_abs$!O $^&98PS@'sum_Rle  ?ȷIG$5ϩڐS| [ҐG7Ġ#Ǡ[ 5Ϡ`{zBJ|=Fo <r נ٠y4+"n0Ms8X`렩ꐩ吩ݐ-*ؠ0Ґ퐩X Ω@#Rle="} x+>6F&4ĩ 8o)>A;Y9GI FA9(,6H<:4jv$Vdfh?KA4[O2MGl6hvx/WQ++~mDEw!h.fzQRI& _OM-*(_|*aR,c'.e%#"34<>@ BDF@İL0N.G0P0IͰfSàŠjǠYˠ͠ϠWFƠbԠ֠ՐАȐHې֐ΐ9ٷ㠩됩㐩30өޠؐ~˩ < "Щ0<֩  @1Rmult_le_compat_lڀ  <v5x@0Rinv_0_lt_compatD %Rprod@-INR_fact_lt_06cZ!79 &=4T 4ЩBDjEA H/_ ?MOPLZQN UݩW n N\^_[ $bdK۷{ )[ijkhvU @&pow_le!È#W@(Rabs_pos+F @~e Cu k8j(`(@1Rinv_le_contravar5r@cp@&le_INR逰xF@'fact_le+4/K"Le@&le_n_S8 S$Plus@)le_plus_lx&̀[M]Ml)k<+ym>-kde1 ~  O8 à  VȠP #  %E˩֠Oé ܠSd Ӡ oᠩ ^ ޠ |evk @(pow_incr(1ǀ{ 8@#andЖw@A Uک@&Rmax_l?>@&Rmax_r?DC B1=F F Jѩ y C }<  @'Rlt_0_14C*C' E @- ܩ/  9 092!   u[ ; q@&INR_eqpĀ &A Š Iq Jn l   Ncx $Ҡ V W@{ )y +٠ ]  ^  2ࠩ dM 6 8  蠩 l m @ r-[ D F z-c   O  2 S U   %q  [D  ^ `     3[Y964 k>6 m#8 o /-,$ = >FHJLNP^F @ҰZ̩0\ < U0^ > WdH@)minus_INR"ӳ  ?@(le_trans: F *    j=@&le_S_n8ދ  "Lt @&S_pred<=À hE@-plus_lt_reg_l%\ o ũ + ɷ  , y *  v  5 w  ۰ؠPI@ F;0 ʩ0 G # H  D   L  @ M   ǩ/@+le_lt_trans2  ?U 󩚠?@+lt_pred_n_n> u44  7Di  1  © l l d @'Rle_pow˟ @v}"Cz GgW20  R 5 6ddf@ [;I0]ZVQVLKE& ? 0_\XSXNMG( Ap Ű  ݩ   h h   o = N@0plus_le_compat_l'd t t @&eq_sym X  |  U  O       ׷    l@  ] nO n nĩ @'pow_add2 o^ԩ!tc۩ ] h @*Rabs_right |Ty@&Rle_ge @ H T  X   Zݩ a + e! $  g##!թ +@(RPow_absa"!@)Rabs_mult)$75 ':*    6 1 d /  ©<8  J * B  p Eg [ ̩ i v  #  D P  ~ B ? 7f g G _   X Z 9 /gc  Y T L  6   + s n  l%    6 t o1 l d  Cup   G +   } u  R  } O  B(/ qBn  | s| H5C  zp)ArithProp m@,even_odd_coriKO     ʰ  é ̰   @&ex_ind 5{  %  ذ  ѩ ڰ   ̠:"N0 "H3,   U   NΠ ܠ א Ґ - ܐ א ϐ :   䐩 ᐩ ِ"H4"Щ       퐩 X ۩     ː  - P  ߩ # 4   "   ũ "    ة   34* J * 8 3 . & ͩ'@E6Ű ^ D W  F"FD?N @O #IY6Ȑ"H5   Z U ^S] R J_ x & v ( f  a \ TL  2 p r m  9  ; W Z = U  >  @ ~ y ^Y b  H}  I  K h  N B @    Rl  Ti     " # ݵ @      ~ /  y0 1  t        * ҩ  x dD v qG r2 #@*Rinv_r_sym9lU䀠K z T: eTP< RV ^C Ű w C YX  | H ^S   N {  ݐ M E   Š a w e  ɐ Щ j  v n n z ݐ ڐ Ґ  $        / ̩ &     ĩ   B  ,( ' a   c  J A K    멚@%C_maj'ꀰ  ȩ  X L Y  U Ω E z ^ P٩K C   e  i ] j  h     0 %  < N s q o s  ! w  k x Š ӐN,  f~} |' ٩ | $" ٩  o % e , 0 8            E      &   D  + ;    F y '| | *Cs- G    J L     թ  |  [       e g   ש  9 "o E r °t  B +x  PR } ͰK 4  ݩ (      ذ# Ƞ  ʠ Ő<\ E5  . Ӡ c N    l    o m   =lq    p      <{ %$ @  ©@*minus_plusS+ . X 0 ̷$1            } u  r r S L@  I > <     0 ^  9 * $      H|y  ڐ{^r c а 7cp ԰ $ L  N  "+ S S  U U  C A* OT / h N.ʩ52* Y }t~=DBG D<  )MTQ {,, t&.. (0 { @-div2_S_double2u ߩ yCfR! ;yt}qi Ԡk *woo K MyZk X _ a-  c { d fn  M>'t7)v9 |? = P <E  G*? ŠN- ~ND/ɠFP wC ް \ rML  a w'G f | BM ߠT  ֠r䠩  ֩ᐩܐ$ d栩 . m%  ~QqSs۠s{;<շ4>@ j       1  C#HD    }C)NO -R/ʩ1VWX , ( ʷN[  ˠ ȩ  dѷXe  gd iT  _Ȑ"H6\ T   $zn{Ƞy   A 6 ܩ ڰ  5 3Oa Ω Ω 4 ߷~ؠP? yO ۩< *7  "/ z26 M $ +   [0 )& & Z * ., Q.!/!l1 = @CC}E{^`ce14s> R.{e hְƠȠʠ%ZE r rc    g e    Qjk      ' @    p   ~ 0         z [t  i C  x! #$& B +*F$  $ / 9 1 %2 !  ֩Po+٩) ߩYzl64%&(   A?0/012JH9 yt:  $   $C1 G ةCLP $R JSWW +YYCiR _ ꠩QI C&] ,|* \c %`X f ~ z  ls 5{v 8sk  # {. D))Q++ РS- @+div2_doublei '"( '=* ***D  WF .H Pa !_  c  Ue o & k Y oC  u s't     ) x ڐ t Πڠ9ݠ ?cLנ#٠' n' K 4))  M砩 㐩 ؐ    h  + cn 퐩3 K©  p# R TAݷ5B fz    $IEMAN©;  vP kSCfg9^ s, ` DTa ."1% T;9;O= v ]ЩL@z  @'sum_cte";   jXQi z o ~  é8Y M q Q_B%c z( Z- P %  )2 + K +%R_sqr5@+Rsqr_pos_lt8 .K , P2 RbT7Z-[ki G8)4 J;6T Q  ܷe 3 b Đ gϰ#/Cư%T 3 z ܐ! 0  ܩ   9  Š  # +M  ; d ] m!     )Decidable3@+dec_not_notHɀzn+Compare_dec@&dec_lt*c< 7H@#notШ@7 l(M R*OY@%Falsee@ K@1P-uQ@ bzK@ 1?G! +!P@ɔAƐR  VԩX Щ j$Znatl%Nat2Z@'inj_mulv) t@d+; h/r33 @1P,)641C 6HH|x 1< @R  bV!'A   b@>1P,ީ$n|%Zvar0.&Omega7@'and_ind14ۀЩ:|Q7ҠŠ=&Omega0&ܠϠ'OCP6D1%Zvar1U&Omega6'Щװ\<V&Omega1 R] oFf~`_Yk@K%k*C/ȩ+OmegaLemmas%omega@8fast_Zplus_assoc_reverse ':@d>ة@1fast_Zred_factor0#̷@oI"㷐&Omega5tN*)շ  㐐ZB@$<$1Ti ũU@;Sک;H}O@/fast_Zmult_comm ζ@LѩdL%]@6fast_Zopp_mult_distr_r0A< ܶ@Zߩr1Y@ayl'x<t@1fast_Zred_factor6)v0 $@s~?M&Omega4|HCA KOVMA@̩Dh@7fast_Zopp_eq_mult_neg_1=Ҁ[N@٩t@/fast_Zplus_comm11i&Omega3Ġ #ɠLj;=Р8@,fast_OMEGA16NX H۠Π^ɰNǐ)auxiliaryѰVϐ렩ޠ'Omega11ݰba@,fast_OMEGA15M$&쩚@1fast_Zred_factor5( @,fast_OMEGA12J8'Omega12c= z@,fast_OMEGA11Iz ('E.!-4'8+7쩷Y(@3D7C5pL?PC`Opf@*comparison;f@CCL d@'compare3x_@]= Cl@"gt1P,еC`C+auxiliary_1+auxiliary_2oРyR;$S>>x~'Omega13@GAA^KCrcCuQFLiCj쩚@&OMEGA6.$HЩ*g>@/Zmult_le_approx"8=@=s*)l@&OMEGA1.$CˠL5#ЩѠĠhЩՠ@&OMEGA8.$JߠҠ*I#)@(Zge_leftsL0@*Zegal_left;6tXskZ>@(Zlt_left,ڀ#Wdh@'intro_Zz,n@&inj_eq8F  @&inj_ge8F7l} Đ@&inj_lt8Fvxf䩷۩ϰ 1ҷ0@$succ1\w+@   퐩N@(inj_succ:w@6 :" p%Zvar2Ʒ'Omega21'Omega14 ~"%Zvar3Է'Omega20*'Omega15}@^vީ^8#!٩*>@m2E.&@u)M(.@}U}D6@ ]!&@@g'Omega18֩Q"@% ~{y].@1ĠKȠszqIui:@=РW@4fast_Zopp_plus_distrpe͠[pw]}N@̰QkN ϰY@װ\Wx'Omega16edw $ $n@qj(©   0  ~'Omega227>XQ<@@AA@AA@@@@@@D!z@Ѐ@ILOm#@&OMEGA5.$GЩ4E6:3C@#;H#dVQǩXE5éF@?ݩX:20%@¬_lt+v. [ej\fChoiJUo cpMr˩sT_f NRX}~UQ))Peano_dec6@*dec_eq_nat5뵀 cPoqީ HB86-^*5@ Z; #= X<NLz[ !eƐ C#"k~ ^/@@#Zne>o=12tr*5$"B?>" wH@E=HԠ 5U٠ sSR2\@-[@T_#QթK 'bgf  @-pred_of_minus9 Ā q@FېݐRyЩ@+sumbool_ind=S@ Ux7 @a4Wշ#鐩e J@'inj_sub~ Q@0,|K˩OƩC? Զ@:<_["0 UEGjf-n(&ީ&w%7kg +@zPթ}O  \\ 'Omega10Щ[ dΩ  k&Omega9Щ"ss&Omega2 ߩfdC/l)(6`1@ǠɠˠL PzRՠKҷtE@۠ݠ @7fast_Zmult_plus_distr_l+;SZcЩ٠^gmX@)! `@1^);h@9&&&xr@C .ȩz@Kx6Щ\.:u@U>ة@0fast_Zplus_assoc Da~9E @1fast_Zred_factor4'@g,Q+SmVVMZC@t9;=0,)6kCC@J t@(Zne_left0߀ VWcQҩ=9 jݐV@&inj_le8F?̷LƩ3d@*inj_minus2{/. #"@MOr @ e H4$L( P.'Omega19VݰǩWPNb+U Xթ\Gکܩ@,fast_OMEGA13Kij $C@C@/@&OMEGA2.$D͠{ 87@(Zgt_leftE:: @@@&inj_gt8FF|@)le_gt_dec 堀ͩ@'inj_neqjDӠ ;ٰJ ްO^Q?v[rpie a_E;.*˩ ulА1@6o M%Zvar4'Omega31uk-c Y%Zvar5'Omega30w'Omega23q~|tP~KomMqT gaYSMKG{MB=cQ'Omega25:8C4C4C#azT+ X`RN ;%Zvar6'Omega41C'Omega32 I%Zvar7'Omega40Q'Omega33ڰ|'Omega37M'Omega36QP?R;bl3Y ΠĩtʩːϩoǩԩtJ ;Đ77 C ?Vpé!| ۩°ǰ̐ S 鵵sN 6OPz @԰sSaJLCٰҠΩ3 Cް   ŷ: M ƷiR?!Щ z P$ ۩ S1.u vvvv =d$%ַ)蠩  ={;2?  ːK+@/. -59')1$430K+9;C6DC@;=[ ;IKSSROɷfFT\[XZԷqQd#a!c!  M% 방)}/+H=Q@S#iwiy "n,.̩ԩ}}ŷW۩ .S ٩" lΠ9$ɰ{0'ΰ   nO1 XepQCРַ5B;*صa_ pC ߠ۩ 6IC,K ȷҠtӐL\Mܠ :a! "  gb6η nXjvé#ǩw ϩ}k$ҩ ة@1Rplus_le_compat_l?( (8 A!      C)C+>!@;B0/@2Rmult_plus_distr_l0ylɀIAh7 2@(mult_INR> 7@ 5 Iߩe  q 9CF̩F_[ѩ@.Rmult_le_reg_l΀ЩUɩd_h   @)not_0_INR#rT;@<_n_S`R5< @+div2_not_R0ќs wq  . |C $z]>97b0]  lWWrsELL.{b|w_ iǠ^^W W@+Rsqr_incr_17yGҠq_ʐj ݠ|d79e@(lt_0_INR q D1F3r@1Rmult_lt_0_compat=8v{@&IZR_ltNS H؜B ǐN @)Rsqr_mult&kU @)Rmult_1_l9{$%>@ 'Rmult_integral_contrapositive_currified  =à>aEjB@CpOLC 2 C 4QEZ KũǩOK$*$"099C Pm+7>>sΩvw-H ~ 8 S@m TkC e C g6@ǩ-XfXi_3`eu@(mul_comm7 [{j`@*fact_simpl;tL8 @ <: H < ݩF   ʩ  ߩ?C[ ѩ&  CaHca(b%(Cos_plusd@+Majxy_cv_R0>ig:7 @%Majxy6/{\Bvj H I /@"R1Ȁ&DiscrR@)Rlt_R0_R2AlC#^a >)dG @5r6q %@ B!%2A+", -@|R2@#max.pR@ ' 0=7. ^ҩ'թ.~I۩ Tِ ;>=D^@,Rle_lt_trans*GӀ2 m Aprs& y% İ] }V  ID+aAO.4/6,UX7 e$ X $bGy'Y+i 5.`np!6t+v-[;m {#e4 I8G:`e[cVmTNqCQ@sVypYJ<)Rw.m{{GX}gh K8no= @'lt_le_S0?n37@&INR_ltqL:8vĠC?UwU:K4٩%J4 FH=ɠ|~'P"N1 @!i#b*  Ȑ"H7qt˩*ҩ#Max@(le_max_r2K کݩ   "H8 橷:o+PN>-RP N   %/+:+@>  A ?Ω& ֠ ˩  ɐU  Ω    ̷V ǩ_    0  ǩ    4    Πg   =  Щm?  C   ݠv =iso `p  S ?&Omega8 Щ  Lx~[   d   Ω Q OA ]]O @# 9  z e c ɩ.F(' l_0@3Ơ s  o Gug8@;Π j  i} Oo@@C֠>  <wH@ưKޠFѠ e  dՠ iT@ҰW R  ǩװ\   R]pFft`_ ^    #     r N(   cnܩWwlqp \ j d _ Z6   U a;= pu D # I S| "K "@) O L5( 4] ܩ%= cc H$  <A4 i @ / C G D:  F 5 >  Hq H 7  tPC  O 7 R ԷũBǩZM  Yĩwͩ`S  _NfYj] i  Zrevi* u *  Ƞ~qu 6  6" 2 $       ! ڠ D  $ FF          C   \C   ]C   ^ Щ V   -  ([  T됩   / 4   . .u _` | B  # ڰ ? ǰA װ r  C F , Đ  3 2 4 Ʃ Űc 5y &X| )8 Ͱ- ǰ`_ O| V  D O ;[  W V   U zf R ɐj Q  k'Omega27 T = 8 3 'Omega17 ; -#v Ƿw'Omega26 I ? ͷ f 7- ѷ Q| G շ} ?qi_[  U  O I A? 93 @,  #   X 򵩷  ܷ   wE @'? { e   N @/G w m t<X  @9Q  w ` ҷ ö@AƩY u  Ai ˶@IΩa ɩc e ` #ҩPթh j g  u$  p i n lp g r {    o  o t r  v'Omega28 h  j f: Q  OЩ~   {  C@kk W F       L 5 5 A 8 ju <   ww6 =b  +  ( .jpdbc)e` XFT  ⰷ!L@ !bt ؠ!U&@  n z Ƞ![ ̶@     !? @     !h9@  ~   }  3!>  *   }!F!E   ! @ ! z  s  !f@ ,   R!]  ũ Ii v !e!d ) x۩ İ z!K!s@ D ِh!uͩ !@_!{@ S 萩 {"ܷ/k ȷ !  uw!!ِ  !@ o!  t0$, ! 5y!!)%{ Щ 7 @m       uȷ ɩ H!{η Щ N !$  ׷ ة WܩJTP |Q!4  c Щ d+Wa] _`!C   r31  !!!!:"-@ Ϡ ˩| !ZC "< @ ޠ !c !R$Щ!V(.["H@ ꠩"!o("Q"@ qi !~g?!m"_0@ Ơ ! #Ƿ"i:@ Р"8!k!Q"qB@ ؠ ڠ"B"@2fast_Zplus_permuteЩ> ѩ@"W@ ("U"  H" ۩ !vp ˩ !" ߷  C@ 4ᐩ~ "%C@ ?"4C@ N  ";Ր ǰ " !.r" " ɩ    / Ű "7=η! !y"P"". *) "@ @ q"ZG  v2"_ Z  C ~ t  Glb ?|  YCtj  ۷|̰"ƶ@" vB" = 7!1!""ʩ p#Զ@"j"* yʩ {"\ ߩ"u"Ȑ"H9\"w""#!gr""!ozt"!ww" "f"$("&*$#&!' "ɩ"ͩ !" V6  C C  **""9# 4"##"`""  A"'#$#"  p&@@(Zle_left*x퀰 w#-#-#- n   k  c X#m"޶@  U  #Q@  [蠷#z K@  b#G b# Q@Ҷ@ # iʩȠ# Y@ * p - s fx d ^ z e j _5 W+ X n# l t m'Omega39?5÷'Omega29/% xɷ%Zvar8 {'Omega38MCѷ m; "#="'Omega34|v!-ql#HC q#KH o"$#M  jC hC g f .+## _ :#X*### EKZ # @ @ y #bO  _  %Zvar9 'Omega53  }   uk &Zvar10 'Omega52'Omega42y &Zvar11 Ϸ'Omega51%'Omega49pc#j#YU#P'Omega47Lҩ̰!ǩ#d'Omega46XVMK#c#\# $[    "uG#) >; 3!/l  ۩ ԩ Щ | w u̷'Omega54 z eʩ Dà 'Omega55 !uooOM#${"!k$$`"msn (y <"!( un!, &}&Zvar12!/'Omega68 + #'Omega56 &!:r&Zvar13!='Omega67wq'Omega57t!Hq&Zvar14!K'Omega66vi'Omega64l `\kPO #mQIu!GiAt#5"P-#x'! V! X$%  # ۩#$) ﷐'Omega59  CCC$n$n$n  "o! ߷tٷةk ֠ ]2! ַ&Zvar15!'Omega81 Z |P޷'Omega69 J@!䷐&Zvar16!'Omega80Щh^췐'Omega70ͷXN!&Zvar17!'Omega79ϩvl'Omega77ŷf(##'Omega74"V"X$so9'Omega73Ωpȩީ੷㩷$$$$E$>$ W  E   T~v OM:˰ 6 M! 6&Zvar18!跐'Omega94  >'Omega82 ߷!+D&Zvar19!'Omega930*L'Omega83-"*R&Zvar20"'Omega92/"Z'Omega90%Ʃ$O$$Q'Omega88J"$'Omega87%%% Yɩة 6~} -~ A"- '~&Zvar21"0(Omega107 , $'Omega95 '";s&Zvar22">(Omega106xr'Omega96u"Ir&Zvar23"L(Omega105wj(Omega103m^$%֩Ұ$ͷ(Omega101ɩOI#D?%᷐(Omega100%`%`%` 32  } $"$_"%  O$% #  {  $R%%%#   A#    $  @&dec_le*c< !!$0 S$%4|$%6~$74ߐ !!!ݷ$%$"%%  ۩$*"Ʃ"3*$%"<$""@ %%!4!0 %"Ŷ@% !>$m &"Ѷ@ %$Ʃ%ѐ"]$""e%$%%)!]&"@"u %D/-$%[<.$"`A%%R&2#@+"&YD$&d$%$ʠ6!|& & &B%@;%"{k$:  &,Ƞ@I3"ȩy ec%&&"%#2"$&.&-v$F!H!&&k#<@d"àQ"Š$#^o "ΠԩUg#SM(#TN$FG#[ #\,"=#c#dX4*d\"r&#l@L&&##"""ܐ"b#Ω%&#@`&:##ةs&#@j&D# ਗ਼@8fast_Zmult_assoc_reverse"'% &#@{&U#1#3#&$BF2##*J#;W#3%:#&#@&g#C#+X#I%&o&#@&s#Or%&wb~#F&f&{&#Ŷ@&#[*&& n&#Ͷ@&#c2#e&^%Щ#if#\&h|&Xdk&' #޶@&#t#g$ &6^%udY&'[z&)yh詵CBCCCD&C@Ӡ&#"#q#~#$AOC@ޠ&#-#|#jZ ˰#3'''G&!D"~' OM&?%$&''>ߩةC׷zE#ĩ&۩y*<l$("yW$)'Omega24%-$2j $3 kekf $:c $;d WjXIة&&&0{82$-('ʷ$5c' 'K'K'KE C!K "ˠ""͠ %&԰&E!G&q;&!Y!L{ѩ̩İdrld\[Z ]P@ 86k֠ ]2$ַ $ |VxLڷy D:$޷ $ {Ʃ^T& LB$$'Omega35h^ V4&"&2&9$Oa&'fQm'h&Uh'l2>E'nک0G6+&]-L&K:KCPCQCR'CC'>'7'O7&   )ԩ%<$%"$շϩ)]ȷ$-$ݷ'Omega483u$7$ ;'Omega45y'0'ok'2f'Omega43b+%ݩ'z7lj'w'p'89'k@¬_le+gy'#  2('F''۷7 &'"    ǩ%X'F''&-##&''''&4 %;#{#p%#k#j$(($#z#_#D$#|#a#~#^I#G$ٵ$@&$$#B#"$z##0$u0##D#A#=#8#=#3#2#,% (&$w0##F#C#?#:#?#5#4#.%(($C&'ѩ### f#%'ש##''ک&X##H(7$Mult'@0mult_le_compat_lm,K# %l##%G##C&ʰ'&# C&ΰ'%'&a''&v&i(U^(V#Ѡ "(X#ĩ8% (Z'(Z(Z(Z j$   'Π  $|'Ѡ  $'͐'֠  $    C Π  %[@.Rmult_lt_reg_l>e * ' (%('堩' 0" &(((z' 5&!%(%ʷ'(( '($ 6 'n( 'p('' D'(( ( 'x( Ϸ'(Ʃ'(  ԩ(] ֵ%@,Rmult_le_posN85  ǩ   u C!(i '  (k%@*Rminus_0_r-  '1(!  &(!'14(|'>((E((,' u'ˠk<b) 5+$9( 6@(le_max_l2E(˩&3(J&'ީg'}%@&INR_leq="k  R(?ϩ(@p%@1Rplus_lt_0_compat-P&2&2,,C(s( _&;)(N˷'r) !R((` g@&C)&(V$o$k'})+!](] o(ݰ (B (&((( '*(K$$~ (@ "'((T#'((V#'6(X$$'$T   ~ հ( ( ($B( )V(')W()% &x)[ ')\(()* $ &(&"#($& $ $$$&۩ (|$)7(  d$( )&-@)Rmult_0_r+Ȁ z (-(!(('l)I$Ġ$('$֐N$tuw(('((G)Z'ް)(&)()')+$ܵ&$$&f&d)$$$C')( $V$$C')^()oC&)`) )')QY" )ts&)c))'($(b)"з))#'($O((n)()*( &),(ԩ'A#))#x)j)c {(s)3$lF RO&)6η)*)7'% % $1(})=()1)>'%%$l &)EW)9)F'Ġ) )JI-)'G))))ȩ )̩ )C)?W(')) e(%)&  ;%]&@'IZR_neq%b)w7(?&f){۩'&i)&B;)°58&~))2C, )7  % t # $J &E) (7})D ))? ( = - #ΰ)g)(`*) !+ 2 C"G) t')*C$.)1%*E#% )V%*I *I굩)4*(*(Ұ* #n)q'*3Ѡ̰*#* !T (ՠ!* #C(*)&'*)*)(*))u*I ) ޠ)%*N*oC*"*o(@*69C)))*W*xC*u(&*>**)w*(*s@&E1_cvg0AQ*p**{)*s)~ (e &!**)'SeqProp*@+UL_sequenceiހЩ*(Ʃ)*)(Q)(5*$٩@'CV_mult*([*(?  ****!*T**)|*&cR#@(CV_minus*q)F*B*u*@***)F)**ө)O**+ T***x**v*@*t*j*e)]*U*ڠ$**ܠ$*)^ ^)f*^))"^**3******@***}*)ݠ$$**@**$ *****@****)9+ *~*"**)%**G*+%(g+J)*++7)%+)+S**+#*<A(w+Z)*<*)+_**Ӷ@***)*++R+9+-O+;)VQ+=+(+**@**Π*ɠ)*+>x+L)bz+N**SfB*+Q+3 *%+6 ^)+WC+K*:+Z+N@(exp_form q-%\+a%L*O&:+c$(+cC+b+Z*I***۠*o%z++*fHȐ"An++*+++)++++*+{++&*+b+k++++'6++d*+^++\+Z+@+X+>+5+,+6+*+7@+(+++*+**+C+j*٠++B'P+++8+E+*++շ++֩*㠷++L)+*+++C+z*+ +++++*z*+++C++M+Z+/+++*2C+**)+?(@,Rlt_le_trans9++@&'*+)*P++W+*,)"+@(+;(@&Rinv_1 ;9ۀC+c++T+x+**C+h+*@(sum_incr}检+*F+++%ܰ+u+**n, +*k+Y*#;+T#6+˩+w@&pow_lt!Eۀ+<++;C$^++ ++Ր,4,2,+c@-total_order_T=ҖXܩ,,@%sumor$|@%*,E+,+ BAAAA@@@@@D,/%͠++,"*,W+,$+++n,&,< %ŷ,>%ڠ++,*,d+,++,2#Hlt ,+@+exp_pos_pos$+K,),s,,v,t+͠,+F++,x)"+H, ,P@%exp_0[x+Y,K#Hgt++E+F+G,F@(exp_plus r5,9*+m*ݰ,+_+?+Р+d +Y),+G+u*)*,*,+o+ݠϩ+q**",p,5(E**,/+֩+y+n),6+,*,,}++*&,)<+,)*+ , ,M+),+*&+,é+,)ݩ,+&,,,Y,+,),-,]+),ϩ,  ,b+$,ҩ+",),,,ed+&,),i'*, @)R1_neq_R0iw,C(+4,R,w++:,C,})@.Rmult_eq_reg_lAS,2*,-W&+,+M,+K,,;L,˩,=N * -*+V-+T-,*%-+ؐ+i,;+-,+a-+_-*)++-*+B)-*- )@+Rplus_opp_l73*,Y|K,\*,.H.,C+t-&(*@V,Ω+x-*(*D@*K-.(*Hյ|*K,j#G$N͠)@6Ropp_0_gt_lt_contravar *C,,n- ,-E,Ȑ"fn,,-M-K),h,!,,¶-R-P-P+D+E*Rtrigo_fun-R@,Alembert_exp񒀩-%,,Щ&p,%ש,,,+*"@'posreal̠@-`@$sigT#6@A@,-v-U-y-S-z3-G,,,Ǡ,&,&V-P-P,,,L-@+PSeries_reg-@%Boule>ߌ-",-]%à&,(,,w-- )d,*Y@#pos=D.-Z-n&+K+L+M*b@(cond_pos 1y-Q-->-T',--C+[*-,[--G---I-I( ީ*w@*Rlt_irreflnQcC,-ĵ)B--V,-ɵB--[+t (Alembert-@+Alembert_C2̀,{-J&ꐩ),A+?-&R-E-R&@*Rabs_no_R0  &_-;@+pow_nonzero--*@1Rinv_neq_0_compat1j&k*(qC-,J-#-$eps0.(-!nN-ҩ-<k+-ԩ%!e+C-d-)٠-!}-j-)ߠ-©y'!-----@-~-t-o'2-_!ة-Z+-)- %------@---'D)'H*-T(-k-c,!'S*-_.!--+!-!/-----@---'d*'h*#-t!-)!'o**-{./"-+./--ַ!M-,Og#-C.6) .5#>."C-͠)#-F&hyp_sn-Ӡ) -t-).A-Π-ɠ'----,%-%.*R-s +.,Ԡ'-Π-ɐ-Đ-- (!-А!.,,.-ǩ*j(h.mǐ-'*r(c  +.''--鐩-䐩-ܐ-,$-!-...*!2$.'@,Rabs_Rabsolu. +-.̩'ߐ*'㐩*-(.--N"'*-!-!-4..;  ݩ-.-9..@ 3-..*((.)-G.-E..5.7_.3...&-v(\.:B.C.ө.>(.I.(. L-/.O(&6((-i/-g/".W.Y(0.:&(y(4'$-/%.\(:5-{/)-y/+4.i.k..f.o(F((H2-/8.o(M">-/<-/>G.|.~%.y(WH.|./-/K..<.-/R-/T]./". /X-/Y-/[d../+..0..(z./j-/k-/mv..Rr.&/s-/t-İ/v..[~.}.1/~"-/-ϰ/. ..R..=/"-/-۰/.ˠ/[.͠.Ϡ/_.H/.Ӡ׷-/-/.ؠ/hש.ڠ&.ܠ۩.U/.з-/-/.堩../y.b/.."././/...o/.̩..."ŷ./ĩ./Ʃ/̩//,@1Rmult_eq_compat_l$ ./ө/".(/֩.&///<,/ܩ// ".3/.1//! /-//%"  "+ .//,0/.0.E/.C//-/-.J/.H//8/,,,,˩,ɰ0,,,,//,,,,%,,@.U,,v,t,?,,,,O,'0,/-",q,b,\,W,Q,I,/,,)0,/-$,s,d,^,Y,S,K,/ ,"1'R." /P/RV7T, X9VC.h0Z<>,3],I[#l,l/\~`,0Nb/`#&,4f#(/dT6,/gk9,/c.,@/Rinv_involutiveCa#6,A#$#9${/#;)//#?.0?/#A'Q#-$c$/e*//i.0J/k%/1 &$y$/{*//.0W/'ij$$/*//.0b/=*?//U0,|W2\{3;Y)@)Rabs_Rinv&A,)/#$)X$XC.ϰ0/ZW-0.0/ߠ i/=0/Ƞ/ʠ /C0/Π)) .0/0e z/N0.0//ܠ0l)/ࠩ/ې/֐/ΐ/K/␩/䐩/ߐ/R Щ/"/#"'РR-0// ,/0000/+ -0-/0˩0$/ /0;-0ѩ0"/&0ԩ0-6000$"ѩ,0-GI,ڠ 0-,,ְ/OQ%.%)0x*0B0|/;00~4*e%e,,*, * ,Ơ 70ȩ*2=2/G50'C0[0V#w00,Ӡ/m*00C0ՠ0s0* ,۠*$,ߠ00:+0G0?/+E00©01010꠷000jN00.Ω11(11)0000t/0*B,0N.1)111'111911:1000/0*S-0_11)111$1H1"1I1000/0ĩ*d-0pN1#)1#1#00˶01Y@Ӱ00A1()*q0L,Ʃ--0~*1)121j1h0/0S1k1E1l%1900000*-B01F)1F1F000B1|@101K)*+?,-P0)g16)1V'1V@1Z61Y010V1/90꠩*/1(/?.1/1h1,/101j1k1W0*1Z=0Y10䠩*0Š1Y0*(01)1|00͠0%+()11I)+11M%0q1%01)0*֐000110p0$ϩ.1ͩ1 %*␩0000&1ԩ*1.1ة1%0@)0001ީ*1$1)%& +1?1y%*0811{%,)%,1/ 11  r10C1*#1*1E@,pow_maj_Rabs, |1 01 ~0O1*/1+1Z '0S2 )1+ F/9&/71G1%M-31J?%P-A+"V&[%T&V1%V01+'1Tn)z&8C*K+.-u)-렩1<0)C*U+8+- C1C@%CVN_r>1C@%CVN_R>11۩!X 0-@)CVN_R_CVS=gf12C2A22C22D2110M@"SP?v 1^212"cv2U2S212U2/2V2!11̩1@2'22'0O11е0R.ޠ0*Ranalysis12d@'div_fct R @'pow_fct,ݛڀ2@'fct_cte€*//,26 &301@*continuity*2,#@.continuity_div℀*@4derivable_continuous\1@-derivable_pow[2R 9@/derivable_const#ڒ&V22.*Cڐ026*2w2<22.x10*2{C/12X22&022)612_0b3@.SFL_continuity <ŀ12n12A<@#SFL>.H12w0tL 11,թ2Yo@-continuity_pt?ZL0L12l&]2ݷ#alp22z22@&Rderiv2@#D_x> H@'no_cond'222Nd2ĩ2P, 1C:%q0p2̩<%s0r2"2%delta!h3 @ ?1\322@2hp\2j,&1].㠩1a1됩1206#A3&@Щ23&3$@ޠA22֩2,>1ul%*22n%,22#2з2Ѷ037@.@*2(&&&3@3>@[222,X1#,-3#.-2LJ3Q@H@D2BwA0S3Z#\Q2 2r2<23d313e2,z1/712?2I02$3q013r2ˠ,1/D1 3H2V03_%2`3^33\33N22?a3T23T3z3j3h33f33X23I3^23^133BBB@@@@@3}3{33y33k3 3\3q23q33q!a3@ 3w/v13e3Щ3\1/023}3V3"Hu)33c-33333133333332ԩ232/233ʷ33˩3302333η$Hexp з3>3HJ322/2!301L23ݷ 3vͩ*3+3-@+Rabs_pos_lt-2ө3A3{3(3+'ܩ3G33.3٩'t3g3^3h3\3i@3Z3P3K3C3>3q3<373 331s3@2-#ϩ33z3q3{3o3|@3m3c3^ǰ{3#/ܠ2Z11,#2'3#H10#e33333@33v3qڰ`3/2n-1@1333#H11ȵ Щ-B ȩ-C2z4 ͩ023%1R 3KY $"1[4>-Q3~ 24C343-Zg124J23 3 24Q3|Ȑ#H121v4Y33 %3 24_24a;4-(4c +1 @.Rinv_r_simpl_m= !2$P3!360c!8C24r:$14tN24u3Π-23V6a3ZY4L3-3n0394343Ơ333/ͩ3m3J3٠343Ҡ- 3q/52,242424j.f2%2.j1O3Y4124241'^3^41C241%141Ƿ343423b4334,3-13֠ /Z3.F'033 {b3 3 '91ߵ3}4ʩ3x2'22ڷ3#4ѩ3!4ө331!3'K343413/4ݩ3-4 3!3 424332414,4_4*-d4 !/3L,N3D43B44363!22433223Q43O53,.4ϩ353;32! 1@1Rplus_eq_compat_lD) 2*)14%3e43'2644(443j54d4_44]-4< /44a!>ްc48!A35+4s4n44l 4!K!K4A3533554}4G53= 4H4z43,&Ȑ#H1325232225E25G4b42 2'C35K4!4h!54j!02p5S435V35X4,5&41(4y4:,ӵ2U2S23202.5e,ǩ205gک225i 2)2'2&2575822@2,22B22D22211@3°111112J1102L521111112,5E102N521111112.5G1C3˰5}4-,41M<-405QC3հ54Š)>:4Ǡd5[!R!R4̠!4ؠ475c41M4!C354ߠ45e122 4I"4@*Rplus_commq4Q٩٩2c@/Ropp_involutive"23Ր4\/xᩚ2m@/Ropp_plus_distr:C454/424נ 4w55554444ޠ 50_3@*decomp_sum- 0f/ 445ϩ4/45 5 25٩4!5#55Q554"50/4555<5#." /455(4j4?55F/495;565i545/5"50&(l5Ʃ5 0+k5/0(,545C5d051f5Щ5B 5Ʃ2@3Rmult_minus_distr_l Io"ש5Kߩ*/C5i5d5$5#5S4/*(55C5FCC4j65+1蠩4f5װ6"56#5556&553>3C4v6(e"(5ש14t B3F53M60m!(+5 4635/H4+"Qh6(5 é66>66?6 55"f656666&6$6H6"6I655"g65646P62606T6.6U6 55˩"6&56&6Z6&6\@6*3u6)6a6_  6/3z6.f6d55ڷ55۶55ܶ@5ͩ5à5555366?35155b5נ6B15,6y5'"5665Š55"164ַ465ܠP55:655 t5B63464635  C4632aC4632d56-5U5̐51C463&363465/45X556" //X6|355f65a556+z8/5g35665Ω5s66Q566/֐5թ5z6 +>66[4@)sum_eq_R06 //06E/}566i5+6٩5)6۩66665P5R42,645V2066|566~5@63m666.66)6$5e5g42A645k2E63@)Rmult_0_l+€6E66$  C5\72ڠ 6C5`72ޠ6/616C5f7s1665j76g4;76 57 65s7!6z%F6105 0A@'Rabs_R00|65֠u62Ґws275۠5ݠ|4Ib2ʰ~4KdC60H5 4Q6H#j7656#o67 z70527027C66 4`6"C74bC57L"*)G64f4m7P"+'3657S60h5#}'A6k7'#6l6l-yq66p60v56v64ص- $57n66}36@*not_eq_sym6Ԁ7u676OC6*7w657x6Ѡ6e7'447G3G5Š 46Y7K  b6@)Rplus_0_l 6ʀ6e7Q7R V7,7,7,7,C#@0derivable_pt_lim6\747757Q@6derivable_pt_lim_exp_0= ߀7376[=5B7j6Ԑ 7k. Ω7b@'exp_posM5C77:3u7x 5U77@3{7^ ߩ+3 N O7@@736̩6/}7: Y Z7@@70א63666|67}7}6᷐#del n1 ! q r7ض@϶@˩7306&36*6617 7 677+V+37DL *ש6ɰ7777Iߩ35e *ީ57676ӷ6L77S16F3̠753Π1 76ީ5f7^16Q3נ6U < 65'3۠6 *518 6g87n1*6a3砩6e +77/5731 759 7z166m36q Y5C7:5C)(-68.6v7n 36| B5N7F7t 5P68968;864 676(&7* 7* ©68G 68H68J67 ˩46 5j7785r8U77 %72<68[68]68+ ܩ67$72> 78f67 ( v468k68m678= 7&8s 168t6İ8v676 7  8J 738686Ѱ86ˠ7à6Ϡ  & 6Ѡ7ɠ0* 5 86נ7Ϡ6۠- S< S7e7E*7 d4 ZE \ 57ܠ ^7ޠnI4 bpKC686x f64v6 l7 lx7 n65ʩ r5̩78587 77n5 ۩7q871Ӑ ?1Ր  ީ7y8 C78ǩ8 881ސ747 575*̩5Щ8 8 U+J/ W9(58ݩ88  ^7488;88"87(*6867>88E% 78.6880+f7G88N,88ĩ85$+k4886:"<4 })'8Z8 O7U98) 6'9 7%888 U SC&@8K:95< OQ-\ -W8 2װ7g98 ?2,c-;c88,47,88C78h\F6s+,~5