"` )AltSeries%Reals#Coq@()Notations$Init#Coq@%Logic$Init#Coq@*Logic_Type$Init#Coq@)Datatypes$Init#Coq@&Specif$Init#Coq@%Peano$Init#Coq@"Wf$Init#Coq@'Tactics$Init#Coq@%Tauto$Init#Coq@'Prelude$Init#Coq@)Notations$Init#Coq@0&v!D]hwnv %Logic$Init#Coq@0\͉!Ig)Datatypes$Init#Coq@0.i bYN Z*Logic_Type$Init#Coq@0 1jc6&Specif$Init#Coq@0;RWMi\N'Decimal$Init#Coq@0C涳N*ua#Nat$Init#Coq@0eʤģPSR蠠%Peano$Init#Coq@0 jha|ؠ"Wf$Init#Coq@0q+W,J+'Tactics$Init#Coq@0/9m+ a%Tauto$Init#Coq@0̂"&/rk0JqTttֱ'BinNums'Numbers#Coq@0dmk(5Ju<*EqdepFacts%Logic#Coq@0FI$ͼՋ`)Eqdep_dec%Logic#Coq@0u wWIϰ߼&Basics'Program#Coq@0!bs߯? :VU$Init'Classes#Coq@0](p{yOh.'Tactics'Program#Coq@03u%+Equivalence'Classes#Coq@07;ꮹ-SetoidTactics'Classes#Coq@0S_`nOU$&Setoid'Setoids#Coq@0D9AsWE!>$Bool#Coq@0j 2cZ`FW*Equalities*Structures#Coq@0όe얟)H.Ƞ2Relation_Operators)Relations#Coq@0%s鯰s4Operators_Properties)Relations#Coq@0U3y#h&)Relations#Coq@0r砠*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ&NZSqrt&NatInt'Numbers#Coq@0` .%m%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|&NZBits&NatInt'Numbers#Coq@0MlIpKt'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$&NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ)NMulOrder(Abstract'Natural'Numbers#Coq@04> Aat/ j $NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ'NMaxMin(Abstract'Natural'Numbers#Coq@0]v|Qg̟ʠ'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NLog(Abstract'Natural'Numbers#Coq@0KI'BinList+setoid_ring#Coq@0Au,Ring_polynom+setoid_ring#Coq@0gaKw9`UW+ListTactics%Lists#Coq@0,Jcy{+InitialRing+setoid_ring#Coq@0k/T=cN(Ring_tac+setoid_ring#Coq@0x2]%762f)Ring_base+setoid_ring#Coq@0fbU(2cNe$Ring+setoid_ring#Coq@0Msᬠ)ArithRing+setoid_ring#Coq@0ṔCgt?}%Arith#Coq@0I|кX*o4#Max%Arith#Coq@04=;3$>aU堠#Min%Arith#Coq@0Ce-Fѕ(PreOmega%omega#Coq@0\|چBb~w4%Omega%omega#Coq@0t.J'6\ϨrK(Zpow_def&ZArith#Coq@0f蓜DX;V*ZArithRing+setoid_ring#Coq@0{#'[{nm!/,Zcomplements&ZArith#Coq@0ʾq %RIneq%Reals#Coq@0JUڻIu)$w&DiscrR%Reals#Coq@0z41pV.%Rbase%Reals#Coq@0Jܡ\ c6{%R_Ifp%Reals#Coq@0c4+ZŠ,Fourier_util'fourier#Coq@0ϳ> 4`*r0'Fourier'fourier#Coq@0wV9TN*Rbasic_fun%Reals#Coq@0hܒiclE>%R_sqr%Reals#Coq@0X%MԹ%M+SplitAbsolu%Reals#Coq@0M)&qYlݹ5*SplitRmult%Reals#Coq@0sD\rt/$Even%Arith#Coq@0YO%q}d߫%$Div2%Arith#Coq@0n*Áht!,)ArithProp%Reals#Coq@0B+L?>*e˃a j*Rfunctions%Reals#Coq@0d¹d‹@'Compare%Arith#Coq@0OM v먣5L:'Rseries%Reals#Coq@08]$u+?'SeqProp%Reals#Coq@0Lt2|9D }SSԻ)Rcomplete%Reals#Coq@0{ڸ4q 'PartSum%Reals#Coq@0j&2"(>SqPI9W/${f7FBР)AltSeries%Reals#Coq@A&tg_alt @"Un@)Datatypes$Init@@#nat@,Rdefinitions% @!RӀ!i @%Rmult׀(Rpow_def@#pow#׀@#IZR/r'BinNums'Numbers2@!Z7@C @(positive*@CAB@M@)Datatypes$Init#Coq@@#nat@,Rdefinitions%Reals#Coq@@!RӀP d+k() 77 7!7%'RD\PB@pTx@@@@@AA@@>@,Field_theory+setoid_ring#Coq@@&FEeval>@@A@A"s @,Ring_polynom+setoid_ring#Coq@@&PEeval"s @@A@BA@A@.positivity_seq @!n@#Rle=Ap@@mbA h+k+7T' L7 7%'TʐdH@@@@@O,CV_ALT_step0 @@@ݶ@@'SeqProp%Reals#Coq@@-Un_decreasing"?‐A'Rseries%Reals#Coq@@*Un_growing?!!N*Rfunctions%Reals#Coq@@(sum_f_R0Yc#@ dCB#Nat@#mul )B/A@@@@@,CV_ALT_step1 @@OA?@򀚠瀶@bAgNMCA;$Init#Coq@@#mul > @@@@@堠,CV_ALT_step2 @@Bs@&x,@B@@^p,Rdefinitions%Reals#Coq@@=NEWBa\BS@@@B B@Aݠ@@/r@@7@A@@@@@X,CV_ALT_step3 @@C@뛠@ B@sᩚq뛠hBICA@@@@@,CV_ALT_step4 @@2D"@Հʀ@EA@驚O@&has_ubY9퀩8.DB,@@@@@ɠ&CV_ALT @@gEW@ @zA@@v@%Un_cvɀV&Specif$Init#Coq@@#sig#* @'!l?FQQ@@@@@1alternated_series @@F@WL@ǀA@HkEa:XěxÀ.@@@@@N6alternated_series_ineq @@Gܶ@]因@C@.C@rĩ%Logic$Init#Coq@@#andЖw@ Bπ|BBuA9/쀠BBA@@@@@ՠ%PI_tg @`U@$Rinv8'Raxioms\@#INRrT@#add `[L@ћ.@@ Ӏ `+k6 77!7!7 7$'ࠒtAA@`5L1@~hA@T@@@@@$)PI_tg_pos @@Hd+@e "ȀA@@@@@A0PI_tg_decreasing @@Iꀐ@{ "Ȁ@@@@@U(PI_tg_cv @@Jy2@@@@@c(exist_PI @@K|q*Rfunctions@(sum_f_R0Yc7@ d<Ő@@@@@&Alt_PI @퐩BBР&Specif#@#sig#* @BBB@@@@@!s-/'Rseries0@%Un_cvɀL8u@`3F`$!a@@@􀐐 6= R'>'77 7!k+k6'ࠒ=hMABB@T"D?\KAB@El@@@@@+Alt_PI_ineq @@L}1xzEB<BqA@$Rdiv̀@&" ꩚aBA@@@@@C,Alt_PI_RGT_0 @@MF@#Rlt= A@&@@@@@_@@@ ӳ2@ ӳ2[)Datatypes$Init#Coq@@A@ Գq@ Գq\ @A@AB@cA`_^@A.0TQ+Ring_theory+setoid_ring#Coq@@ABA.U>[J @B@@"O@(PeanoNat%Arith#Coq@#Nat@&of_int"O#Nat$Init#Coq@@ 6@A@A\@&BinInt&ZArith#Coq@!Z@'quotrem\)BinIntDef&ZArith#Coq@!Z@ /@A@\@@+pred_double\@/S@@A@As2@3@&shiftls2*@vY@A@BCs8@8@&shiftrs8/@vY@A@ѓ@>@&squareѓ5@y@A@@D@&to_intϑ;@@A@z@5@&doublez,@/!@A@ABCD/@O@)log2_iter/F@wd@A@NH/@B@&moduloNH/9@1,@A@A\d@G@&of_int\d>@1?A @A@bz@M@&of_natbzD@1?G!@A@#@S@&shiftl#J@1dV@A@#@Y@&shiftr#P@1d\@A@ABCD/x@&BinPos&PArith#Coq@#Pos@)pred_mask/x)BinPosDef&PArith#Coq@#Pos@ )X@A@6@x@&square6o@19@A@AV+L@}@&to_intV+Lt@2@A@V1b@@&to_natV1bz@2 @A@V5=@@&to_posV5=@2@A@ABCl@@)sqrt_iterl@!$:@A@@@6@(sub_mask@-@)@A@ADEF c@@'testbit c@!ć@A@7 B@D@'of_uint7 B;@*`]?@A@AG@I@)mask_rectG@@+ED@A@F˱@O@)add_carryF˱F@+p@A@AB^Ҷ@@'to_uint^Ҷ@#m@A@gL7@@'sqrtremgL7@40@A@Aq@@'testbitq@5)@A@ݎO@@+succ_doubleݎO@6r@A@A p@l@0double_pred_mask pc@0-+m@A@BCD T@&BinNat&NArith#Coq@!N@!t T)BinNatDef&NArith#Coq@!N@ 2@A@ @@#add @3 @A@A l@@#div l@3@A@ Y@%@#eqb Y@3@A@AB #@*@#gcd #!@3n@A@ T@0@#leb T'@3@A@ACEG "@5@#lor ",@3m@A@ q@?@#ltb q6@3@A@A @D@#max ;@3@A@ @J@#min A@3`@A@AB @O@#mul F@3B@A@ ~@U@#odd ~L@3@A@AC =@Z@#one =Q@3@A@ @b@#pow ˑY@3@A@A c@g@#sub c^@3@A@ @m@#two d@3J@A@AB hx@r@$div2 hxi@>@A@ @x@$even o@>4@A@ACD @}@$ggcd Бt@>U@A@ @@$iter }@>:@A@A 3"@@$land 3"@>m@A@ F)@@$log2 F)@>t@A@AB S@@$lxor S@>@A@ @@$pred @?U@A@AC @@$size ܑ@?'@A@ !@@$sqrt !@?@A@A ! @@$succ ! @?\@A@ !7@@$zero !7@@P@A@ *@@%ldiff *@@A@AB g_@1@+pred_double g_(@25\@A@CD m@6@÷ m-@2j@A@S@=@&of_intS㫑4@4}5@A@AS@B@&of_natS9@4};@A@BEFGH\R@G@(mask_ind\R>@4@A@\^@Q@(mask_rec\^H@4@A@A!,@V@&pred_N!,M@4s)@A@B@[@&shiftlR@5X@A@@b@&shiftrY@5X@A@A&@g@&square&ّ^@5,x@A@BC"@l@&to_int"c@5L@A@"@t@&to_nat"k@5L @A@AnTq@y@+testbit_natnTqp@6n@A@B@@(succ_posB@@A@I@@'abs_natI@?n@A@AB.@@'of_uint.@MS@A@3~@@'sqrtrem3~@7]%{@A@ACD,@ @'bitwise,@/v@A@>4'@@'testbit>4'@8g$@A@A{U@@,sqrtrem_step{U@8R@A@u^@9@(div_euclu^0@ @A@Afz@@'to_uintfz@9w@A@Bl@'@'comparel@3R@A@CDEFs8@,@+of_uint_accs8#@5+@A@}@R@,pos_div_eucl}I@&`@A@3x@(@'compare3x@]=@A@A@^@&doubleU@'޺_@A@BCq@@+of_succ_natq@$@A@w@i@&modulowɑ`@)1@A@ADK@n@&of_intKe@)j,I@A@K@v@&of_natKm@)j2_@A@AI@{@&shiftlIr@*O@A@O@@&shiftrOx@*O@A@AB,@@&square,}@*ow@A@Z@@&to_intZ@*81@A@ACE`@@&to_nat`@*9G@A@e@@+testbit_nateđ@+@A@A+{@@'sqrtrem+{ё@,J@A@5z@@'testbit5z@-T|@A@A @@'to_uint ͑@.@A@ @@+succ_double @.^4@A@A#@'@'compare#ݑ@ )Q@A@BCD%t2@,@(size_nat%t2#@ @A@%9@3@+of_uint_acc%9*@ ΋@A@A%V@8@+double_mask%V/@ S@A@%%@>@'div2_up%%5@ "@A@ABEF'ş@C@'Ndouble'ş:@ @A@(b0@K@*shiftl_nat(b0B@9-@A@A(nՖ@P@*shiftr_nat(nՖG@'@A@(@V@0succ_double_mask(M@@A@*W$@\@,compare_cont*W$S@!@A@.0@b@.sub_mask_carry.0Y@΂@A@ABCD.@@!t.@ ;@A@.먩@@#add.먩@ `@A@A.U@@#div.U@ @A@.B@@#eqb.B@ @A@A. @@#gcd. @ @A@.=@@#leb.=@ @A@ABCEGHI. @@#lor. @ @A@.Z@ @#ltb.Z@ @A@A.p@@#max.p@ '@A@B.@@#min. @ @A@.@@#mul.@ @A@AC.g@@#odd.g@ @A@.&@&@#one.&@ @A@A.뾴@+@#pow.뾴"@ k@A@.L@1@#sub.L(@ @A@.@7@#two..@ @A@ABCD.,a@<@$div2.,a3@ @A@.Xz@D@$even.Xz;@ ?1@A@A.@I@$iter.ؑ@@ @A@B. @N@$land. E@ @A@. @T@$log2. K@ @A@ACE.@Y@$lxor.P@ R@A@.y@`@$pred.yW@ `<@A@A.Ʉ@e@$sqrt.Ʉ\@ ;@A@.@l@$succ.c@ @A@.t @r@$zero.t i@ Z@A@AB/@w@.to_little_uint/n@ @A@CDF/@|@%ldiff/s@ H@A@00@@'compare00@?H{@A@A1P%@w@!t1P%n@  @A@B1P@|@#abs1Ps@ @A@1P&@@#add1P&z@ @A@A1P@@#div1Pґ@ y@A@BC1P@@#eqb1P@ f@A@1P@@#gcd1P@ 0@A@A1P@@#geb1P@ T@A@B1P@@#gtb1Pʑ@ q@A@1Pĺ@@#leb1Pĺ@ a@A@A1Pň@@#lor1Pň@ /@A@BCD1P@@#ltb1Pב@ ~@A@1P@@#max1P@ @A@A1P{@@#min1P{@ "@A@B1P]@@#mul1P]@ @A@1P@@#odd1P@ @A@A1Pɣ@@#one1Pɣ@ J@A@BC1P@@#opp1Pԑ@ {@A@1P1@@#pow1P1@ @A@A1P;@@#rem1P;@ @A@B1P@@#sgn1Pˑ@ r@A@1P@@#sub1Pɑ@ p@A@A1Pe@@#two1Pe@  @A@BCDE1[8@@$div21[8ޑ@ @A@1[d@@$even1[d@ I@A@A1[6@@$ggcd1[6@ i@A@B1[U@ @$iter1[U@ @A@1\@@$land1\@ /@A@A1\@@$log21\ @ 6@A@BC1\$@@$lxor1\$@ @A@1\Y@$@$of_N1\YÑ@ >j@A@A1\@)@$pred1\ @ j@A@B1\@.@$quot1\֑%@ }@A@1\@5@$sqrt1\,@ @A@A1\w@:@$succ1\w1@ @A@BC1\k@?@$to_N1\k6@ @A@1]@G@$zero1]>@ eD@A@A2:@L@%abs_N2:C@ @A@21@R@%ldiff21I@ ߵ@A@2=*@X@%quot22=*O@ @A@ABC2kF@@(size_nat2kF@{@A@3@x@(tail_add3o@^q@A@ADEFGH3@}@(tail_mul3t@^@A@5Z@@*shiftl_nat5Z@y/@A@5f}@@*shiftr_nat5f}@4@A@AB5a@@'iter_op5a@ @A@C6w~@@'of_uint6w~@^5@A@8j@@'of_uint8j@'"h@A@9E@@(div_eucl9Eđ@(*k@A@AB:x@6@,Nsucc_double:x-@ ʭ@A@CD@[@&divmod>R@C@A@>@b@&double>Y@NĴ@A@?2@S@,pos_div_eucl?2J@-u@A@AB?;@m@&modulo?;d@"i@A@CEFGIJ@%Arith#Coq@0I|кX*o4)ArithProp%Reals#Coq@0B+L?>*e˃a j)ArithRing+setoid_ring#Coq@0ṔCgt?}*Arith_base%Arith#Coq@0Ĕ}CS&Basics'Program#Coq@0!bs߯? :VU'Between%Arith#Coq@06v*0ur`C0&BinInt&ZArith#Coq@0BpHޞun^)BinIntDef&ZArith#Coq@0ådR4Tuy'BinList+setoid_ring#Coq@0Au&BinNat&NArith#Coq@0K11ڤs+Π)BinNatDef&NArith#Coq@03@1O,[{ 'BinNums'Numbers#Coq@0dmk(5Ju<&BinPos&PArith#Coq@0vyػ0= u)BinPosDef&PArith#Coq@0}H d.%,b$Bool#Coq@0j 2cZ`FW*CMorphisms'Classes#Coq@0qیZBeϠ0CRelationClasses'Classes#Coq@0TL;0RUfw1'Compare%Arith#Coq@0OM v먣5L:+Compare_dec%Arith#Coq@0jXF 8FED@0.i bYN Z)Decidable%Logic#Coq@0ND걸풬/Oߠ'Decimal$Init#Coq@0C涳N*ua&DiscrR%Reals#Coq@0z41pV.$Div2%Arith#Coq@0n*Áht!,%EqNat%Arith#Coq@0AIgՋXRV *EqdepFacts%Logic#Coq@0FI$ͼՋ`)Eqdep_dec%Logic#Coq@0u wWIϰ߼*Equalities*Structures#Coq@0όe얟)H.Ƞ+Equivalence'Classes#Coq@07;ꮹ$Even%Arith#Coq@0YO%q}d߫%)Factorial%Arith#Coq@0@oehJd%Field+setoid_ring#Coq@0J _ȫ)Field_tac+setoid_ring#Coq@0d vDZl^۹H 0B~uYٮ٠'Fourier'fourier#Coq@0wV9TN,Fourier_util'fourier#Coq@0ϳ> 4`*r0-GenericMinMax*Structures#Coq@0måj$"Gt%Arith#Coq@0䙛#c:D $Init'Classes#Coq@0](p{yOh.+InitialRing+setoid_ring#Coq@0k/T=cN"Le%Arith#Coq@0d}Omq+$List%Lists#Coq@0>I+ListTactics%Lists#Coq@0,Jcy{%Logic$Init#Coq@0\͉!Ig*Logic_Type$Init#Coq@0 1jc6"Lt%Arith#Coq@0KZ-eJkP܏#Max%Arith#Coq@04=;3$>aU堠#Min%Arith#Coq@0Ce-Fѕ%Minus%Arith#Coq@0LFtR")Morphisms'Classes#Coq@0Imӽ%\$PD.Morphisms_Prop'Classes#Coq@0% :B'.>u%$Mult%Arith#Coq@0햖Qyb0$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI%NBits(Abstract'Natural'Numbers#Coq@0qteo_hɅ $NDiv(Abstract'Natural'Numbers#Coq@0bz$?[p(5$NGcd(Abstract'Natural'Numbers#Coq@08E-S ;j_Ҡ$NLcm(Abstract'Natural'Numbers#Coq@0 ~xZ9L{:$NLog(Abstract'Natural'Numbers#Coq@0K Aat/ j &NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf+NProperties(Abstract'Natural'Numbers#Coq@0unt"kwpYC%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ%NZAdd&NatInt'Numbers#Coq@00h`ZK4*NZAddOrder&NatInt'Numbers#Coq@0e~1>r砠(NZAxioms&NatInt'Numbers#Coq@0] ρ5r&NZBase&NatInt'Numbers#Coq@0^&8yUL&NZBits&NatInt'Numbers#Coq@0MlIpKt%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZMul&NatInt'Numbers#Coq@0ctR~6[Ƞ*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R'NZOrder&NatInt'Numbers#Coq@0 q;Ve7R W,(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x&NZSqrt&NatInt'Numbers#Coq@0` .%m#Nat$Init#Coq@0eʤģPSR蠠$Nnat&NArith#Coq@0$W;s #%M)Notations$Init#Coq@0&v!D]hwnv *NumPrelude'Numbers#Coq@05WUVŦ]xVXԠ%Omega%omega#Coq@0t.J'6\ϨrK+OmegaLemmas%omega#Coq@0TJ#Jes4Operators_Properties)Relations#Coq@0U3y#h&&Orders*Structures#Coq@0$Znl0\͗+OrdersFacts*Structures#Coq@05Mܿ獐ζΖLB)OrdersTac*Structures#Coq@05'4Ԗ+9%'PartSum%Reals#Coq@0j&2"(>S%Peano$Init#Coq@0 jha|ؠ(PeanoNat%Arith#Coq@0O~2$k[#lZ)Peano_dec%Arith#Coq@0Kݢ*k$Plus%Arith#Coq@04tmG$Pnat&PArith#Coq@0,?pr.gZ(PreOmega%omega#Coq@0\|چBb~w4'Prelude$Init#Coq@0JqTttֱ%Quote%quote#Coq@0J@ŹVz-,3%%RIneq%Reals#Coq@0JUڻIu)$w%R_Ifp%Reals#Coq@0c4+ZŠ%R_sqr%Reals#Coq@0X%MԹ%M'Raxioms%Reals#Coq@0S]jnj][L%Rbase%Reals#Coq@0Jܡ\ c6{*Rbasic_fun%Reals#Coq@0hܒiclE>)Rcomplete%Reals#Coq@0{ڸ4q  ,0(2{Ze$ќ8)RealField+setoid_ring#Coq@0 >ʾq /RelationClasses'Classes#Coq@0Gz rA6ՠ4Relation_Definitions)Relations#Coq@0]4Ѐd{n^2Relation_Operators)Relations#Coq@0%s鯰s)Relations#Coq@0-SetoidTactics'Classes#Coq@0S_`nOU$ ͐0;RWMi\N+SplitAbsolu%Reals#Coq@0M)&qYlݹ5*SplitRmult%Reals#Coq@0sD\rt/'Sumbool$Bool#Coq@0sB ,$11.]m'Tactics$Init#Coq@0/9m+ a'Tactics'Program#Coq@03-2 Q@@@@#_12@A@@@@@@@@#_132M접 @!נ#_14'`o@B.function_scope)nat_scope@A@2 Q@@@@#_15-,@#_162M접 @#_17'`o@A'@A@2 Q@@A@#_18@S@A@@@@N@#_192M접 #_20'`o@BJ@@A@b2 Q@@A@#_21@mS@A@@@@u@#_222M접 #_23'`o@Bq@@A@U2 Q@@A@#_24@`S@A@@@@@#_252M접 #_26'`o@D@@@Ai@2 Q@@A@#_27@S@A@@@@@#_282M접 #_29'`o@DȠǠ@@@Aɠ6@2 Q@@A@#_307@S@A@@@@@#_312M접 #_32'`o@C@@@Aa@2 Q@@A@#_33b@Ú@A@@@@'@#_342M접 #_35'`o@D#@@@@A𠐑@ޠ2 Q@@@@#_36@$1ZC@A@@@@V@#_372M접 #_38'`o@CR@@@A9@Ѡ2 Q@@@@#_39@ 3@A@@@@@#_402M접 #_41'`o@F}'R_scope@@@@Au򠐑ps@2 Q@@@@#_42*9@#_432M접 i@8#_44'`o@A@@Y2 Q@@A@#_45@d2Ҷ@A@@@@@#_462M접 #_47'`o@A@@`2 Q@@A@#_48>@k@$prodt@,Ring_polynom+setoid_ringF@%PExprk@'BinNums'NumbersR@!N7@($Ȑ'fv_list/BhB5k)ArithRing&@0natr_ring_lemma1 ,M𚠐(Ring_tac/@0ring_subst_niter!Z:E1?C6&BinNat&NArith7@&of_natK)BinNatDef=@)j2_BA^DUV@(positive*@C0^-%Logic@$Truey@A @"eq @A@$boolZ'@A@ Ȑ#lmp@.mk_monpol_list(AB<Z@#add T@3 `@#mul Z@3B !xΚi@#eqb Yc@3o@(div_euclu^i@ àŠ@#Monf@@#Polj@@#Peqj*&@*norm_subst7:d0DA<6<0-'0FC>8>2/)sWCT##Nat$@E ` . @(eq_ind_r!2#7C;n=@U   DM)-TV46*\8 ķ8_a =0.eC#G-© " $ Ƶ@|i*d0,Zf0. \1]14`McdLHhRgİVR/^Z5my@#Rle=*Rfunctions@(sum_f_R0Yc)AltSeries@&tg_alt dFv @%Rplus+1 E{!rĩ1,$;̩4\,E`թB$?77/Ʃߩ,G'?'q$S5өF>$;-\>@ީQI FHH-)LGND/%RIneq@1Rplus_le_compat_l?SN j@&eq_ind JbX@#IZR/r@!Z7@Ad&uOw7B)o3!>A9@%Rmult׀(Rpow_def@@#pow#׀2.Cz8: >@3XYƠD% 1-֐(/RInWSBu`ĠAdC4ZPmѠo @.Rplus_le_reg_l -<АyݠZKq 28"Ȑ"H1|zsmYWUHWFa@2RField_ring_lemma1!7P^$!J(&BR k Q"~ &@ ((_&BinInt&ZArith@1P&)BinIntDef@ ̀@1P] @ @#sub1P@ p@#opp1P@ {%Zbool@(Zeq_bool0߀(@'quotrem\#@/ŀϠѠ\ ^_0a9*%O0c;,'!OMJ Y~O~G^^i@)Rplus_0_rH€'Raxioms(@)Rmult_1_l9@*pow_1_evené@)pow_1_odd'G +C-I&CGO!@+Rplus_assoc Tp rt'PartSumV@%tech5g }Š  1KLC'Rseriesc@*Un_growing?!{Ԡ񐑷jh][Y]Wc꠩j^ocշhڠթܠ©qojbrtte{ XI%uEA. ? SM ϩ<( p86.u1-+*u%m9#o;)?5@#.!A0Cz  -*m9'&/^ܩhǠ;ķ i B/M;=ѩŠĩCtzOQCxSŰUP,.ACx䐑'%% w@.positivity_seq^.@'nat_indJ6!i=7v8' , H3@UNeNI08xsmg_? X!#O_`͠,PP+3$/+VJo1pݠ`T&$|&~>͠DtptLr֠MtmOU4MxWH#@)Rmult_1_r+1OC砩d_Whc[nLC]nuC %$Jķ%HrecNoljfdc[iSPliWWTQAmh,"@ 0 n0 pCĠPȠTTYC#ΠZaC'\e O-`)_ZSJId]Iͩ`HzAH w[v٩nLSdu, @)Rle_trans"Щt%,ym/~AB6 ";--;~@+-A6 /9V޷0WN;Q=1V WĠ#F[I&!NaNȐ"H2GE|Z.02Ե@w8r0:ht0<jClOUQpLYUCͰx[0a]2Cհ .4ڰ:lh}rnteK$(z N* :˩Ӑ+ Ω;&GI4H*3&ȩY /ѩ )X:A<ECfDȐ"H3WO ONL!=L Bq祖L|۠ש  `#]13rܠKM٠xxHݠWC ٰC)*b,><<%A !!=|>) -!FG 4(P;ܠ6@_XoS0B}wqiIU0DyskKdM$XhQi֠T#UWPCݠ[Cߠ]Cᠩܠa Fݩ)ArithProp|@,even_odd_coriK@"ex @!p@"or @װmiٰo@&ex_ind 5{jwl) 9L@&or_ind"-1*% Xҩ2-ש&(@,CV_ALT_step2S%ة%@90;ة  ̵3ѷ'V8S&KB)کܵȐ"H4ikr`V@DOB@$0=:5/5)& 0?<717+("PM˩"ڷ#ࠩөթ'f(*<ް6!ݩHz|~Ϡ@~NG^B01qlf`X8D03snhbZ:ST@$Ropp΀S#%'Sc5\7PDi9jנM䐩搩萩GC˩& dX}f~i~eΠS \@+Rplus_opp_r {G%֠[tm(T1^wOGU]-zV|X~C_ZRɩC ũCש 1Pz#+A!m@.is_upper_bound:o$[@#EUn.Xҩ+ G7ʷ- 2ܷݩ80TA{F"x0u ݩC;*TN̩S3DXP?@$pred `<g1VNKIHCWE[Q@?J=5]0_7(# ICFxѠ̠{CM'.Pa|", j<^ o  !C(<@,CV_ALT_step3S*MOCSS2![@*decomp_sum-`(PeanoNat%ArithM,@)lt_0_succ5%44C]C,@%bound1 CM@&has_ubYsqYWHȩ@%Un_cvɀAV@,CV_ALT_step0S8I@,CV_ALT_step4SAR$Ȑ!sw@*growing_cv}|3w&Specif@#sig#* @!l62"BBB@@@@D)HD5'RNȩ!55AǷ.ȩb^ة1) t#epsԷߩ@#Rgt=<Ȑ"H5@1Rmult_lt_0_compat=@$Rinv8֐2ک@0Rinv_0_lt_compatD @1Rplus_lt_0_compat-P@"R1Ȁ@'Rlt_0_14CC @#Rlt= @$Rdiv̀*= 0 , -  .@%Peano /@"ge Uw ѩ#*Rbasic_fun /@$Rabs; w 9@&Rminus&HP*1/V R S - T@&?O>"N2 b"H68 g h B i@;T1)ɠRXg} y z T {@MfC;۠ t"N1 "H7"?@#max.pi@ 'I    p @i_WU ;N  ~ "H8yȐ"H9# tl |!P #H10 Ȑ#H11@"le UxT@ ` A@)le_double;H"]   ө @(le_trans:Щ%  IZ+@.le_succ_diag_r #Max@(le_max_l2EC6- Է=10©"Lt@*lt_n_Sm_le ' L  @"lt Uxc:@+lt_le_trans ŵ7Z:53@.lt_succ_diag_r#c:1C(T  _ead X 'ߩ Z )蠩Y緐#H12Ȑ#H13  /|Z0+w 9 y ; (T퐩[ I  (   P  R  T  ?   !F  ʠ A -  Ƶ @   p i d0Sz  Z f0U|  \  ٠Bh D  xŠB S*IGPs РM?DJI ^ w@,Rle_lt_trans*GӀЩf㠩jl\5n@+Rabs_triang9  A w  \ )"f  @/Rplus_lt_compat":Ȁ,*  O  ԩ 3 :U# %  x  թ  שΠ    ܩ  z ' ࠩ ֩;;"    7   @٠ ѐ N^ | ٩r𚠐 @&Ropp_0 GU`  @ O吩 b]   .   j0  ^   n[.q]z0J@(le_max_r2K   %C'4]zC*KM []a @)pow_1_abs'3ـ` ie@)Rabs_mult)CF|#@)Rabs_Ropp&#𩚠 T@*double_var? F6D ; mk G nX5- ͠ R*B@)Rlt_transCЩB: ڠCfQ   y@.Rmult_lt_reg_l>e K   b  O   u T' k  X Z    (   a4  x % z  ))      0     FF@1Rplus_lt_compat_l ]߀< <t<>C@ B @&double {  J T11 @*Rinv_l_sym9`g~ݩ @'IZR_neq%   . Ȑ#H14  3뷐!e 6 @@AA@AA@@@@@@D!z AA Ӱ G@%Falsee@@ W P@  T    S@)False_induُ C Z@#notШ2~@+Rmult_assoc&& Ԡ!@*Rmult_comm8C       l- "  1  CM @K / 0  1@ @&R_dist     tC̠z ِ G E - + Ӡ  $ @&CV_ALTÚЀ  絩 6@/decreasing_ineq5ɬڀ  3  3C/ 3 ] [ N \ E C ٷ 5  =  e 󵵷 \ l m G n@@Y6. Π q  y  z T {@MfC; ۠ ~       c @\uRJ ꠩   t - o h u ` a  T 6  z$MultR@)mult_O_leܲ A f  ް  j  G  z bQ -/    v     @@A@A@@@@D   ŷ@    CCǠ  K  @&eq_sym X   9  v(  C @   u C Ѷ@N  h   @Πf Ct p  C  !{ J  {   @ȩᠩ V N E 6p     @ש͐Š e uR C  U     @ܐԠ t       K   = C KCI @G +  ,  -@& fC x© z 6Š  ; s * @#andЖw@A     ;> @  8@,growing_ineq `з  Z  LX = Kз  a  &S @,CV_ALT_step1S  EV F F E lA\ P B@#INRr Y B   t ]   s@(lt_0_INR   s [ Y 0 - + # "  l (  @     @ ư      F  0 H         $ v  0 J         & x * C ϰ  !    z   W    C   @%PI_tg "Ȁ    @.Rmult_le_reg_l΀BŐD  5 $J;   E   ! ~O$ԐS  : 3  [ VN    z w u m l d  r  \   Y , "@          0          n   C     N _,C   P c0  N$ ˩   $9 %  T ҩ / }    FD     2  a @     O ;  j @&le_INR逰V               A k a@ O Z M K !   / 0  H E @ : @ 4 1 +   A YC V%  kC Z)  p .  k 2r ]OqP m     © Bn 0@)not_0_INR#rT1 |K " 1NgO,Y@RQ  .ZNCG cB = 穚 K@*Rinv_r_sym9lU䀠"Mɩ Jg ηAh] lH ͵V p  G Vs $%  O{oChQC[ϐoeT{\j ^ =\p d C Q ਗ਼ W@(archimed ŀ O LX x@"upʠ a  , 5 @&le_IZR̀  n H     G Y@'and_ind14ۀЩ * R ]ϩ 1 9搩  " bu @1P, 4 r 橚 @#IZN=D{Q  ѩd7+ F\    %@rbz @s1?G!^H < Wm ʠ  @ݐՠu   a 7_Щ@ 5 2 &   'ɷI$_tmp  J G  +Compare_dec@,lt_eq_lt_dec*&@%sumor$|@@'sumbool7̂K@T_WBAAAA@@@@@Dکe q i ԩk Q "BAAAA@@@@@D, ɩ| ebd n  ۩ NHfɰ  W      Ơ J   P  @*Rlt_irreflnQ L ѐ ?   fXŠX@'nlt_0_r4Ao̠7ط _ٶڶ@Š޷|ZE)|^ ŷݩԠ.I'lL &ߠ^r+wЩ ߠk g qqcY@GREC'0@=828,)#  QNש!XXZ$Plus@)le_plus_lx&̀  * # b$  3C 8= 9A ũ? CyHE-J H H'@NC:.  ٩$IQ[Y ?O PG,=1V\3XdYPW@<_INR%耰&k,)Tq oKrjP\ r;Q0v  x3s  u#|=|=:e ީ ީl ;eC~Qg>yHQtK7M)@&S_pred<=ÀW}԰ Y ޷ް7 nso |x!pC &ϐNzx@1Rinv_le_contravar5ũZb[ Ʃ__CĠ Y @(mult_INR>ٰG@0mult_le_compat_lm, !!ڠnjЩؠ&+@0Rdiv_lt_0_compatʀ/c 7]Ȑ(list_hypYQȐ+field_lemma@3RField_field_lemma1(MkUZ򩜠,Field_theory@%FExprs@In GsCx0Di~J m "&E  q9@w<l"$nfe12@&linear@@ ;@%Fnormw$/~ojd^D6$nfe2@ $7wrlf2>@TkO0>~ysmeS@#num:u(Z@%denum0a0Pwɩ @h@%PCondS<zc AA &c@&to_nat`@*9GA+X.6ة@#appʀ驚@)condition.שkװ@&FEeval>@2gg L%`J|L; @9nn S,gȐ#resȐ&res_eq@(EȐ$res0}A xcIjȐ'res_eq0@Ȑ$res1( u*{.}0{0Ȑ'res_eq1@ /Ƶ0@@-RField_lemma55vd^BYZ~$lock5,(lock_def2ݩ8B |O{V 8G TȩQ됩`HbNE LP@*Rgt_not_eq3ڀ  C<k x,$@Ő@$Fapp{F@&Fcons2w$`QLF@8LqCs5OM)9x: 1% . KIGݩHJ3+5'/$$R@@$8xsmg7? @$>~ysmE@@<`I' ' Hm  b d>ݩf@hQ/ /  W Pu(jkl7M@nW5 5  ] V{.$r .7@## 3">@$$i AR#g °m8oM M 2 n Fd8tR R 7sK5$9M|SbC$<+` ` EY!>@zٰc ''a   ~BBB@@@@D@0 栩, T  5 2, 28  at' @+INR_IZR_INZ#]K : $ C Ҡ   @*Rabs_right |T@&Rle_ge @ HI@)PI_tg_pos2Ҷ@ީC  ʐ  C *@ ( y  @  GC l𐑩e@1alternated_series$1ZCuk@0PI_tg_decreasing*0hYTNH@  zw9" Pϩ E! ;%' E)H ?3=M8P G; =66C M<1@*Rplus_commqAC U zM62۩ UC emY[T<OC ocǠD sFC wkϠC s/s|S-v@)Rmult_0_r+Ȁ4c9"FO