"`"Y"=H'Cos_rel%Reals#Coq@()Notations$Init#Coq@%Logic$Init#Coq@*Logic_Type$Init#Coq@)Datatypes$Init#Coq@&Specif$Init#Coq@%Peano$Init#Coq@"Wf$Init#Coq@'Tactics$Init#Coq@%Tauto$Init#Coq@'Prelude$Init#Coq@)Notations$Init#Coq@0&v!D]hwnv %Logic$Init#Coq@0\͉!Ig)Datatypes$Init#Coq@0.i bYN Z*Logic_Type$Init#Coq@0 1jc6&Specif$Init#Coq@0;RWMi\N'Decimal$Init#Coq@0C涳N*ua#Nat$Init#Coq@0eʤģPSR蠠%Peano$Init#Coq@0 jha|ؠ"Wf$Init#Coq@0q+W,J+'Tactics$Init#Coq@0/9m+ a%Tauto$Init#Coq@0̂"&/rk0JqTttֱ'BinNums'Numbers#Coq@0dmk(5Ju<*EqdepFacts%Logic#Coq@0FI$ͼՋ`)Eqdep_dec%Logic#Coq@0u wWIϰ߼&Basics'Program#Coq@0!bs߯? :VU$Init'Classes#Coq@0](p{yOh.'Tactics'Program#Coq@03u%+Equivalence'Classes#Coq@07;ꮹ-SetoidTactics'Classes#Coq@0S_`nOU$&Setoid'Setoids#Coq@0D9AsWE!>$Bool#Coq@0j 2cZ`FW*Equalities*Structures#Coq@0όe얟)H.Ƞ2Relation_Operators)Relations#Coq@0%s鯰s4Operators_Properties)Relations#Coq@0U3y#h&)Relations#Coq@0r砠*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ&NZSqrt&NatInt'Numbers#Coq@0` .%m%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|&NZBits&NatInt'Numbers#Coq@0MlIpKt'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$&NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ)NMulOrder(Abstract'Natural'Numbers#Coq@04> Aat/ j $NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ'NMaxMin(Abstract'Natural'Numbers#Coq@0]v|Qg̟ʠ'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NLog(Abstract'Natural'Numbers#Coq@0KI'BinList+setoid_ring#Coq@0Au,Ring_polynom+setoid_ring#Coq@0gaKw9`UW+ListTactics%Lists#Coq@0,Jcy{+InitialRing+setoid_ring#Coq@0k/T=cN(Ring_tac+setoid_ring#Coq@0x2]%762f)Ring_base+setoid_ring#Coq@0fbU(2cNe$Ring+setoid_ring#Coq@0Msᬠ)ArithRing+setoid_ring#Coq@0ṔCgt?}%Arith#Coq@0I|кX*o4#Max%Arith#Coq@04=;3$>aU堠#Min%Arith#Coq@0Ce-Fѕ(PreOmega%omega#Coq@0\|چBb~w4%Omega%omega#Coq@0t.J'6\ϨrK(Zpow_def&ZArith#Coq@0f蓜DX;V*ZArithRing+setoid_ring#Coq@0{#'[{nm!/,Zcomplements&ZArith#Coq@0ʾq %RIneq%Reals#Coq@0JUڻIu)$w&DiscrR%Reals#Coq@0z41pV.%Rbase%Reals#Coq@0Jܡ\ c6{%R_Ifp%Reals#Coq@0c4+ZŠ,Fourier_util'fourier#Coq@0ϳ> 4`*r0'Fourier'fourier#Coq@0wV9TN*Rbasic_fun%Reals#Coq@0hܒiclE>%R_sqr%Reals#Coq@0X%MԹ%M+SplitAbsolu%Reals#Coq@0M)&qYlݹ5*SplitRmult%Reals#Coq@0sD\rt/$Even%Arith#Coq@0YO%q}d߫%$Div2%Arith#Coq@0n*Áht!,)ArithProp%Reals#Coq@0B+L?>*e˃a j*Rfunctions%Reals#Coq@0d¹d‹@'Compare%Arith#Coq@0OM v먣5L:'Rseries%Reals#Coq@08]$u+?'SeqProp%Reals#Coq@0Lt2|9D }SSԻ)Rcomplete%Reals#Coq@0{ڸ4q 'PartSum%Reals#Coq@0j&2"(>S)AltSeries%Reals#Coq@0d US^(Binomial%Reals#Coq@0]JrHr#E&Rsigma%Reals#Coq@0䟄WCJҦ<%Rprod%Reals#Coq@0gȀn_}!W+Cauchy_prod%Reals#Coq@0K*ߞ4q(Alembert%Reals#Coq@0I͗Huz&)SeqSeries%Reals#Coq@0Npc$5|T ٠*Rtrigo_fun%Reals#Coq@0T+ɧK/۠*Rtrigo_def%Reals#Coq@0$xR`VcxIaƶ"x+OmegaTactic%omega#Coq@0@{4-EܭEUBWqK8(KH~4jEL@#Р'Cos_rel%Reals#Coq@A"A1 @!x,Rdefinitions@@!RӀ!N)Datatypes$Init@#nat@*Rfunctions@(sum_f_R0Yc!k&@%Rmult׀-@$Rdiv̀(Rpow_def4@#pow#׀>@#IZR/r'BinNums'NumbersH@!Z7@C @(positive*@CA'Raxioms[@#INRr)Factorial%Arithf@$fact>【#Natc@#mul oBuA+QC.@,Rdefinitions%Reals#Coq@@!RӀ)Datatypes$Init#Coq@@#nat@ +k() +7%'77!7! 77!7 7 77 7!7!7%'(tKAA@xPhԠȠB@o\X@@@@@AA@@>@,Field_theory+setoid_ring#Coq@@&FEeval>@@A@A"s @,Ring_polynom+setoid_ring#Coq@@&PEeval"s @@A@BA@A@"B1 @⠷ؠӠΩ@#add `٠ @} +k() +7%'6 77!7!7!7 77!7!7 7 77 7!7!7%'0tlAA@X|  𠑤B@РѠ`A@L ؀@@@@@{"C1 @ZX!y[QOD<R:5.d@%Rplus+1D@n䀶耶iހ +k() +7%'77!7!7! 77!7 7 77 7!7!7%',gxAA@TZ|k蠒gܠB@9pE2\hĀ@@@@@֠&Reste1 @[!lMĠrBrj`X Ei@#sub Z~tl ~x@$pred `<& @lpfv h+k()7  +7%'7!7 +7%'7!77!7! 7!77!7 7 7!77 7!7! 7!977!7!7!977!7 7 7!977 7!7!7!7!7%'4HtAA@Ƞ$TࠒTH<0`9tdB@@Р РW4hH@@@@@d&Reste2 @CAB86+#9.<$&(#Pة$-Z}.{r@f܀aր怐 +k()7  +7%'7!7 +7%'6 7!77!7!7!7 7!77!7!7 7 7!77 7!7!77!977!7!7!77!977!7!7 7 7!977 7!7!7!7!7%'8_H,<xL 0䠑AA@ РUt|fbtdB@`h@8H-$ؠ\hA@lhp@@@@@ڠ%Reste @_@&Rminus&H@?ȩBo@ ?ȨHT@ҚH{L͛BR l+k()9 7" 7"7%'*X&L!t@@@@@-cos_plus_form @@ @os!nj@%Peano$Init#Coq@@"lt Uxc*@@@AA%Logic$Init#Coq@@"eq @,Rdefinitions%Reals#Coq@@Ӏ   @@+1 @&H@"׀^@Z4P 驜B ֩Bv@w4P@4c @(4P2B@@@@@'pow_sqr @@A!iv,Rdefinitions%Reals#Coq@@!RӀp%Reals#Coq@@s#׀B@$Init#Coq@@C @BBAA(BBA@@@@@&A1_cvg @@B㚠Y'Rseries%Reals#Coq@@%Un_cvɀA*Rtrigo_def%Reals#Coq@@#cos㹀A@@@@@4&C1_cvg @@#C4BA+BA@@@@@Z&B1_cvg @@ID9VـAL@#sinҀA@@@@@y@@@ ӳ2@ ӳ2[)Datatypes$Init#Coq@@A@ Գq@ Գq\ @A@AB@cAzyx@A.0TQ+Ring_theory+setoid_ring#Coq@@ABA.U>[J @B@@"O@(PeanoNat%Arith#Coq@#Nat@&of_int"O#Nat$Init#Coq@@ 6@A@A\@&BinInt&ZArith#Coq@!Z@'quotrem\)BinIntDef&ZArith#Coq@!Z@ /@A@\@@+pred_double\@/S@@A@As2@3@&shiftls2*@vY@A@BCs8@8@&shiftrs8/@vY@A@ѓ@>@&squareѓ5@y@A@@D@&to_intϑ;@@A@z@5@&doublez,@/!@A@ABCD/@O@)log2_iter/F@wd@A@NH/@B@&moduloNH/9@1,@A@A\d@G@&of_int\d>@1?A @A@bz@M@&of_natbzD@1?G!@A@#@S@&shiftl#J@1dV@A@#@Y@&shiftr#P@1d\@A@ABCD/x@&BinPos&PArith#Coq@#Pos@)pred_mask/x)BinPosDef&PArith#Coq@#Pos@ )X@A@6@x@&square6o@19@A@AV+L@}@&to_intV+Lt@2@A@V1b@@&to_natV1bz@2 @A@V5=@@&to_posV5=@2@A@ABCl@@)sqrt_iterl@!$:@A@@@6@(sub_mask@-@)@A@ADEF c@@'testbit c@!ć@A@7 B@D@'of_uint7 B;@*`]?@A@AG@I@)mask_rectG@@+ED@A@F˱@O@)add_carryF˱F@+p@A@AB^Ҷ@@'to_uint^Ҷ@#m@A@gL7@@'sqrtremgL7@40@A@Aq@@'testbitq@5)@A@ݎO@@+succ_doubleݎO@6r@A@A p@l@0double_pred_mask pc@0-+m@A@BCD T@&BinNat&NArith#Coq@!N@!t T)BinNatDef&NArith#Coq@!N@ 2@A@ @@#add @3 @A@A l@@#div l@3@A@ Y@%@#eqb Y@3@A@AB #@*@#gcd #!@3n@A@ T@0@#leb T'@3@A@ACEG "@5@#lor ",@3m@A@ q@?@#ltb q6@3@A@A @D@#max ;@3@A@ @J@#min A@3`@A@AB @O@#mul F@3B@A@ ~@U@#odd ~L@3@A@AC =@Z@#one =Q@3@A@ @b@#pow ˑY@3@A@A c@g@#sub c^@3@A@ @m@#two d@3J@A@AB hx@r@$div2 hxi@>@A@ @x@$even o@>4@A@ACD @}@$ggcd Бt@>U@A@ @@$iter }@>:@A@A 3"@@$land 3"@>m@A@ F)@@$log2 F)@>t@A@AB S@@$lxor S@>@A@ @@$pred @?U@A@AC @@$size ܑ@?'@A@ !@@$sqrt !@?@A@A ! @@$succ ! @?\@A@ !7@@$zero !7@@P@A@ *@@%ldiff *@@A@AB g_@1@+pred_double g_(@25\@A@CD m@6@÷ m-@2j@A@S@=@&of_intS㫑4@4}5@A@AS@B@&of_natS9@4};@A@BEFGH\R@G@(mask_ind\R>@4@A@\^@Q@(mask_rec\^H@4@A@A!,@V@&pred_N!,M@4s)@A@B@[@&shiftlR@5X@A@@b@&shiftrY@5X@A@A&@g@&square&ّ^@5,x@A@BC"@l@&to_int"c@5L@A@"@t@&to_nat"k@5L @A@AnTq@y@+testbit_natnTqp@6n@A@B@@(succ_posB@@A@I@@'abs_natI@?n@A@AB.@@'of_uint.@MS@A@3~@@'sqrtrem3~@7]%{@A@ACD,@ @'bitwise,@/v@A@>4'@@'testbit>4'@8g$@A@A{U@@,sqrtrem_step{U@8R@A@u^@9@(div_euclu^0@ @A@Afz@@'to_uintfz@9w@A@Bl@'@'comparel@3R@A@CDEFs8@,@+of_uint_accs8#@5+@A@}@R@,pos_div_eucl}I@&`@A@3x@(@'compare3x@]=@A@A@^@&doubleU@'޺_@A@BCq@@+of_succ_natq@$@A@w@i@&modulowɑ`@)1@A@ADK@n@&of_intKe@)j,I@A@K@v@&of_natKm@)j2_@A@AI@{@&shiftlIr@*O@A@O@@&shiftrOx@*O@A@AB,@@&square,}@*ow@A@Z@@&to_intZ@*81@A@ACE`@@&to_nat`@*9G@A@e@@+testbit_nateđ@+@A@A+{@@'sqrtrem+{ё@,J@A@5z@@'testbit5z@-T|@A@A @@'to_uint ͑@.@A@ @@+succ_double @.^4@A@A#@'@'compare#ݑ@ )Q@A@BCD%t2@,@(size_nat%t2#@ @A@%9@3@+of_uint_acc%9*@ ΋@A@A%V@8@+double_mask%V/@ S@A@%%@>@'div2_up%%5@ "@A@ABEF'ş@C@'Ndouble'ş:@ @A@(b0@K@*shiftl_nat(b0B@9-@A@A(nՖ@P@*shiftr_nat(nՖG@'@A@(@V@0succ_double_mask(M@@A@*W$@\@,compare_cont*W$S@!@A@.0@b@.sub_mask_carry.0Y@΂@A@ABCD.@@!t.@ ;@A@.먩@@#add.먩@ `@A@A.U@@#div.U@ @A@.B@@#eqb.B@ @A@A. @@#gcd. @ @A@.=@@#leb.=@ @A@ABCEGHI. @@#lor. @ @A@.Z@ @#ltb.Z@ @A@A.p@@#max.p@ '@A@B.@@#min. @ @A@.@@#mul.@ @A@AC.g@@#odd.g@ @A@.&@&@#one.&@ @A@A.뾴@+@#pow.뾴"@ k@A@.L@1@#sub.L(@ @A@.@7@#two..@ @A@ABCD.,a@<@$div2.,a3@ @A@.Xz@D@$even.Xz;@ ?1@A@A.@I@$iter.ؑ@@ @A@B. @N@$land. E@ @A@. @T@$log2. K@ @A@ACE.@Y@$lxor.P@ R@A@.y@`@$pred.yW@ `<@A@A.Ʉ@e@$sqrt.Ʉ\@ ;@A@.@l@$succ.c@ @A@.t @r@$zero.t i@ Z@A@AB/@w@.to_little_uint/n@ @A@CDF/@|@%ldiff/s@ H@A@00@@'compare00@?H{@A@A1P%@w@!t1P%n@  @A@B1P@|@#abs1Ps@ @A@1P&@@#add1P&z@ @A@A1P@@#div1Pґ@ y@A@BC1P@@#eqb1P@ f@A@1P@@#gcd1P@ 0@A@A1P@@#geb1P@ T@A@B1P@@#gtb1Pʑ@ q@A@1Pĺ@@#leb1Pĺ@ a@A@A1Pň@@#lor1Pň@ /@A@BCD1P@@#ltb1Pב@ ~@A@1P@@#max1P@ @A@A1P{@@#min1P{@ "@A@B1P]@@#mul1P]@ @A@1P@@#odd1P@ @A@A1Pɣ@@#one1Pɣ@ J@A@BC1P@@#opp1Pԑ@ {@A@1P1@@#pow1P1@ @A@A1P;@@#rem1P;@ @A@B1P@@#sgn1Pˑ@ r@A@1P@@#sub1Pɑ@ p@A@A1Pe@@#two1Pe@  @A@BCDE1[8@@$div21[8ޑ@ @A@1[d@@$even1[d@ I@A@A1[6@@$ggcd1[6@ i@A@B1[U@ @$iter1[U@ @A@1\@@$land1\@ /@A@A1\@@$log21\ @ 6@A@BC1\$@@$lxor1\$@ @A@1\Y@$@$of_N1\YÑ@ >j@A@A1\@)@$pred1\ @ j@A@B1\@.@$quot1\֑%@ }@A@1\@5@$sqrt1\,@ @A@A1\w@:@$succ1\w1@ @A@BC1\k@?@$to_N1\k6@ @A@1]@G@$zero1]>@ eD@A@A2:@L@%abs_N2:C@ @A@21@R@%ldiff21I@ ߵ@A@2=*@X@%quot22=*O@ @A@ABC2kF@@(size_nat2kF@{@A@3@x@(tail_add3o@^q@A@ADEFGH3@}@(tail_mul3t@^@A@5Z@@*shiftl_nat5Z@y/@A@5f}@@*shiftr_nat5f}@4@A@AB5a@@'iter_op5a@ @A@C6w~@@'of_uint6w~@^5@A@8j@@'of_uint8j@'"h@A@9E@@(div_eucl9Eđ@(*k@A@AB:x@6@,Nsucc_double:x-@ ʭ@A@CD@[@&divmod>R@C@A@>@b@&double>Y@NĴ@A@?2@S@,pos_div_eucl?2J@-u@A@AB?;@m@&modulo?;d@"i@A@CEFGIJ@(Alembert%Reals#Coq@0I͗Huz&)AltSeries%Reals#Coq@0d US^%Arith#Coq@0I|кX*o4)ArithProp%Reals#Coq@0B+L?>*e˃a j)ArithRing+setoid_ring#Coq@0ṔCgt?}*Arith_base%Arith#Coq@0Ĕ}CS&Basics'Program#Coq@0!bs߯? :VU'Between%Arith#Coq@06v*0ur`C0&BinInt&ZArith#Coq@0BpHޞun^)BinIntDef&ZArith#Coq@0ådR4Tuy'BinList+setoid_ring#Coq@0Au&BinNat&NArith#Coq@0K11ڤs+Π)BinNatDef&NArith#Coq@03@1O,[{ 'BinNums'Numbers#Coq@0dmk(5Ju<&BinPos&PArith#Coq@0vyػ0= u)BinPosDef&PArith#Coq@0}H d.%,b(Binomial%Reals#Coq@0]JrHr#E$Bool#Coq@0j 2cZ`FW*CMorphisms'Classes#Coq@0qیZBeϠ0CRelationClasses'Classes#Coq@0TL;0RUfw1+Cauchy_prod%Reals#Coq@0K*ߞ4q'Compare%Arith#Coq@0OM v먣5L:+Compare_dec%Arith#Coq@0jXF 8jih@0.i bYN Z)Decidable%Logic#Coq@0ND걸풬/Oߠ'Decimal$Init#Coq@0C涳N*ua&DiscrR%Reals#Coq@0z41pV.$Div2%Arith#Coq@0n*Áht!,%EqNat%Arith#Coq@0AIgՋXRV *EqdepFacts%Logic#Coq@0FI$ͼՋ`)Eqdep_dec%Logic#Coq@0u wWIϰ߼*Equalities*Structures#Coq@0όe얟)H.Ƞ+Equivalence'Classes#Coq@07;ꮹ$Even%Arith#Coq@0YO%q}d߫%)Factorial%Arith#Coq@0@oehJd%Field+setoid_ring#Coq@0J _ȫ)Field_tac+setoid_ring#Coq@0d vDZl^۹H [0B~uYٮ٠'Fourier'fourier#Coq@0wV9TN,Fourier_util'fourier#Coq@0ϳ> 4`*r0-GenericMinMax*Structures#Coq@0måj$"Gt%Arith#Coq@0䙛#c:D $Init'Classes#Coq@0](p{yOh.+InitialRing+setoid_ring#Coq@0k/T=cN"Le%Arith#Coq@0d}Omq+$List%Lists#Coq@0>I+ListTactics%Lists#Coq@0,Jcy{h0\͉!Ig*Logic_Type$Init#Coq@0 1jc6"Lt%Arith#Coq@0KZ-eJkP܏#Max%Arith#Coq@04=;3$>aU堠#Min%Arith#Coq@0Ce-Fѕ%Minus%Arith#Coq@0LFtR")Morphisms'Classes#Coq@0Imӽ%\$PD.Morphisms_Prop'Classes#Coq@0% :B'.>u%$Mult%Arith#Coq@0햖Qyb0$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI%NBits(Abstract'Natural'Numbers#Coq@0qteo_hɅ $NDiv(Abstract'Natural'Numbers#Coq@0bz$?[p(5$NGcd(Abstract'Natural'Numbers#Coq@08E-S ;j_Ҡ$NLcm(Abstract'Natural'Numbers#Coq@0 ~xZ9L{:$NLog(Abstract'Natural'Numbers#Coq@0K Aat/ j &NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf+NProperties(Abstract'Natural'Numbers#Coq@0unt"kwpYC%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ%NZAdd&NatInt'Numbers#Coq@00h`ZK4*NZAddOrder&NatInt'Numbers#Coq@0e~1>r砠(NZAxioms&NatInt'Numbers#Coq@0] ρ5r&NZBase&NatInt'Numbers#Coq@0^&8yUL&NZBits&NatInt'Numbers#Coq@0MlIpKt%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZMul&NatInt'Numbers#Coq@0ctR~6[Ƞ*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R'NZOrder&NatInt'Numbers#Coq@0 q;Ve7R W,(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x&NZSqrt&NatInt'Numbers#Coq@0` .%m#Nat$Init#Coq@0eʤģPSR蠠$Nnat&NArith#Coq@0$W;s #%M)Notations$Init#Coq@0&v!D]hwnv *NumPrelude'Numbers#Coq@05WUVŦ]xVXԠ%Omega%omega#Coq@0t.J'6\ϨrK+OmegaLemmas%omega#Coq@0TJ#Jes+OmegaTactic%omega#Coq@0@{4-EܭEUBW4Operators_Properties)Relations#Coq@0U3y#h&&Orders*Structures#Coq@0$Znl0\͗+OrdersFacts*Structures#Coq@05Mܿ獐ζΖLB)OrdersTac*Structures#Coq@05'4Ԗ+9%'PartSum%Reals#Coq@0j&2"(>S 0 jha|ؠ(PeanoNat%Arith#Coq@0O~2$k[#lZ)Peano_dec%Arith#Coq@0Kݢ*k$Plus%Arith#Coq@04tmG$Pnat&PArith#Coq@0,?pr.gZ(PreOmega%omega#Coq@0\|چBb~w4'Prelude$Init#Coq@0JqTttֱ%Quote%quote#Coq@0J@ŹVz-,3%%RIneq%Reals#Coq@0JUڻIu)$w%R_Ifp%Reals#Coq@0c4+ZŠ%R_sqr%Reals#Coq@0X%MԹ%M'Raxioms%Reals#Coq@0S]jnj][L%Rbase%Reals#Coq@0Jܡ\ c6{*Rbasic_fun%Reals#Coq@0hܒiclE>)Rcomplete%Reals#Coq@0{ڸ4q  0(2{Ze$ќ8)RealField+setoid_ring#Coq@0 >ʾq /RelationClasses'Classes#Coq@0Gz rA6ՠ4Relation_Definitions)Relations#Coq@0]4Ѐd{n^2Relation_Operators)Relations#Coq@0%s鯰s)Relations#Coq@0-SetoidTactics'Classes#Coq@0S_`nOU$&Specif$Init#Coq@0;RWMi\N+SplitAbsolu%Reals#Coq@0M)&qYlݹ5*SplitRmult%Reals#Coq@0sD\rt/'Sumbool$Bool#Coq@0sB ,$11.]m'Tactics$Init#Coq@0/9m+ a'Tactics'Program#Coq@032 Q@@@@#_11 @A@@@@@@@@#_122M접 BB@A#_13'`o@B'R_scope)nat_scope@t@2 Q@@@@#_14 +*@#_152M접 BB@A#_16'`o@B('@@2 Q@@@@#_17 QP@#_182M접 CC@A#_19'`o@CNPO@͠Р@2 Q@@@@#_20w@?Ȩ}|@#_212M접 CC@A#_22'`o@Cz|{@@Q2 Q@@@@#_23@\?ȩ@#_242M접 CC@A#_25'`o@C@%(@2 Q@@@@#_26OԠ@#_272M접 #_28'`o@CӠՠ@RUJ@2 Q@@@@#_29@@A@@@@@#_302M접 #_31'`o@D@@y@2 Q@@A@#_32.@?A@A@@@@4@#_332M접 #_34'`o@B32@@e2 Q@@A@#_35W@p>Se@A@@@@]@#_362M접 #_37'`o@A\@@Y2 Q@@A@#_38{@d>v@A@@@@@#_392M접 #_40'`o@B@@\2 Q@@A@#_41@g>y@A@@@@@#_422M접 #_43'`o@A@$@@@%}ֺ|3J-tWK]@nNh#F}@U1Hkyh@!&2XE2+i.ZؕX%N*WR-А!x,Rdefinitions%Reals#Coq@@!RӀ!y!n)Datatypes$Init@#nat@!H%Peano@"lt UxcAA%Logic@(eq_ind_r!2#9:@%Rplus+1*RfunctionsA@(sum_f_R0Yc!k; !p@S@%Rmult׀\@$Rdiv̀(Rpow_defc@#pow#׀m@#IZR/r'BinNums'Numbersv@!Z7@C @(positive*@C['Raxioms@#INRr)Factorial%Arith@$fact>【#Nat@#mul BMF`YTL@#sub B80&dE! !l|wo3?@#add `%\TJB;:LDʩog]U 7a@$pred `<N`Cީ D!r@"eq @ߠ@&Rminus&HϠ㠷Ԡ͠ȩQΠ(#ՠq /'Cos_rel:@%Reste4c{M9 @"C14P2TBL?B0Ґʐ5"S%V搩ސǩ$ĠQ ٩$Ҡ_÷~Wx[VNYLJLE>GQCzg_j[]کO˩aZUM5-# aƐթȐȐ"H0'PartSum@&sum_eqcǀǩ ʩ շ!iѷ@"le UxT@%ݩQumc[ cPB5U RM"i0"H1.^]Ȑ(hyp_list @$list]@A@$prodt@,Ring_polynom+setoid_ring/@%PExprk@ŀȐ'fv_list&BGݩnC OP@$Rinv8ΐƐ^Ic_'k吩ݐӠ1uH\z>%RIneq|@2RField_ring_lemma1!7𚠐(Ring_tacV@0ring_subst_niter!`ΩaGXZ\ ^lDceB# k%A)qsw z)~$+@$Truey@AA@$boolZ'@A@ Ȑ#lmp@.mk_monpol_list(hAlBc&BinInt&ZArithn@ 1P&)BinIntDefs@ ̀@P1P] @Q @>1P@? p@#opp1P@ {%Zbool@(Zeq_bool0߀'@'quotrem\"@/ŀQԐܛ@#Monf@@#Polj@꩚@#Peqj*(@*norm_subst7:d0URN?:5/'0WTPA<71)}fC#5㠩堩砩ࠩ۠өdM ːÐ  $ COa(@&Reste1?Ȩr^ 9@&eq_ind Jo'cqas:[>91j</m-/(!3ө%\\PKC|NA?Am3 iEA7=n[S^OQ9C05UNIA'֠  Uɩ@&Reste2?ȩѩfթlv8hzr#VNF>+97n٩ܩ  *:)) zr)[aS:fWIR/_hܩڰשܰ ѐI{*ȠJ/͠ũy)5搩^AߠC3EŐt Ӑːà CYk*,|pcqas:[>91j</m-/(!%3ө%\Ω(ЩRME~PCACo59kGC9&?pp߰^ة[TMhY[(Binomial@!C884@Ƿ٠rtv.&0KlY2*Hwrj̩NF۩˰ΩHpbZjl"/tqsk/1@^qiXZwo_#Z%̐"$ҠԠ֠VېVʠKcݠߠѠɩ}o-萩 ݠCǐB@ѐɐHJP^N`̠@- 萩 G v$&3%#m{k}+R@/h|vtY468fYUM$<>wy*BD}Ip15MOT+<"Ȑ"H2E]_dch/'mYéWƩ v{zF>j"ש$3)Decidable@+dec_not_notHɀװ.)Peano_decW@*dec_eq_nat5뵀8K@#notШߩ@1P-'!@&of_natbz@1?G!!P@֔A琩3@$succ1\w.@   Lg#$ZnatG%Nat2Z@(inj_succ:w8@U@R1P,:@%Falsee@zD3G >MFD6(eUW/&o _:9cʠA@'inj_mulv)t8@@#Zne>o=NxŠ!E&Specifq@+sumbool_ind=So@"gt Ux!s@'sumbool7̂K@@.L+h&Omega0f;zZ@'inj_sub~a@Qՠ#Ő.&0(Y+ѩQ  IDB@j<-ސ+G?h&Omega1ݷϩUMЩ+_WMCթL !L # ж@jө萩%Ω)]7!@1@41&,2 ?C w ;9;@KWP@R(:8*[KN$NZ@6e0]RPB4H3*47sqi-@Et{EA0Ʃd{R9F@&ex_ind 5{BpCO@#andЖw@uM9ZP`O%Zvar0V'Omega13d@'and_ind14ۀЩbOhũg&Omega2rϩɠө:wx5|P2{%Zvar1'Omega12 ,ЩQ'&Omega3 !UPΐZM%Zvar2'Omega11 GЩ̰ې["B&Omega8 <ڷ̩.Ƞ@}Q˩X^2b +ɩN Yض@3&t7  Aߩ+OmegaLemmas%omega@7fast_Zopp_eq_mult_neg_1=Ҁ,@K>O46W@/fast_Zmult_commXK˷A@͠`Gh'@7fast_Zmult_plus_distr_l+;S& .@8fast_Zmult_assoc_reverse"'U@ᠩtvi]/_vb&@ v ok0;Ks7@{Mw<sC@ ,JUQ@+:yVw@6fast_Zopp_mult_distr_r0A<$b@*<Ke@4fast_Zopp_plus_distrpe7Eu@=РOv }@EؠWڠÐY,KY@Qc栩٠c@2fast_Zplus_permuteЩ+)nb4@h@8fast_Zplus_assoc_reverse ':8 @s  @0fast_Zplus_assoc Da~E E@1fast_Zred_factor4'S@ѩ]&ĩ_ ˶@& 00Ω@1fast_Zred_factor6)"9@1fast_Zred_factor5(: BE DG&Omega4IIeMC@J[3NA'9E5W_C@ɠ\OL7 IPl )auxiliaryf@(Zne_left0߀ T &6@'intro_Zz,K , -11@&inj_le8F~ 6|YW I ; :1 >i@*inj_minus2{jia w;@@1P,Z@ Y@S G@ HEݩ{PL%Zvar3S'Omega25T'Omega14!^Z%Zvar4a'Omega24 b'Omega15/lh%Zvar5o'Omega23ߩp'Omega20շ ˰ {@z @I @@1fast_Zred_factor0# @ s `ǰ @ 'Omega18 ۷ ͩ   /  @1 VX Ķ@Ƞ%!  ǩ   m L ީ\ ֶ@ڠ713&t ۩v @C= $~ &@KE 멚 @/fast_Zplus_comm11N2 h 5@Z 'Omega17_Ys Ȑ"H3#@,fast_OMEGA11I ԩeXl l N <l_pc(  ),y y [ I! yln  4)tR W/z~! *$ d<( T MM  SѠ @*comparison;f@CC  @'compare3x@]= C2mC  C;+auxiliary_1+auxiliary_2۠ΠU OࠩӠ S@,fast_OMEGA13KV젩ߠR ` d V@,fast_OMEGA14L  k ]퐩 ӰPJJ @)False_induُ [C@ ^S ZC@@&OMEGA2.$D5#4 9 3 ِ@/Zmult_le_approx"8=iQ/ O  F򐩚@&OMEGA1.$C4'b8r   @(Zgt_leftE"@(Zle_left*x퀰r   Щ@&inj_gt8FFΩ+Compare_dec @)le_gt_dec 堀b߰  20 "٩  f  tsqp@ؠ\mgye T @ (D Z @9@c1 a %@&y" f *@ )  l 0@ /ũ# 84%Zvar6 ;'Omega37<'Omega26թ  FB%Zvar7 I'Omega36ԩJ'Omega27ʷ TP%Zvar8 W'Omega35ǩX'Omega32 )ܰ}שhϷ'Omega31ǩ  p@tѩˠs  z@~۩ՠנ H}  @ߠ  ՠ U j  @a'Omega30 { h&  _   o a CC  ~ , ϰ(ʰ   ᰷  @@ Π  ¶@{zV Ƿ  ȩ   ȷ%Zvar9 Ϸ'Omega49 yЩ   Qqҷ'Omega39 k ܷ  ݩ  K ߷&Zvar10 淐'Omega48 Щ  $S k췐'Omega40  d&Zvar11 'Omega47i\'Omega44_'Omega38 gD   ' @'inj_neqjD          a   d   @&inj_lt8F ;  ~ U* X V X j Q  搩 ސ Ԡ ̩    $] )  a   R̩ @/Rinv_mult_distr7ϩ F@.INR_fact_neq_0,:ө ;ܩ @)Rmult_1_l9婚 @*Rinv_l_sym9`g~~ L N署 @+Rmult_assoc&C   Y`V [ TC   K      f h j  \ ^P ` X  r t v x z l d\d(* @&eq_sym X    %Minus J@-le_plus_minus,3   ' ְ    ة  x  ۩ ݰ     ; S -    +                    E n n J C@  @ 5 3     0  0 - )        v ?  $ @'pow_add2   d C   ŠE  $     ̠ Π Р Ҡ א    ; ̠1Ʃ Π   ࠩ ⠩ 䠩 栩 K  # !    @ҩ  B  D  FH ̩                 ð  Ű  ǰ  ɰ         @ I    L 9 $ \ 40 &   } n i d ^ V  3 60 (    p k f ` X  5  5  7Ω°KYU֩İM]UưOaQe @*Rmult_comm8+ΰ+ - "#c԰1%e &qذscaC l ~ ,w %ie 0 2 +=9w 6 /73y : N   ҩ @(scal_sumWJ    Z  # 4  ^ V  O H c   T V ' # }      t  x  R >  d | w o  z m  k m  _   q m c g i    R '   Ȑ'sin_nnn   @@A@A@@@@D     mr  ɩ   } u 9Ʃ Z R H @   ٩   @ S K * K W     P 6 ̶   Ȑ*to_rewrite   Ơ 砩 ʠ Š     ʠ <    b -   O  `^J ѰJ  #Heq    ڰ 堩  頩 䠷  ՠ Ω 頷 [ ڠ ܠ  Π   Р  p ͩ Ӱ   ϩ   )  , 젩                0 N  Ȑ(list_hyp 6 Ȑ-list_hyp_norm 9 E FȐ0list_hyp_norm_eq  L/@ L N 1Ȑ*ring_lemma @2RField_ring_lemma2!8  ^ &j*"[/ ` " ǩ ک* M ] 9} Z =A9rD7u57 c) _; 7-A 3d c O Ӱp g S T   k"pe n#npe @   w0 i           v  w@&PEeval"s 8rY @$Ropp΀ wD&BinNat&NArith!N@&to_nat`)BinNatDef @*9G_ ĩ|un z| !n4p, ש v!; ۩̩ϩ   &   -7Q   z 詚 @(Pphi_powcH  6 M    H+InitialRing @)get_signZ#7?BȐ#res C ϩ A  / B  ۩   Ȑ&res_eq Z @  0  F C ? 0 + &   , E  F          Ȑ#thm+w &88:a w (xH <"/u4 #|!@C12- 2R`Pb5Ȑ$res0Z 0 f 2cU PȐ'res_eq0T@` V H0 :     } x r j   GȐ$thm0ǰ Li{8} C*b Ck ;?7p0)Du57 ܩ)+Tcͩ O 2l SWOZMKMy?uQMCIz e  ij 6 H v] v   CM3     x u swozmkm_qmci O M L D  <  C 7 H  <  @Ű    ȩ   ة 0          W 0          Y ΰvө֩ĩ!1 G A_Upҩ#LϠ]ˠ-q/j֠8Ǡ۠ ̠Π(ҠΩĠ^ g+!-T# /V"0 2V%s)9{^-2 ;R!PrAEUYIWGY, C̷{Jy20a#T" s䐩ܐ ũxguewKJ{;l,.0 ՠ&{( 2-% ַkF.ZMKMy?uQ-C%xiZHBqbdf ˩\ͩ^ ֩hc[ө?7P" ε hҩ + 4 { }ҩ9 հ ia +J  ʩwo& X 4   Ʃ: `l Hɠ ȩΐF xà (*ؠڠܠޠ { ^ՠ Yנ h ڠک H? /?M=O%&N UuJXHZ-  w /e] djao_qF7 u#%lzj|*,SGD& ص35©:9 Gn3 ڷNuSRt"|(af*h(# M@ 7@ )ArithRing@0natr_ring_lemma1 ,MSM.@ K&@ )j2_ L$e& =ǰ)1*@ܰ'(/0A4BxG@ ?@3 L@[ D@\3B A֚R@#eqb YK@3X@(div_euclu^Q@ PӐ젩SUV0X)&""B0Z+($$3OC  B+#Ѡ֐N ސV萩@1Rmult_eq_compat_l$YK[  uCCR lT   d> _  ) % T -   [ YK=  j©?6 o֠  I sͩ Q@'inj_addcH@ X Ϡ/  O  rd 2cZ > i$ ,"_@ 'q1 ` B   @ 4Ǡ  K@( o    {     @ Kޠ U  ( N K  %    K   C > <@ d  ؐ%A9  6    ׷ɩ 萩OGG Ʃ 퐩 G \T( ! SAө J  J  ζ@ ) . ϩ  䐩0 ܩ4 'Y@ 3@ ?2 /  H1  ʠ,@ B " A ܩ 1GG  7h}D BA@ ` e& 9 7) 4 " 8 " & T@  7 n v {i  ; Q OA3)2)r  b: dˠ p4@ P{Fw 5 h fXJ+I@ e O S ࠷E@ a  F y wi[sZQ  `  Z@ "v Nn ] pd@ ,  e  1 ah 5rs 0w  * s $x " Щ}   y  (  D ?  9    /Щ '     S N ̐k K     AЩư Րl <    4  ҷ  %  @ t  J ĩ  T J "    D 2˶@ &( -0 Ω ն@ 02 7#: ة  s ޷߶@ :< ,C     |   ~&@ EG L8O  N  N0@ O@W V:@ ƠY[ ] bFaT )Mk   g eM@ ٠lUp'Zx 1w  X[@ 砩z!c~  i * 5 m1@ 3uyX8  {?@A UD   ߷K@M,cS    "\@$^ ]   *d@,f e  à ȷn@6ɠpo  v@>ѠxӠz{  ܷ@Jݠ  -L Z@R = Щ %*  ^   ).  0 b@d    1j@l       ?   A   J@~ȩ    $ O  X Ķ@ ! (( C@%<)j @1 69CC@68+y( O &A%,H搩 ܰ ( Ԑj  t  ݩ ѰMOG]$" ˩Xu4 0/);@ @ɠb ᠷC@ H @  M@ f ݠGv         " #   "    *& +   *   o3@72r  U  Q  j <   nl^ MDPQ F@J!v O Z/V@Zy$Y  &`@dra tkx]p@tѩˠ͠ թnu  ڷ}@ީؠ  ~ x  f@ 2#@Ր- Щ   m    o@ y    |  u  Cٰ     © ~L  2    "   ( ϩϠ,& .  ` Z  b \ [ ^ Y _ W o W8UL   5 7 q  C@B<L%+ (- ,Un  W ΰ! ȩUr| xw ihfe@ǠZ _cWo[D@Р 8J@-@נVQ@%#U@ Y@q^"@#!젷d(@)'ᠷj.@/-@p4@53ɩ8Ω<8 = ˩< Ʒ өD@ E ĩD  ۩LH M L  " ֩s ҩ ioX b аq]@a o^   hũg ɩ,n@rϩɠ "p   TA   C }@ީؠ~ ^@ WS   Z   P  `R           Ӱ@@r @@ @ L{u ÷ kЩCcķ  [̷ͩ ͷ ҷ zЩשSsԷ  kLط ݷ MD{ܷ E sb ;hV+@PJ 3@XR  r;@`Z x2OϷE @ jd o 'Omega43qk^rowHF8 N'+zYNL> q-$01b&@* K(Ik/@3 A0 E   ? tv:@>  v;'Omega42E   X   V :  X   E   ccic= ud>nlk ij d M?㠩à!H.ݐK KXCza*"٠   @}3 =1- 8/ 9,n9 3;= . @uwB )DCϩ}xJCŰ`o@کʰܩ ש<ũ? w~ѩ  *˩RA6 532C ٷ8jgrs ̠ΠРҠԠ֠Ƞ ;|ʠ!xuj" AigfC$$O&)');頩렩l Őt ^ ?    " ĩ ]ͩ ~  bbҩ d 'igi{)+ߩ'1#V5 $|z:"trROMOh֩] _ߵ@zeu0gt w0iv ֩A9/ ; V0zCWYAA 0CG_aI Pfhjlq:2&w@85j_/m|:^\q!Xmld*\ ^` $@=b  &70@-" 0t0 v .Ω [%" ])" _!->1  b h8K. n<M0C @SĠƠȠ ̠Š eҠˠƠa =`r t C#5q*թ̩  b멚@)Rplus_0_l 6ʀ 3w@*decomp_sum- :(PeanoNat@)lt_0_succ5% . ` Ű  /  -J\_ C maTbRd+&W+\éx֩<I yI3 {z:kD-&Ar24٩&P(_q {~cIB;4_ ѩq @'nat_indJзܩà|ީt] +qbdVXk 9]   zȐ+field_lemmaR@3RField_field_lemma1(MkO\,Field_theory@%FExprs@E GJC       Ω>&@ $nfe1(@&linear@˶@ 1@%Fnormw$2/+ :ᶐ$nfe2@ $:73$ @R0A>:+&!l婚I@#num:u0P@%denum0n0SPL=83-%~ f@^@%PCondS<; bx  +* ĩ*@#appʀm@)condition.B<Nx@&FEeval>@U |: C @W ~< E a V H @ @JL(${lgb\TT1 cA*  X#:%<M>n rB@jjȐ$res1: wȐ'res_eq1 @ff pM@d@-RField_lemma55v FWA`BZ$lockO"|(lock_defd]8 Y@x XY& 0e k0Cf< bI ab/ 9$3o@ސ@$Fapp{Fk@&Fcons2w$rpkv,GCyb[fha6.o;3 wCͩ}&  Cưة|tXPF>ש> QSUM=̩2I 췐%Hreci[7;\̵ }Ѡ̠>d Yw7yF٠K ʠ̠ fB /Q b%'ՠ fǠMZ q %͠`$ 5W&栩蠩 ܠ`ޠo 6D4F z9 FuaF * kS mn7Ȑ"Wn[V0\WiZ[$zb]` 0!Ơ 8nq'֩qq,. ݩlqc|d[Mh;nM`@dpLcx zq {@'z |Ð N@@ķՐ" b:ݐ*m%ᐩH@~@y됩8 ,qoEgb`@ Z'Y אWϩLީU U "ٶ@P` ;Lܩ b&@w@9#)v C8@ĠHE:[s b@ӠWT I eB@2$\ \_%`X+UwyTb&@ro :)Vl0@4@ u@ͩ|W6 y=@>  }A@EBH@٩vtfX #WN2 (_ ,&Y@!&;X{m !lcrv頷h@05iJp@8=  7s ?Q zA~z+)'~-I/% QLʐmI ?ЩİӐn:2ѷ$>@sG O@ [M&ĩ˶@&g*Y 2ЩԷ׶@2P(:ةs6ѷ@<2D}'@FH;y@R Q3@RT J\\?@ˠ^`Id El  M@٠lt -sKW@㠩v_z +c'@$k O,Ƿo3@04Iʷy=@:a> E@ BWFM@Ja .RY@!VZua@)^dЩ 2ϩĠ?ϩ6q@9p<Gw@?ҠxO@GڠܠYQ#_@Wx*@c|u9@m oC@z MRC C@ [ ̩ $ ,C@)j ٩ 9אͰ  @ .4۩EbɩŠĩ(@@O Ϡ0@ 4@ MĠ]~    {|uX@ }mR^"@&_!Bd(@,Y'< +5Dl0@4 Q198{?@CDO$K@O L~p_VcX@\Yd~UCz f@jǩg4Š@w8Br@vө͠s{{ةҠԠE|zݩڠOUߠou wT^" 蠩۠ݠ+qư頩"9mа!hnE  jQfONHGJETǩǠ$> E>4$& +ة3?-.,; .B 搩 p6VM6p8d.C@C=  C@J&萩 0qЩа8#!ʩWt($#:@@Ƞ [4J@޶@נ Q@ ݠU@ m֩Ԡ\ @b&@%.*/.ũ6276ͩ>:?>թ-{)g%] ?LVİe!T@XW _@c *`i@mʩĠ jJ7x99Nu@y֩Рv~۩ՠנR۠>qX@ߩC@ϐ A C C xxð@ |ߩ g@7kQGٷ?snݰh^Щ7WO23i*_+ҩ֩թ f^NWP Dmf i^2    Ʃ}ue)] ! |k[C ) ةؠ .< 2d #,{) 7' 9  m ,젩QS  ! p ? 2 *@ K LUm O  (t  v ^Ða \_ D1 "ǠS %  թ  ةא ٩t t    o а X@\ hW z l kb` t{ m@qb }ltxag       &  Q  Ő "  @\ ΐ   -Vʷ  ې$   ' $|" @wj  @éb][@㐩 W+V  Ԑ T ̩ I ۩ RR !ֶ@ ^+ pLܩu< 5@:'* w7 L)'!! C ԩ8 H!J? D !B  A!O@۠;a^ !)KI!;!-Fh!.%Ja !48a!f*@.!:@U{ɩxS02_!u9@=!{?@CgB!Q蠷!G@KNrH ~|!n!`!_V: !g  .!a@)4!s^b!!w!vm !|样!r@:Eos!!W!~ !!˩̠!@NY͠Ԡ"*!j!@Xcנ ']ܠ%X_IGE;5K3g-%#.M!C"';o!j ٰ!dZЩ ߰o!5UM!!!?!V٠"ƶ@!#( 'h+ j0 3ѩ"ض@3 ;٩"@; C|"$@C  K!".@M*UTT"6@ U" 2]B"@ @̠_Hc 6k "L @ؠkTo"& Bw0v OC@堩x a|e.&C@ n{ /C C@ѩm@}>C@ l rSJ@ "^8"_3"_ b1]"am"t+"c Z!"gO)KJ@" _@$5@)4`" g@,."" l@1- " q@6*Ʃ8)=b֩= zv* {(#z&,E  ~$ " +! &M  ߩ3)ڷ !ѰŠ Y ư" @  Z䐩> = B " @   X "|" @  """ ]"<"N SC@Š "  , C@̠ ) # %"̐oW""" !r"n$ ""  >"[" w@@#- @ #ذ#3 @Ͷ@$#: @#>!@ #B!@Z#G! @Ӡ# #M!@٠)#S!@ߠ/#Y!@58!%!!&%!-)!.-ĩ!51!65̩|ép\!RXAKZ s  #!K@O   M ݩp ɩkX#c#c7#cfoi=#!\@@%u \#!c@#!g@  #!k@3!pl!qp;!x#!y6"!}#0y!~&Щ"! "K!!ݩ1'ط##!##%!V##!##  !a ̰    η#֩#!B#!#]Է##!#'#9! ZX#[##א֩#D#P#H#8#A#:.#L##1# \\"Y#Wz ##Xŷ##"$# 9#ک# ;#a#m#e#U!#!M$# #[#w#o #C#$#$#Ƞ# $#ޠ#X##Z $$#䠷#V$#2#w#$)#$+###_$#i#!$#"S$"#⠩#䠩%$ 5#ؠ #"o@1sum_decompositionɐ# $$#v$5######D###!$("$( &@(binomialqɀM֩$#$  T$ I#@2Rmult_plus_distr_l0ylɀ ] PC#Y$k$2E"$ A#$CC#`$r #/b$;$6$.$g g 6+Cauchy_prod$z@(sum_plus ⶀ 3q +$VC#s$#k$G$?$x$8$1$L#$}$=$?$1#$3#$j 9#T p ;$`#$da!>S$hT #$zC@#"0$}$}#$$s#$w$r$j$$c$\$w#$$h$j $\$"$^#$ j!a "d l$$$~$$$|$$z$|#$n#$#|$r#x$"_! "x"a##""d$ e$!C$#7$C#ΰ$$#Ƞ$####$'#!$$#$,$$$ܩ$#ȩ$##$3y@-cauchy_finite6mр# $:$̩$$$$$$$$:$d$9$ $$$$$$$k$@$B $BC#%$ՠ#$#@"A14P $%$R$$T$ˠ#@"B14P $$hCA%,%*#J%%$@(pow_Rsqr(ѡ$t$"%4$Ҡ$w$$Ԡ"@$Rsqr=MW$t%%%C%A*Rtrigo_def%D@)exist_cos$V2@#sig#* @%V$%W@&cos_in&BBB@@@@DЩ%h$%i3$c%?'Rseries%m@%Un_cvɀb$n(BBB@@@@@2%$%,M$%Y%%Y!a%@$%^"x0%%@'#eps%%w%@#Rgt=<%oȐ!e$$⩛%r@"ex @%%%%@%@"ge Uw$ϩ%@#Rlt=*Rbasic_fun%@$Rabs; w$%#%%v%o%h%%$+%,BBB@@@@D@6%Ʒ0%Ƕ%%ȶ@/)$$Š%$%ҩ%%%%%*#r%8I%ٷC%ڶ%%۶@B<7$ؠ %7#$T%ɐ"x1%$0"\A%X%%%@WQL$%L!#%L%%#a$ g$B$2&%%%%Š%%&%Ƞ%^%]$<&  u!ᩚ$@'pow_sqr?A'%g%&(%Ơ+!q%Ƞ%ڠ//%o"&0%Π!f%%&3%#&5%& %%נ!,#y&=%!m%ݠ%%9&%3&E&5%&0%"&K& $m&<%%%&&%%H%E&S%=&,!+#%d4&&&K& &%b%%W&4CsCO%o%CRK$@#cos㹀Q&r&p&d&qݩ0=&>%*&z%&{$E&FZ&S#4&%&.O&P%%&^%JB&%&<]&^%%&l&&l&@ %&o&&O&& &&&&@%&n$&&_&X&Q}&~!"&%%%@&&&&@ %&$&&w&p&i& !&&$Z& 1&+&¶&&ö@*$%% !&$~%<&&η%#&ѷ;&Ҷ&&Ӷ@:4/%Р% &/"$w&/&&ݷ$!I%$%&&&&&&  &з&&&&&&d&C%"&!["ǩ栩&Π &J%' &"T&&  &R#'&&ܠy"K& '&'&Ƞ&&h"$^'"&Р"R& &Ԡ&&&'*&8&m&1&o#'0&%R'!&&ک&Ӡ(' &-ީ&&'(&&&ڠ7&&4'ChCҠ%&Cՠ&&ϐ'J'HР'@"or @BAAAA@@@@@D@&I'['.!g@&@#sinҀ&$@'Req_dec3{Ѡ'P'?'p's'qTXY'F'w&j'x ['O'%'q'r'u's@کԠϐ&p'L'D'}'=&i'/&e&&'i''%'j'm! з''%&'% ص%%%f%c%a' %-%+%*%"'z&%%p%%%r H$$@&$$$$$%x$$0%z$$$$$$$$%/' $0%|$$$$$$$$%1'$C&'ߩ'x,'''%Hrecn#%&'''é''9&'u'n<'C';&K'$'o&'ԩ&İ''$n'&'٩&ɰ''''''Y'Q'+':'%%%%%''''"٩'j''d''''T'!' ''S'b  %('-%%%%''Ia%c%}%%t%%g%q%T%M@&%J%?%=%$%%b$0%%:%7%3%$%%%% %'%IC'(?'ߠASU'\@&le_0_l?'Cw''''&Y@%tech5gg'n($(/V'"(0~y''((8_'+(9 '( (>e'1(?'Jƚ@'Rabs_R00( oΩ'@+Rplus_opp_r {GC'9||'((C(V@©(G(H(K(I@(@&R_dist'C(U('(<C 񚠐(@%sin_0'(D(T!ީ1@)exist_sin$l€C-(}'(~;@&sin_in!"'!8('( m'!A('(\&(h((h(@(F''(m((M (& &&'@1Rmult_lt_0_compat='&Z&D(&1@0Rinv_0_lt_compatD@+Rabs_pos_lt'( C(a'&(g' ")'(m'ԩ"(+(%(((@$'(&(ǩ('(y!((&~('>'"@C(ӷ=(Զ((ն@<61'Ҡ('(ߩ('˩(!((7$ʩ(&?!ϩY(S(((@RLG'蠩!(G(!#&(ې(#b%(e(((@d^Y'!z(Y(Ơ!|"$([) ) Ȑ"H4()"(⠷'D)(Ӡ(ՠ((Ǡ(٠!!)!(n( ).()0)(()!(( (Ӡ!( (-'i()(({'Z))$;) )>(젩(ޠ!$(!((7)E(5)G((($y\(렩(!!(G!()&)$)U()!!((L)Z(J)\) ) )3(!('J'H'('%'#)g) $(ᐩ(ِ(((g(N(ũ'0)t''2)v!&&&&)K(&&'@&&'B&ߩ&'D&&ĵ&@(o&&&&r&_'J&&Z0'L&&&&&&&&|')Y&&\0'N&&&&&&&&~')[&C(x))8):r9!֩)<t)>=PRs!(թ)2!!$()F"J)Z')v(ީ ("O() )aj(&;))S" )g'))X()JW)(()())c!"$'''}'z'x)"'z))~'))o()av)(ϩ')"'O'M'L'D)) '<''3''0'*''9'B''9'.''@(°' ''&ũ&'&թ&0'&&&&&&&&'T)&0'&&&&&&&&'V)'(˰)ݩ)"A(Š:#(Ǡ>˩&{))"/(͠+"()8#ǩ)))7":8 ()B)#ѩ'{@.Rmult_lt_reg_l>eЩ'$ѩSN&*)) (* W)ީ)'V"L#&*$O)*a)à)^()۠(=* )̠())РRR))\")*&5&*()֠$-)*+y*)f)ܠ3%)ߠ$pBD/G~@*Rabs_no_R0 )BQDQP^@)Rabs_mult)c)/)"* * CO"1Cᠩ0()&ACz :z*