"`$섕$$&Qreals&QArith#Coq@8,Rdefinitions%Reals#Coq@'Raxioms%Reals#Coq@,Field_theory+setoid_ring#Coq@)Field_tac+setoid_ring#Coq@%Field+setoid_ring#Coq@)RealField+setoid_ring#Coq@%RIneq%Reals#Coq@&DiscrR%Reals#Coq@%Rbase%Reals#Coq@+OmegaLemmas%omega#Coq@(PreOmega%omega#Coq@%Omega%omega#Coq@,Zcomplements&ZArith#Coq@(Zpow_def&ZArith#Coq@&Zpower&ZArith#Coq@&BinNat&NArith#Coq@%Zeven&ZArith#Coq@'Zminmax&ZArith#Coq@$Zmin&ZArith#Coq@'BinNums'Numbers#Coq@)BinPosDef&PArith#Coq@&BinPos&PArith#Coq@$Pnat&PArith#Coq@&BinInt&ZArith#Coq@(Zcompare&ZArith#Coq@&Zorder&ZArith#Coq@$Zmax&ZArith#Coq@$Zabs&ZArith#Coq@$Znat&ZArith#Coq@(PeanoNat%Arith#Coq@"Gt%Arith#Coq@$Plus%Arith#Coq@%Minus%Arith#Coq@"Le%Arith#Coq@"Lt%Arith#Coq@$Mult%Arith#Coq@'Between%Arith#Coq@)Peano_dec%Arith#Coq@)Factorial%Arith#Coq@%EqNat%Arith#Coq@&Wf_nat%Arith#Coq@*Arith_base%Arith#Coq@+Compare_dec%Arith#Coq@)auxiliary&ZArith#Coq@*ZArith_dec&ZArith#Coq@%Zbool&ZArith#Coq@%Zmisc&ZArith#Coq@$Wf_Z&ZArith#Coq@&Zhints&ZArith#Coq@+ZArith_base&ZArith#Coq@$Zdiv&ZArith#Coq@*Zlogarithm&ZArith#Coq@&ZArith#Coq@+Ring_theory+setoid_ring#Coq@)Ring_base+setoid_ring#Coq@+InitialRing+setoid_ring#Coq@+ListTactics%Lists#Coq@(Ring_tac+setoid_ring#Coq@$Ring+setoid_ring#Coq@*ZArithRing+setoid_ring#Coq@)Morphisms'Classes#Coq@$Init'Classes#Coq@/RelationClasses'Classes#Coq@4Relation_Definitions)Relations#Coq@-SetoidTactics'Classes#Coq@&Setoid'Setoids#Coq@)Notations$Init#Coq@%Logic$Init#Coq@*Logic_Type$Init#Coq@)Datatypes$Init#Coq@&Specif$Init#Coq@%Peano$Init#Coq@"Wf$Init#Coq@'Tactics$Init#Coq@%Tauto$Init#Coq@'Prelude$Init#Coq@$Bool#Coq@+QArith_base&QArith#Coq@)Notations$Init#Coq@0&v!D]hwnv %Logic$Init#Coq@0\͉!Ig)Datatypes$Init#Coq@0.i bYN Z*Logic_Type$Init#Coq@0 1jc6&Specif$Init#Coq@0;RWMi\N'Decimal$Init#Coq@0C涳N*ua#Nat$Init#Coq@0eʤģPSR蠠%Peano$Init#Coq@0 jha|ؠ"Wf$Init#Coq@0q+W,J+'Tactics$Init#Coq@0/9m+ a%Tauto$Init#Coq@0̂"&/r'Prelude$Init#Coq@0JqTttֱ'BinNums'Numbers#Coq@0dmk(5Ju<*EqdepFacts%Logic#Coq@0FI$ͼՋ`)Eqdep_dec%Logic#Coq@0u wWIϰ߼&Basics'Program#Coq@0!bs߯? :VU$Init'Classes#Coq@0](p{yOh.'Tactics'Program#Coq@03u%+Equivalence'Classes#Coq@07;ꮹ-SetoidTactics'Classes#Coq@0S_`nOU$&Setoid'Setoids#Coq@0D9AsWE!>$Bool#Coq@0j 2cZ`FW*Equalities*Structures#Coq@0όe얟)H.Ƞ2Relation_Operators)Relations#Coq@0%s鯰s4Operators_Properties)Relations#Coq@0U3y#h&)Relations#Coq@0r砠*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ&NZSqrt&NatInt'Numbers#Coq@0` .%m%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|&NZBits&NatInt'Numbers#Coq@0MlIpKt'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$&NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ)NMulOrder(Abstract'Natural'Numbers#Coq@04> Aat/ j $NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ'NMaxMin(Abstract'Natural'Numbers#Coq@0]v|Qg̟ʠ'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NLog(Abstract'Natural'Numbers#Coq@0KI'BinList+setoid_ring#Coq@0Au,Ring_polynom+setoid_ring#Coq@0gaKw9`UW+ListTactics%Lists#Coq@0,Jcy{+InitialRing+setoid_ring#Coq@0k/T=cN(Ring_tac+setoid_ring#Coq@0x2]%762f)Ring_base+setoid_ring#Coq@0fbU(2cNe$Ring+setoid_ring#Coq@0Msᬠ)ArithRing+setoid_ring#Coq@0ṔCgt?}%Arith#Coq@0I|кX*o4#Max%Arith#Coq@04=;3$>aU堠#Min%Arith#Coq@0Ce-Fѕ(PreOmega%omega#Coq@0\|چBb~w4%Omega%omega#Coq@0t.J'6\ϨrK(Zpow_def&ZArith#Coq@0f蓜DX;V*ZArithRing+setoid_ring#Coq@0{#'[{nm!/,Zcomplements&ZArith#Coq@0ʾq %RIneq%Reals#Coq@0JUڻIu)$w&DiscrR%Reals#Coq@0z41pV.0Jܡ\ c6{$Zdiv&ZArith#Coq@0gho4S*Zlogarithm&ZArith#Coq@0|P#ar&ZArith#Coq@0ߴ#ҤР;0#-\D7* Q,"f\* vKi4|yɫaCd?zР&Qreals&QArith#Coq@A#Q2R @!x+QArith_base@@!Q4+@,Rdefinitions%Reals @%Rmult׀ @#IZR/r@$Qnum4OA@$Rinv8'BinNums'Numbers2@!Z7@B=@$Qden4@F+QArith_base&QArith#Coq@@!Q4+@,Rdefinitions%Reals#Coq@@!RӀ t+k7 97 7 7 7 7%'РY`IHDx0XYTl@@@@@AA@@>@,Field_theory+setoid_ring#Coq@@&FEeval>@@A@A"s @,Ring_polynom+setoid_ring#Coq@@&PEeval"s @@A@BA@A@&IZR_nz @@@!p'BinNums'Numbers#Coq@@(positive*@%Logic$Init#Coq@@#notШ@"eq @,Rdefinitions%Reals#Coq@@mӀy@#IZR/r7@!Z7@BAРϠ@@/rA@@@@@u'eqR_Qeq @@A!y@E@!RӀ@>B 멚+QArith_base&QArith#Coq@@#Qeq4?C@@@@@'Qeq_eqR @@;B+倶6逶@"(~946@@@@@Ƞ'Rle_Qle @@XCHS@@#Rle=PGF@#Qle4?|?O@@@@@頠'Qle_Rle @@yDi#t'@fN%>r@@@@@'Rlt_Qlt @@E>B@@#Rlt=@#Qlt4?{@@@@@%'Qlt_Rlt @@F_c@%z@@@@@@(Q2R_plus @@Gz˛~ɩĐ@%Qplus5p1y@%Rplus+1@@@@@e(Q2R_mult @@H因3鐩@%Qmult5o%@@@@@'Q2R_opp @@IN  @$Qopp4\@$Ropp΀ @@@@@)Q2R_minus @@5J%߀0〩s.)0@&Qminus̀e+@&Rminus&H@@@@@ɠ'Q2R_inv @@YKI@O@#Qeq4?1XAv+@(positive*@Cfah@$Qinv4ƀbHk@@@@@'Q2R_div @@L}7;@ڀ8Ѐ@$Qdiv4Zw@$Rdiv̀$@@@@@'@@@ ӳ2@ ӳ2[)Datatypes$Init#Coq@@A@ Գq@ Գq\ @A@AB@cA('&@A.0TQ+Ring_theory+setoid_ring#Coq@@ABA.U>[J @B@@"O@(PeanoNat%Arith#Coq@#Nat@&of_int"O#Nat$Init#Coq@@ 6@A@A\@&BinInt&ZArith#Coq@!Z@'quotrem\)BinIntDef&ZArith#Coq@!Z@ /@A@\@@+pred_double\@/S@@A@As2@3@&shiftls2*@vY@A@BCs8@8@&shiftrs8/@vY@A@ѓ@>@&squareѓ5@y@A@@D@&to_intϑ;@@A@z@5@&doublez,@/!@A@ABCD/@O@)log2_iter/F@wd@A@NH/@B@&moduloNH/9@1,@A@A\d@G@&of_int\d>@1?A @A@bz@M@&of_natbzD@1?G!@A@#@S@&shiftl#J@1dV@A@#@Y@&shiftr#P@1d\@A@ABCD/x@&BinPos&PArith#Coq@#Pos@)pred_mask/x)BinPosDef&PArith#Coq@#Pos@ )X@A@6@x@&square6o@19@A@AV+L@}@&to_intV+Lt@2@A@V1b@@&to_natV1bz@2 @A@V5=@@&to_posV5=@2@A@ABCl@@)sqrt_iterl@!$:@A@@@6@(sub_mask@-@)@A@ADEF c@@'testbit c@!ć@A@7 B@D@'of_uint7 B;@*`]?@A@AG@I@)mask_rectG@@+ED@A@F˱@O@)add_carryF˱F@+p@A@AB^Ҷ@@'to_uint^Ҷ@#m@A@gL7@@'sqrtremgL7@40@A@Aq@@'testbitq@5)@A@ݎO@@+succ_doubleݎO@6r@A@A p@l@0double_pred_mask pc@0-+m@A@BCD T@&BinNat&NArith#Coq@!N@!t T)BinNatDef&NArith#Coq@!N@ 2@A@ @@#add @3 @A@A l@@#div l@3@A@ Y@%@#eqb Y@3@A@AB #@*@#gcd #!@3n@A@ T@0@#leb T'@3@A@ACEG "@5@#lor ",@3m@A@ q@?@#ltb q6@3@A@A @D@#max ;@3@A@ @J@#min A@3`@A@AB @O@#mul F@3B@A@ ~@U@#odd ~L@3@A@AC =@Z@#one =Q@3@A@ @b@#pow ˑY@3@A@A c@g@#sub c^@3@A@ @m@#two d@3J@A@AB hx@r@$div2 hxi@>@A@ @x@$even o@>4@A@ACD @}@$ggcd Бt@>U@A@ @@$iter }@>:@A@A 3"@@$land 3"@>m@A@ F)@@$log2 F)@>t@A@AB S@@$lxor S@>@A@ @@$pred @?U@A@AC @@$size ܑ@?'@A@ !@@$sqrt !@?@A@A ! @@$succ ! @?\@A@ !7@@$zero !7@@P@A@ *@@%ldiff *@@A@AB g_@1@+pred_double g_(@25\@A@CD m@6@÷ m-@2j@A@S@=@&of_intS㫑4@4}5@A@AS@B@&of_natS9@4};@A@BEFGH\R@G@(mask_ind\R>@4@A@\^@Q@(mask_rec\^H@4@A@A!,@V@&pred_N!,M@4s)@A@B@[@&shiftlR@5X@A@@b@&shiftrY@5X@A@A&@g@&square&ّ^@5,x@A@BC"@l@&to_int"c@5L@A@"@t@&to_nat"k@5L @A@AnTq@y@+testbit_natnTqp@6n@A@B@@(succ_posB@@A@I@@'abs_natI@?n@A@AB.@@'of_uint.@MS@A@3~@@'sqrtrem3~@7]%{@A@ACD,@ @'bitwise,@/v@A@>4'@@'testbit>4'@8g$@A@A{U@@,sqrtrem_step{U@8R@A@u^@9@(div_euclu^0@ @A@Afz@@'to_uintfz@9w@A@Bl@'@'comparel@3R@A@CDEFs8@,@+of_uint_accs8#@5+@A@}@R@,pos_div_eucl}I@&`@A@3x@(@'compare3x@]=@A@A@^@&doubleU@'޺_@A@BCq@@+of_succ_natq@$@A@w@i@&modulowɑ`@)1@A@ADK@n@&of_intKe@)j,I@A@K@v@&of_natKm@)j2_@A@AI@{@&shiftlIr@*O@A@O@@&shiftrOx@*O@A@AB,@@&square,}@*ow@A@Z@@&to_intZ@*81@A@ACE`@@&to_nat`@*9G@A@e@@+testbit_nateđ@+@A@A+{@@'sqrtrem+{ё@,J@A@5z@@'testbit5z@-T|@A@A @@'to_uint ͑@.@A@ @@+succ_double @.^4@A@A#@'@'compare#ݑ@ )Q@A@BCD%t2@,@(size_nat%t2#@ @A@%9@3@+of_uint_acc%9*@ ΋@A@A%V@8@+double_mask%V/@ S@A@%%@>@'div2_up%%5@ "@A@ABEF'ş@C@'Ndouble'ş:@ @A@(b0@K@*shiftl_nat(b0B@9-@A@A(nՖ@P@*shiftr_nat(nՖG@'@A@(@V@0succ_double_mask(M@@A@*W$@\@,compare_cont*W$S@!@A@.0@b@.sub_mask_carry.0Y@΂@A@ABCD.@@!t.@ ;@A@.먩@@#add.먩@ `@A@A.U@@#div.U@ @A@.B@@#eqb.B@ @A@A. @@#gcd. @ @A@.=@@#leb.=@ @A@ABCEGHI. @@#lor. @ @A@.Z@ @#ltb.Z@ @A@A.p@@#max.p@ '@A@B.@@#min. @ @A@.@@#mul.@ @A@AC.g@@#odd.g@ @A@.&@&@#one.&@ @A@A.뾴@+@#pow.뾴"@ k@A@.L@1@#sub.L(@ @A@.@7@#two..@ @A@ABCD.,a@<@$div2.,a3@ @A@.Xz@D@$even.Xz;@ ?1@A@A.@I@$iter.ؑ@@ @A@B. @N@$land. E@ @A@. @T@$log2. K@ @A@ACE.@Y@$lxor.P@ R@A@.y@`@$pred.yW@ `<@A@A.Ʉ@e@$sqrt.Ʉ\@ ;@A@.@l@$succ.c@ @A@.t @r@$zero.t i@ Z@A@AB/@w@.to_little_uint/n@ @A@CDF/@|@%ldiff/s@ H@A@00@@'compare00@?H{@A@A1P%@w@!t1P%n@  @A@B1P@|@#abs1Ps@ @A@1P&@@#add1P&z@ @A@A1P@@#div1Pґ@ y@A@BC1P@@#eqb1P@ f@A@1P@@#gcd1P@ 0@A@A1P@@#geb1P@ T@A@B1P@@#gtb1Pʑ@ q@A@1Pĺ@@#leb1Pĺ@ a@A@A1Pň@@#lor1Pň@ /@A@BCD1P@@#ltb1Pב@ ~@A@1P@@#max1P@ @A@A1P{@@#min1P{@ "@A@B1P]@@#mul1P]@ @A@1P@@#odd1P@ @A@A1Pɣ@@#one1Pɣ@ J@A@BC1P@@#opp1Pԑ@ {@A@1P1@@#pow1P1@ @A@A1P;@@#rem1P;@ @A@B1P@@#sgn1Pˑ@ r@A@1P@@#sub1Pɑ@ p@A@A1Pe@@#two1Pe@  @A@BCDE1[8@@$div21[8ޑ@ @A@1[d@@$even1[d@ I@A@A1[6@@$ggcd1[6@ i@A@B1[U@ @$iter1[U@ @A@1\@@$land1\@ /@A@A1\@@$log21\ @ 6@A@BC1\$@@$lxor1\$@ @A@1\Y@$@$of_N1\YÑ@ >j@A@A1\@)@$pred1\ @ j@A@B1\@.@$quot1\֑%@ }@A@1\@5@$sqrt1\,@ @A@A1\w@:@$succ1\w1@ @A@BC1\k@?@$to_N1\k6@ @A@1]@G@$zero1]>@ eD@A@A2:@L@%abs_N2:C@ @A@21@R@%ldiff21I@ ߵ@A@2=*@X@%quot22=*O@ @A@ABC2kF@@(size_nat2kF@{@A@3@x@(tail_add3o@^q@A@ADEFGH3@}@(tail_mul3t@^@A@5Z@@*shiftl_nat5Z@y/@A@5f}@@*shiftr_nat5f}@4@A@AB5a@@'iter_op5a@ @A@C6w~@@'of_uint6w~@^5@A@8j@@'of_uint8j@'"h@A@9E@@(div_eucl9Eđ@(*k@A@AB:x@6@,Nsucc_double:x-@ ʭ@A@CD@[@&divmod>R@C@A@>@b@&double>Y@NĴ@A@?2@S@,pos_div_eucl?2J@-u@A@AB?;@m@&modulo?;d@"i@A@CEFGIJ@%Arith#Coq@0I|кX*o4)ArithRing+setoid_ring#Coq@0ṔCgt?}*Arith_base%Arith#Coq@0Ĕ}CS&Basics'Program#Coq@0!bs߯? :VU'Between%Arith#Coq@06v*0ur`C0&BinInt&ZArith#Coq@0BpHޞun^)BinIntDef&ZArith#Coq@0ådR4Tuy'BinList+setoid_ring#Coq@0Au&BinNat&NArith#Coq@0K11ڤs+Π)BinNatDef&NArith#Coq@03@1O,[{ 'BinNums'Numbers#Coq@0dmk(5Ju<&BinPos&PArith#Coq@0vyػ0= u)BinPosDef&PArith#Coq@0}H d.%,b$Bool#Coq@0j 2cZ`FW*CMorphisms'Classes#Coq@0qیZBeϠ0CRelationClasses'Classes#Coq@0TL;0RUfw1+Compare_dec%Arith#Coq@0jXF 8432@0.i bYN Z)Decidable%Logic#Coq@0ND걸풬/Oߠ'Decimal$Init#Coq@0C涳N*ua&DiscrR%Reals#Coq@0z41pV.%EqNat%Arith#Coq@0AIgՋXRV *EqdepFacts%Logic#Coq@0FI$ͼՋ`)Eqdep_dec%Logic#Coq@0u wWIϰ߼*Equalities*Structures#Coq@0όe얟)H.Ƞ+Equivalence'Classes#Coq@07;ꮹ)Factorial%Arith#Coq@0@oehJd%Field+setoid_ring#Coq@0J _ȫ)Field_tac+setoid_ring#Coq@0d vDZl^۹H0B~uYٮ٠-GenericMinMax*Structures#Coq@0måj$"Gt%Arith#Coq@0䙛#c:D $Init'Classes#Coq@0](p{yOh.+InitialRing+setoid_ring#Coq@0k/T=cN"Le%Arith#Coq@0d}Omq+$List%Lists#Coq@0>I+ListTactics%Lists#Coq@0,Jcy{Ґ0\͉!Ig*Logic_Type$Init#Coq@0 1jc6"Lt%Arith#Coq@0KZ-eJkP܏#Max%Arith#Coq@04=;3$>aU堠#Min%Arith#Coq@0Ce-Fѕ%Minus%Arith#Coq@0LFtR")Morphisms'Classes#Coq@0Imӽ%\$PD.Morphisms_Prop'Classes#Coq@0% :B'.>u%$Mult%Arith#Coq@0햖Qyb0$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI%NBits(Abstract'Natural'Numbers#Coq@0qteo_hɅ $NDiv(Abstract'Natural'Numbers#Coq@0bz$?[p(5$NGcd(Abstract'Natural'Numbers#Coq@08E-S ;j_Ҡ$NLcm(Abstract'Natural'Numbers#Coq@0 ~xZ9L{:$NLog(Abstract'Natural'Numbers#Coq@0K Aat/ j &NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf+NProperties(Abstract'Natural'Numbers#Coq@0unt"kwpYC%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ%NZAdd&NatInt'Numbers#Coq@00h`ZK4*NZAddOrder&NatInt'Numbers#Coq@0e~1>r砠(NZAxioms&NatInt'Numbers#Coq@0] ρ5r&NZBase&NatInt'Numbers#Coq@0^&8yUL&NZBits&NatInt'Numbers#Coq@0MlIpKt%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZMul&NatInt'Numbers#Coq@0ctR~6[Ƞ*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R'NZOrder&NatInt'Numbers#Coq@0 q;Ve7R W,(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x&NZSqrt&NatInt'Numbers#Coq@0` .%m#Nat$Init#Coq@0eʤģPSR蠠$Nnat&NArith#Coq@0$W;s #%M)Notations$Init#Coq@0&v!D]hwnv *NumPrelude'Numbers#Coq@05WUVŦ]xVXԠ%Omega%omega#Coq@0t.J'6\ϨrK+OmegaLemmas%omega#Coq@0TJ#Jes4Operators_Properties)Relations#Coq@0U3y#h&&Orders*Structures#Coq@0$Znl0\͗+OrdersFacts*Structures#Coq@05Mܿ獐ζΖLB)OrdersTac*Structures#Coq@05'4Ԗ+9%%Peano$Init#Coq@0 jha|ؠ(PeanoNat%Arith#Coq@0O~2$k[#lZ)Peano_dec%Arith#Coq@0Kݢ*k$Plus%Arith#Coq@04tmG$Pnat&PArith#Coq@0,?pr.gZ(PreOmega%omega#Coq@0\|چBb~w4'Prelude$Init#Coq@0JqTttֱ Ґ0#-\D7* Q,"f\%Quote%quote#Coq@0J@ŹVz-,3%%RIneq%Reals#Coq@0JUڻIu)$w'Raxioms%Reals#Coq@0S]jnj][L%Rbase%Reals#Coq@0Jܡ\ c6{ J0(2{Ze$ќ8)RealField+setoid_ring#Coq@0 >ʾq /RelationClasses'Classes#Coq@0Gz rA6ՠ4Relation_Definitions)Relations#Coq@0]4Ѐd{n^2Relation_Operators)Relations#Coq@0%s鯰s)Relations#Coq@0-SetoidTactics'Classes#Coq@0S_`nOU$&Specif$Init#Coq@0;RWMi\N'Sumbool$Bool#Coq@0sB ,$11.]m'Tactics$Init#Coq@0/9m+ a'Tactics'Program#Coq@03t2 Q@@@@"_7@>@A@@@@@@@@"_82M접 @rנ"_9'`o@A'Q_scope@L@2 Q@@A@#_10@ 8@A@@@@)@#_112M접 #_12'`o@A.positive_scope@@#_13X@$core@@@@B(META1622@@7@AU@@@@a_SHC95䩚.&@A@@@6Coq.QArith.Qreals#<>#13%Logic$Init#Coq@@#notШA@%Logic$Init;@@"eq @,RdefinitionsG @!RӤ @%Rmultנ(META1623(META1624@#IZR/r'BinNums'Numbers+@!Z7@A%RIneq%Reals#Coq@@=Rmult_integral_contrapositive\0@@w"r1,Rdefinitions%Reals#Coq@@!RӀ"r2@q@#andЖw@e@#notШm@eRP@A# }#!@6Coq.QArith.Qreals#<>#23@۠2 Q@@A@#_14@;Iq@A@@@@\@#_152M접 #_16'`o@CXZ@@9@Ҡ2 Q@@A@#_17 @-@A@@@@@#_182M접 #_19'`o@C@@Ӡ֠@2 Q@@A@#_209@j@A@@@@@#_212M접 #_22'`o@C@@@2 Q@@A@#_23f@@A@@@@@#_242M접 #_25'`o@Cߠ@@-0"@2 Q@@A@#_26@ @A@@@@@#_272M접 #_28'`o@C @@Z]@ 2 Q@@A@#_29@-@A@@@@=@#_302M접 #_31'`o@C9;@@@@2 Q@@A@#_32@)fa@A@@@@j@#_332M접 #_34'`o@Bfh@@"2 Q@@A@#_35@-f3@A@@@@@#_362M접 #_37'`o@B@ܠ@,2 Q@@A@#_38?@79@A@@@@@#_392M접 #_40'`o@A@@/2 Q@@A@#_41c@:7@A@@@@@#_422M접 #_43'`o@Bܠ@),@42 Q@@A@#_44@?9T@A@@@@ @#_452M접 #_46'`o@B@@Q@(2 Q@@A@#_47@39@A@@@@1@#_482M접 #_49'`o@C-/@@{~@#_564e;)q2r_simpl@@@@BB@A ؐ`aA@@AB吩bcA@@Cǀ𐓠dA@@AD֠efA@@E̩ gA@@FwijA@@ABCD@A@@@@@'*@\@AO@B@A7@*@@ABCD@A@@@@@ס@7@A@A8@T@A@@@@¡@;@A@A#@Y@A@Bg@w@A@@@A@AC@@@@@A@A@@A@@i@A@@Q@A@ABC@AB@@@@@A@A@@A@@~@A@A@t@A@@h@A@@^@A@ABCD@A@@A@@A@@#_50:}9 @@@#_51:}9 @@@#_52:}9 @@@#_53:}9 @@@#_54:}9 @@@#_55:}9 @@@@ |-=ʈ%ᄕ@=? ̣Xti @Ɯ1ɒ`gS23@Ykׯ3*BT664!p'BinNums'Numbers#Coq@@(positive*@%RIneq%Reals @)not_0_IZR#s8@!Z7@BA!H%Logic$Init(@"eq @AȐ"H0B@@@@@D!y@ 0C*@&B(@%Falsee@41&A &$7,*Ȑ"H1;@&eq_ind J6QD!e<U@@AA@AA@@@@@@D!zGA[.@W@$Truey@@6ASg9a@)False_induُ@no@j_]]CroAfdCr@#notШz!x+QArith_base&QArith@!Q4+@ @BB@@@@D!qz@,Rdefinitions@!RӀ @%Rmult׀@#IZR/r0@$Qnum4O@$Rinv8͐A@$Qden4% ҩ%ސ٩Ӱȩ&BinInt&ZArith@#mul1P])BinIntDef@ 7):+򐷐"x1䷐"x2ujcw@`XSNAO^J E 9`EV@g%X "y1"y2H%#~szBN@&eq_IZR -ĀfF iN@@(eq_ind_r!2#!rQXe :Ʃ`ȩGGnȐ"X1"Ȑ$X2nz&Qreals@&IZR_nz8-zӐ'ՐqȐ"X2ڐ!Ȑ"Y1?Ȑ$Y2nzȐ"Y2 }TWQG6uȐ(list_hyp)Datatypes@$list]@A @$prodt@,Ring_polynom+setoid_ring@%PExprk@  Ȑ+field_lemma@3RField_field_lemma1(Mk(Ring_tac@0ring_subst_niter!6BCɩEy=G橜,Field_theory,@%FExprs@G ⩜D眠C쩜"B I"$ #lmpG^`Y@#Monf@`@#Polj@[@i@.mk_monpol_list(5+R@#add1P&L@ ̀XX@#sub1PR@ p^@#opp1PX@ {%Zboolc@(Zeq_bool0߀l@'quotrem\f@/ŀ M$nfe1i@&linear@@S r@%Fnormw$OM54.("{a$nfe2@` $WU=<60*ai@e@$boolZ'@@#Peqj*g:@*norm_subst7:d0nlTSMGA9>Gs@#num:uzB@%denum0f0ihb\VNS .A@@%PCondS<!z@%Rplus+1 @&Rminus&H@$Ropp΀ @#nat@&BinNat&NArith!N@&to_nat`)BinNatDef @*9G(Rpow_def@#pow#׀8L;N2@#appʀ'@)condition.Щ©N@&FEeval>@UqPNLIDU@$Rdiv̀=JC=,\M_O@b~][YVQ ERKE4Ȑ#res]Ȑ&res_eq @(4Ȑ$res0A]DaCCg +|jȐ'res_eq0+@Ȑ$res1Ȑ'res_eq1 @ͩ  4 @ͩL@-RField_lemma55vic^_$lock"le%(lock_defG N8>W 8Cx}zPv\=`C<N @3`@4z@$Fapp{FW@&Fcons2w$^\DC=71)b24Q͠Mx rکҠԠ3;֠5 h?/~ޠEpb@.Rinv_r_simpl_m= x&O(|M_R,U_6שЩȰ<ʰ g̰ aŰǰɰAӰW@pn@qg$öbt@wm$ɶ@`@.<.J)'%"02֩4Kϰ7@9U420-()" ;ܩ=?3@A]<:850$1*$'өөe̩ .6ŵ@--ݩoõ@.. *^8^zYWURMHNGA0%c8c^\ZWRMSLF5%e'g)i $ĩ $2Co<ojhfc^Y_XRA '@HaΩ&@(mult_IZR>өi٩C@~vq fu ~yt&-r:m /$\5#Ex;hNCĶ(Ŷ@F@#Q2R>U@#Qeq4?η۶?ܶ@]Rc˩àrb~T@tizqzdbq`vq_D> A {S萩éIJѩg ҠI޷^ܠ &DiscrR@&IZR_eqw,Y#&57C˰3+ԩ-20 @3RField_field_lemma3(Mm BөDF̩H:ݩߩ@Ҷ@$ @$&#den@&rsplit@D@ &@%splitў9:֩.-@{^@(Pphi_powcH}{yvq rkeT+InitialRingd@)get_signZ#7L^0RXH@,rsplit_right=H&$ |k0(& _e,*T@+rsplit_left>@<3xhQpmh:jGa@\>sRQlf@aCjTRGQOLHFH8C}E9 75@gg3MOxJrA6=@iiȐ$res2fA\WS jȐ'res_eq2pt@hh(h 4],MIv1کҠ}(ݩw~נ'Ȑ(hyp_listȐ'fv_list1@2RField_ring_lemma1!7c,\@'o"W0lke_YQ0nmga[SUCHta[uHvc]jk_4b`\c 8 'Zeh8,  ҰSհmװ]޷trܰZa@#andЖw@AM°*FQư.J{C0<0L+)'$  @ojeC@Ӱȩ©ٰA94)8A<1@Cnlm@ȩWxvkdxy@a@#Rle=_:,@1P,2 1y@I<쩚3@&le_IZR̀ڷ)*ҩͷ./olje]ѩ_%a\@Z0[\2H^4R:8@%@E$<:"!sN@K$B@('y!T@@<F{}zYs@nPfk({@vX&ig\fda][]_OV!LJ@))Hbd[S&HO@(( 8a0QMzFC$>:84y;8p =@8u0IG4C< 7d@1MũV2rLb۩ԩ̰ ΰаmɰʩ˰oO@hf@i_$| Zl@m@T@"<">  $&"(@*F%#!  ,Щ.@0L+)'$ e@a_l װީA8A]<:850+1*$F8FbA?=:506/)H  J^CM<MiHFDA<7=60@OG[SI٩UMoOϷZTVQDY@1Rmult_le_compat_rbP!@,Rmult_le_posN85꩚(@&IZR_leN #!w@*comparison;f@L@'compare3xF@]=C@0%B=;@7>;"0Ml C*Ȑ"H2 /)=Z44@@@@@@@@@@@D!c=]000^0_@ZA333bE7C_9STqǵSfMG[A1VPR@nUOcw<w:t[UiO@za S7Ad^1 VV&#C~ޠZxvpnC@meVJC l @D> @#Qle4?|V |@=;9ȷ"$@1/ӵ-+GgEC:20-j+F=)3| )l!#%q&ƠǩCɠ'%2&ѩ$&sɶ@@ְ$߶~@ܰ$ @|@J<JfECA>94:3- L(N@PlKIGD?3@93"R& @TpOMKHC7D=7&?յ@!!ѩѵ@   ϩ̰Ƿ l8lgec`[V\UO>ɩq8qljhe`[aZTC3s+ΩZ}I%C<~|zwrmslfU*"@©} %231mjhc[]<V,LX.Wkܶ42@@?$64m  H@i@@<<qUuKe@`Bw|yZ|k@fHYWLVTQMKM=vJz<:@8g6e %N>:g30+'%!f(m8]*-8bxrfx|*7KL@4@#Rlt=ө@"lt1P-ސη ]RK_@ҩ琷׷ Щ @<_IZR%̀WX%ϩ[\)^yw`tarpzcrflg4fckl9 !@1Rmult_lt_compat_r ?r  (@1Rmult_lt_0_compat=m ho jp|   C@MHC @R@#Qlt4?ꐑ @[b 5C %A Z @dk > . c @k 3 } C T5 /) Y(ש ӷ ϩTéOe ; d[ dC@C G@E? Q n֩ΠɐĐvQީ&BinPos&PArith #Pos@=N)BinPosDef@#FՐ䐩     z      |+ԩ      صq ߠ s ķ e        ȩ" "| k &n  4. 'O )O ; հ = 5 ީ # 2   G ? J  L DH ( R J÷ U  W OS 3 ] UǷ `  b Z^>a_>;94, l. n0 p2 r- + -E &2 g+ 6 /"  : .5< q; @׶@ #ک$   Q ,ݶ@ )$   W 2@ɶ@<   $ ziY  \  ` b ]f < V@  Q  3 xh  k  o  r  9oBf@  a  C 7TRGQOLHF HE Mz߰ Ox QLB@>@??<V X <C@>>   , U $ E A n:7:2.,( m/ t8   d 1 148   i  ީ D    ֐BDB t)         " #SC<      m @: Ʃɩ u @(plus_IZR  , %Pos2Z@'inj_mul,:$C      A    ΐ  #@C G E  F ư . J@%Qplus5p1y0F W U J C W  X ذ @ 8 3 . ࠩ  4 k . =  )  I       p e ^ r  Z R M H  '  3Z H W  C  c     0  X    u m h >"U rR  } u      E  '           c ` ^ Y Q   S  ѩ U  ҩ W   R 6 P & F 5 (" T *g V , BQ ڶ 2 0@ @ =$ 4 2   k    F@ C$ : 8   q    L@@<    >  s  u  w  y  t} S m@   h  J          .w@   r  T  ,ec Xb`]YW Y   J HF@--D^ `   $FM@..   6 _ . O K xDA*<862 w9 ~8    n $ ;>8    s           KI   1C<      h @5 琩 C     ꐩ  ɠ | ꐩ     $C + )  *  d .@%Qmult5o * ; 9 . ' ;  #    à      ؐ   #  Ԑ  ķ    ; +   > ذ @ 8  2 ? =      J    ٩ H      @ ж  @   $           @   $     $    @ @ d< d  _ ] [ X S N  T M G 6 & fd *  h @ j  e c a ^ Y  M  Z S M < , l" @ n  i g e b ]  Q  ^ W Q @         XH   @$$  @!!        ܷة  $ 8     ~ { v q  w p j Y  8       { v  | u o ^ N aC <        {   z t c  0@Щ    H@-Ropp_Ropp_IZRǀ C 4     <    Q   (C  ɩ I  @$Qopp4\ Y   ٷ = ک  ©   ũ _  f  !   ˩ e ͩ Ǡx n  ѩ ! @'Q2R_opp9 x* N) @(Q2R_plusfaC   a  ~ 8 @&Qminus̀a     @     ʩ  ֐    Ơ  Ω      ] *  (   ѩ     ԩ  C     Ő         v o @ O İ    ʠ  7 1 ܐ  Ѱ 9 1 , ' 3 * ܠ  F   ࠩ  #     蠩;  5 D  0 < R M B Q  =$ װ      o g  U n W m G C@    A   C  (C@    J q #  * P 5 h *       5 (  b ` 9 I | ? 2  F k i B  J   W       d %   ^ 鐩 ^ S  p ;  U 1         ?     q n a i  g e@ R ( &@  (@ t + !$ k i Q P  J D >  }@ @ <         o      !  ~  @          u       @          y       }    ~6 > i2 d ~  p {   } t D f m@ ,  V  N o k  d a \ X V R  Y  8              [ ^ 8  "           ة Ȱ Vh e c  Ͱ  R 7  b 0 ;    4 C D C <  8             @ [C  ޶@ E   砩    - ' Ґ  ǰ / ' "  )  Ҡ  <   ֠ 搩  ܠ    ߠ2   , ;  ' 3 I D 9 H 4%!     (P  b ` ? < : 5 !   & # %    @   ¶@  Ķ@ ǩ $   >   @ @ ~ 0@   { y w t o + c  p i c R6 2@   } { y v q - e r k e T          0     M q    @C)    e y  i ~C_]@ Đ9. f  ?B lQ F      Q 0} Vf  \<d ` h  u   ʠ Ő!  ɐ 'C  @ ,}  7@$Qinv4ƀS ѐ A q N   E    PU  Z O   4 ' 7@'Q2R_inv9T  d/ A@(Q2R_multf3C978@@! s=@$Qdiv4Z  z5X}Jz