"`2&Qpower&QArith#Coq@D+Ring_theory+setoid_ring#Coq@)Ring_base+setoid_ring#Coq@+InitialRing+setoid_ring#Coq@)Notations$Init#Coq@%Logic$Init#Coq@*Logic_Type$Init#Coq@)Datatypes$Init#Coq@&Specif$Init#Coq@%Peano$Init#Coq@"Wf$Init#Coq@'Tactics$Init#Coq@%Tauto$Init#Coq@'Prelude$Init#Coq@+ListTactics%Lists#Coq@(Ring_tac+setoid_ring#Coq@$Ring+setoid_ring#Coq@*ZArithRing+setoid_ring#Coq@x)Notations$Init#Coq@0&v!D]hwnv %Logic$Init#Coq@0\͉!Ig)Datatypes$Init#Coq@0.i bYN Z*Logic_Type$Init#Coq@0 1jc6&Specif$Init#Coq@0;RWMi\N'Decimal$Init#Coq@0C涳N*ua#Nat$Init#Coq@0eʤģPSR蠠%Peano$Init#Coq@0 jha|ؠ"Wf$Init#Coq@0q+W,J+'Tactics$Init#Coq@0/9m+ a%Tauto$Init#Coq@0̂"&/r'Prelude$Init#Coq@0JqTttֱ'BinNums'Numbers#Coq@0dmk(5Ju<*EqdepFacts%Logic#Coq@0FI$ͼՋ`)Eqdep_dec%Logic#Coq@0u wWIϰ߼&Basics'Program#Coq@0!bs߯? :VU$Init'Classes#Coq@0](p{yOh.'Tactics'Program#Coq@03u%+Equivalence'Classes#Coq@07;ꮹ-SetoidTactics'Classes#Coq@0S_`nOU$&Setoid'Setoids#Coq@0D9AsWE!>$Bool#Coq@0j 2cZ`FW*Equalities*Structures#Coq@0όe얟)H.Ƞ2Relation_Operators)Relations#Coq@0%s鯰s4Operators_Properties)Relations#Coq@0U3y#h&)Relations#Coq@0r砠*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ&NZSqrt&NatInt'Numbers#Coq@0` .%m%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|&NZBits&NatInt'Numbers#Coq@0MlIpKt'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$&NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ)NMulOrder(Abstract'Natural'Numbers#Coq@04> Aat/ j $NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ'NMaxMin(Abstract'Natural'Numbers#Coq@0]v|Qg̟ʠ'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NLog(Abstract'Natural'Numbers#Coq@0KI'BinList+setoid_ring#Coq@0Au,Ring_polynom+setoid_ring#Coq@0gaKw9`UW+ListTactics%Lists#Coq@0,Jcy{+InitialRing+setoid_ring#Coq@0k/T=cN(Ring_tac+setoid_ring#Coq@0x2]%762f)Ring_base+setoid_ring#Coq@0fbU(2cNe$Ring+setoid_ring#Coq@0Msᬠ(Zpow_def&ZArith#Coq@0f蓜DX;Vt0{#'[{nm!/+OmegaLemmas%omega#Coq@0TJ#Jes)ArithRing+setoid_ring#Coq@0ṔCgt?}%Arith#Coq@0I|кX*o4#Max%Arith#Coq@04=;3$>aU堠#Min%Arith#Coq@0Ce-Fѕ(PreOmega%omega#Coq@0\|چBb~w4%Omega%omega#Coq@0t.J'6\ϨrK,Zcomplements&ZArith#Coq@0@,Field_theory+setoid_ring#Coq@@&FEeval>@@A@A"s @,Ring_polynom+setoid_ring#Coq@@&PEeval"s @@A@BA@A@(Qpower_1 @@Awv@!Z7@os@&Qpower'B^AZKAdA`Q@@@@@D1Qpower_positive_0 @@B}AxAmAA s@@@@@f(Qpower_0 @@C@@7@@%Logic$Init#Coq@@#notШ@"eq @ A"@A؀iAGBAM@@@@@5Qpower_not_0_positive @@D!aڀ  @@BAmשNC3A@@@@@ܠ3Qpower_pos_positive @@GE!p <;@/@#Qle4?|AB $A'BinNums'NumbersF@@!Z7@A  Q@@(positive*@COJ|@@@@@ *Qpower_pos @@FDC}@AXAEBKbAOp@@@@@F4Qmult_power_positive @@Gu!bz@%Qmult5oCBA CABA@@@@@}+Qmult_power @@H754e΀_2CBA9nCAtBA@@@@@3Qinv_power_positive @@Iۀ  󀠩@$Qinv4ƀBA BA@@@@@נ*Qinv_power @@BJ-+4&)BA/ŀBA@@@@@*Qdiv_power @@hKS,0`驚RV{-@}'B @$Qdiv4ZOAT@@@@@,,Qinv_power_n @@LR54y@@(*@pA@BcAB*@(inject_Z:'BinNums'Numbers#Coq@@!Z7@BAB@@@@@y4Qpower_plus_positive @@Mϛ؛'BinNums'Numbers#Coq@@(positive*@!m܀ҀC&BinPos&PArith#Coq@#Pos@#add=[J @B@@"O@(PeanoNat%Arith#Coq@#Nat@&of_int"O#Nat$Init#Coq@@ 6@A@A\@&BinInt&ZArith#Coq@!Z@'quotrem\)BinIntDef&ZArith#Coq@!Z@ /@A@\@@+pred_double\@/S@@A@As2@3@&shiftls2*@vY@A@BCs8@8@&shiftrs8/@vY@A@ѓ@>@&squareѓ5@y@A@@D@&to_intϑ;@@A@z@5@&doublez,@/!@A@ABCD/@O@)log2_iter/F@wd@A@NH/@B@&moduloNH/9@1,@A@A\d@G@&of_int\d>@1?A @A@bz@M@&of_natbzD@1?G!@A@#@S@&shiftl#J@1dV@A@#@Y@&shiftr#P@1d\@A@ABCD/x@&BinPos&PArith#Coq@#Pos@)pred_mask/x)BinPosDef&PArith#Coq@#Pos@ )X@A@6@x@&square6o@19@A@AV+L@}@&to_intV+Lt@2@A@V1b@@&to_natV1bz@2 @A@V5=@@&to_posV5=@2@A@ABCl@@)sqrt_iterl@!$:@A@@@6@(sub_mask@-@)@A@ADEF c@@'testbit c@!ć@A@7 B@D@'of_uint7 B;@*`]?@A@AG@I@)mask_rectG@@+ED@A@F˱@O@)add_carryF˱F@+p@A@AB^Ҷ@@'to_uint^Ҷ@#m@A@gL7@@'sqrtremgL7@40@A@Aq@@'testbitq@5)@A@ݎO@@+succ_doubleݎO@6r@A@A p@l@0double_pred_mask pc@0-+m@A@BCD T@&BinNat&NArith#Coq@!N@!t T)BinNatDef&NArith#Coq@!N@ 2@A@ @@#add @3 @A@A l@@#div l@3@A@ Y@%@#eqb Y@3@A@AB #@*@#gcd #!@3n@A@ T@0@#leb T'@3@A@ACEG "@5@#lor ",@3m@A@ q@?@#ltb q6@3@A@A @D@#max ;@3@A@ @J@#min A@3`@A@AB @O@#mul F@3B@A@ ~@U@#odd ~L@3@A@AC =@Z@#one =Q@3@A@ @b@#pow ˑY@3@A@A c@g@#sub c^@3@A@ @m@#two d@3J@A@AB hx@r@$div2 hxi@>@A@ @x@$even o@>4@A@ACD @}@$ggcd Бt@>U@A@ @@$iter }@>:@A@A 3"@@$land 3"@>m@A@ F)@@$log2 F)@>t@A@AB S@@$lxor S@>@A@ @@$pred @?U@A@AC @@$size ܑ@?'@A@ !@@$sqrt !@?@A@A ! @@$succ ! @?\@A@ !7@@$zero !7@@P@A@ *@@%ldiff *@@A@AB g_@1@+pred_double g_(@25\@A@CD m@6@÷ m-@2j@A@S@=@&of_intS㫑4@4}5@A@AS@B@&of_natS9@4};@A@BEFGH\R@G@(mask_ind\R>@4@A@\^@Q@(mask_rec\^H@4@A@A!,@V@&pred_N!,M@4s)@A@B@[@&shiftlR@5X@A@@b@&shiftrY@5X@A@A&@g@&square&ّ^@5,x@A@BC"@l@&to_int"c@5L@A@"@t@&to_nat"k@5L @A@AnTq@y@+testbit_natnTqp@6n@A@B@@(succ_posB@@A@I@@'abs_natI@?n@A@AB.@@'of_uint.@MS@A@3~@@'sqrtrem3~@7]%{@A@ACD,@ @'bitwise,@/v@A@>4'@@'testbit>4'@8g$@A@A{U@@,sqrtrem_step{U@8R@A@u^@9@(div_euclu^0@ @A@Afz@@'to_uintfz@9w@A@Bl@'@'comparel@3R@A@CDEFs8@,@+of_uint_accs8#@5+@A@}@R@,pos_div_eucl}I@&`@A@3x@(@'compare3x@]=@A@A@^@&doubleU@'޺_@A@BCq@@+of_succ_natq@$@A@w@i@&modulowɑ`@)1@A@ADK@n@&of_intKe@)j,I@A@K@v@&of_natKm@)j2_@A@AI@{@&shiftlIr@*O@A@O@@&shiftrOx@*O@A@AB,@@&square,}@*ow@A@Z@@&to_intZ@*81@A@ACE`@@&to_nat`@*9G@A@e@@+testbit_nateđ@+@A@A+{@@'sqrtrem+{ё@,J@A@5z@@'testbit5z@-T|@A@A @@'to_uint ͑@.@A@ @@+succ_double @.^4@A@A#@'@'compare#ݑ@ )Q@A@BCD%t2@,@(size_nat%t2#@ @A@%9@3@+of_uint_acc%9*@ ΋@A@A%V@8@+double_mask%V/@ S@A@%%@>@'div2_up%%5@ "@A@ABEF'ş@C@'Ndouble'ş:@ @A@(b0@K@*shiftl_nat(b0B@9-@A@A(nՖ@P@*shiftr_nat(nՖG@'@A@(@V@0succ_double_mask(M@@A@*W$@\@,compare_cont*W$S@!@A@.0@b@.sub_mask_carry.0Y@΂@A@ABCD.@@!t.@ ;@A@.먩@@#add.먩@ `@A@A.U@@#div.U@ @A@.B@@#eqb.B@ @A@A. @@#gcd. @ @A@.=@@#leb.=@ @A@ABCEGHI. @@#lor. @ @A@.Z@ @#ltb.Z@ @A@A.p@@#max.p@ '@A@B.@@#min. @ @A@.@@#mul.@ @A@AC.g@@#odd.g@ @A@.&@&@#one.&@ @A@A.뾴@+@#pow.뾴"@ k@A@.L@1@#sub.L(@ @A@.@7@#two..@ @A@ABCD.,a@<@$div2.,a3@ @A@.Xz@D@$even.Xz;@ ?1@A@A.@I@$iter.ؑ@@ @A@B. @N@$land. E@ @A@. @T@$log2. K@ @A@ACE.@Y@$lxor.P@ R@A@.y@`@$pred.yW@ `<@A@A.Ʉ@e@$sqrt.Ʉ\@ ;@A@.@l@$succ.c@ @A@.t @r@$zero.t i@ Z@A@AB/@w@.to_little_uint/n@ @A@CDF/@|@%ldiff/s@ H@A@00@@'compare00@?H{@A@A1P%@w@!t1P%n@  @A@B1P@|@#abs1Ps@ @A@1P&@@#add1P&z@ @A@A1P@@#div1Pґ@ y@A@BC1P@@#eqb1P@ f@A@1P@@#gcd1P@ 0@A@A1P@@#geb1P@ T@A@B1P@@#gtb1Pʑ@ q@A@1Pĺ@@#leb1Pĺ@ a@A@A1Pň@@#lor1Pň@ /@A@BCD1P@@#ltb1Pב@ ~@A@1P@@#max1P@ @A@A1P{@@#min1P{@ "@A@B1P]@@#mul1P]@ @A@1P@@#odd1P@ @A@A1Pɣ@@#one1Pɣ@ J@A@BC1P@@#opp1Pԑ@ {@A@1P1@@#pow1P1@ @A@A1P;@@#rem1P;@ @A@B1P@@#sgn1Pˑ@ r@A@1P@@#sub1Pɑ@ p@A@A1Pe@@#two1Pe@  @A@BCDE1[8@@$div21[8ޑ@ @A@1[d@@$even1[d@ I@A@A1[6@@$ggcd1[6@ i@A@B1[U@ @$iter1[U@ @A@1\@@$land1\@ /@A@A1\@@$log21\ @ 6@A@BC1\$@@$lxor1\$@ @A@1\Y@$@$of_N1\YÑ@ >j@A@A1\@)@$pred1\ @ j@A@B1\@.@$quot1\֑%@ }@A@1\@5@$sqrt1\,@ @A@A1\w@:@$succ1\w1@ @A@BC1\k@?@$to_N1\k6@ @A@1]@G@$zero1]>@ eD@A@A2:@L@%abs_N2:C@ @A@21@R@%ldiff21I@ ߵ@A@2=*@X@%quot22=*O@ @A@ABC2kF@@(size_nat2kF@{@A@3@x@(tail_add3o@^q@A@ADEFGH3@}@(tail_mul3t@^@A@5Z@@*shiftl_nat5Z@y/@A@5f}@@*shiftr_nat5f}@4@A@AB5a@@'iter_op5a@ @A@C6w~@@'of_uint6w~@^5@A@8j@@'of_uint8j@'"h@A@9E@@(div_eucl9Eđ@(*k@A@AB:x@6@,Nsucc_double:x-@ ʭ@A@CD@[@&divmod>R@C@A@>@b@&double>Y@NĴ@A@?2@S@,pos_div_eucl?2J@-u@A@AB?;@m@&modulo?;d@"i@A@CEFGIJ@x%Arith#Coq@0I|кX*o4)ArithRing+setoid_ring#Coq@0ṔCgt?}*Arith_base%Arith#Coq@0Ĕ}CS&Basics'Program#Coq@0!bs߯? :VU'Between%Arith#Coq@06v*0ur`C00BpHޞun^)BinIntDef&ZArith#Coq@0ådR4Tuy'BinList+setoid_ring#Coq@0Au&BinNat&NArith#Coq@0K11ڤs+Π)BinNatDef&NArith#Coq@03@1O,[{ 'BinNums'Numbers#Coq@0dmk(5Ju<10vyػ0= u)BinPosDef&PArith#Coq@0}H d.%,b$Bool#Coq@0j 2cZ`FW*CMorphisms'Classes#Coq@0qیZBeϠ0CRelationClasses'Classes#Coq@0TL;0RUfw1+Compare_dec%Arith#Coq@0jXF 8('&@0.i bYN Z)Decidable%Logic#Coq@0ND걸풬/Oߠ'Decimal$Init#Coq@0C涳N*ua%EqNat%Arith#Coq@0AIgՋXRV *EqdepFacts%Logic#Coq@0FI$ͼՋ`)Eqdep_dec%Logic#Coq@0u wWIϰ߼*Equalities*Structures#Coq@0όe얟)H.Ƞ+Equivalence'Classes#Coq@07;ꮹ)Factorial%Arith#Coq@0@oehJd%Field+setoid_ring#Coq@0J _ȫ)Field_tac+setoid_ring#Coq@0d vDZl^۹H `0B~uYٮ٠-GenericMinMax*Structures#Coq@0måj$"Gt%Arith#Coq@0䙛#c:D $Init'Classes#Coq@0](p{yOh.+InitialRing+setoid_ring#Coq@0k/T=cN"Le%Arith#Coq@0d}Omq+$List%Lists#Coq@0>I+ListTactics%Lists#Coq@0,Jcy{ +0\͉!Ig*Logic_Type$Init#Coq@0 1jc6"Lt%Arith#Coq@0KZ-eJkP܏#Max%Arith#Coq@04=;3$>aU堠#Min%Arith#Coq@0Ce-Fѕ%Minus%Arith#Coq@0LFtR")Morphisms'Classes#Coq@0Imӽ%\$PD.Morphisms_Prop'Classes#Coq@0% :B'.>u%$Mult%Arith#Coq@0햖Qyb0$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ*NArithRing+setoid_ring#Coq@0_ .Ys!Р'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI%NBits(Abstract'Natural'Numbers#Coq@0qteo_hɅ $NDiv(Abstract'Natural'Numbers#Coq@0bz$?[p(5$NGcd(Abstract'Natural'Numbers#Coq@08E-S ;j_Ҡ$NLcm(Abstract'Natural'Numbers#Coq@0 ~xZ9L{:$NLog(Abstract'Natural'Numbers#Coq@0K Aat/ j &NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf+NProperties(Abstract'Natural'Numbers#Coq@0unt"kwpYC%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ%NZAdd&NatInt'Numbers#Coq@00h`ZK4*NZAddOrder&NatInt'Numbers#Coq@0e~1>r砠(NZAxioms&NatInt'Numbers#Coq@0] ρ5r&NZBase&NatInt'Numbers#Coq@0^&8yUL&NZBits&NatInt'Numbers#Coq@0MlIpKt%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZMul&NatInt'Numbers#Coq@0ctR~6[Ƞ*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R'NZOrder&NatInt'Numbers#Coq@0 q;Ve7R W,(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x&NZSqrt&NatInt'Numbers#Coq@0` .%m#Nat$Init#Coq@0eʤģPSR蠠$Nnat&NArith#Coq@0$W;s #%M)Notations$Init#Coq@0&v!D]hwnv *NumPrelude'Numbers#Coq@05WUVŦ]xVXԠ%Omega%omega#Coq@0t.J'6\ϨrK+OmegaLemmas%omega#Coq@0TJ#Jes4Operators_Properties)Relations#Coq@0U3y#h&&Orders*Structures#Coq@0$Znl0\͗+OrdersFacts*Structures#Coq@05Mܿ獐ζΖLB)OrdersTac*Structures#Coq@05'4Ԗ+9%%Peano$Init#Coq@0 jha|ؠ(PeanoNat%Arith#Coq@0O~2$k[#lZ)Peano_dec%Arith#Coq@0Kݢ*k$Plus%Arith#Coq@04tmG$Pnat&PArith#Coq@0,?pr.gZ(PreOmega%omega#Coq@0\|چBb~w4'Prelude$Init#Coq@0JqTttֱW0#-\D7* Q,"f\&Qfield&QArith#Coq@0td;X񦐳#@`*Qreduction&QArith#Coq@0nDk%}Y%Quote%quote#Coq@0J@ŹVz-,3%/RelationClasses'Classes#Coq@0Gz rA6ՠ4Relation_Definitions)Relations#Coq@0]4Ѐd{n^2Relation_Operators)Relations#Coq@0%s鯰s)Relations#Coq@0-SetoidTactics'Classes#Coq@0S_`nOU$&Specif$Init#Coq@0;RWMi\N'Sumbool$Bool#Coq@0sB ,$11.]m'Tactics$Init#Coq@0/9m+ a'Tactics'Program#Coq@032 Q@@A@"_6@9+@A@@@@@@@@"_72M접"_8'`o@A.positive_scope@@2 Q@@A@"_9!@/@A@@@@'@#_102M접 #_11'`o@A'Z_scope@@2 Q@@A@#_12F@9*@A@@@@L@#_132M접 #_14'`o@AJ@O@2 Q@@A@#_15j@.@A@@@@p@#_162M접 #_17'`o@BI@@@~2 Q@@A@#_18@G_@A@@@@@#_192M접 #_20'`o@C'Q_scope@@t@z2 Q@@A@#_21@@A@@@@@#_222M접 #_23'`o@C.Ơ@@Ϡ@c2 Q@@A@#_24@n*&@A@@@@@#_252M접 #_26'`o@C[Π@@Π@j2 Q@@A@#_27@u" @A@@@@ @#_282M접 #_29'`o@C"@-@a2 Q@@A@#_30H@l7x@A@@@@N@#_312M접 #_32'`o@C+@*-@`2 Q@@A@#_33v@k1ˏ@A@@@@|@#_342M접 #_35'`o@B䠐|@V@^2 Q@@A@#_36@i@A@@@@@#_372M접 #_38'`o@B @7@a2 Q@@A@#_39@l3@A@@@@@#_402M접 #_41'`o@C68@e@`2 Q@@A@#_42@k9l@A@@@@@#_432M접 #_44'`o@Bՠ@|@<2 Q@@A@#_45@G@A@@@@%@#_462M접 #_47'`o@C%'@X[@2 Q@@A@#_48M@*@A@@@@S@#_492M접 #_50'`o@B.@--@2 Q@@A@#_51v@ Z@A@@@@|@#_522M접 #_53'`o@D䠐|~@@Y @2 Q@@A@#_54@r@A@@@@@#_552M접 #_56'`o@D@@@֠2 Q@@A@#_57@H@A@@@@@#_582M접 #_59'`o@DH@@&@͠2 Q@@A@#_60 @ئ@A@@@@@#_612M접 #_62'`o@Cz@EH@ˠ2 Q@@A@#_63:@-@A@@@@@@#_642M접 #_65'`o@C@@Ǡ2 Q@@A@#_69h@@A@@@@n@#_702M접 #_71'`o@CGI@@@2 Q@@A@#_72@7p@A@@@@@#_732M접 #_74'`o@A@s@2 Q@@@@#_75@@A@@@@@#_762M접 #_77'`o@C@ƠԠD@@@d%SZ'@D[fν[j儕@t]q/*M@Β!%o%9ž* ̄VU\!n'BinNums'Numbers#Coq@@(positive*@ @,positive_ind?Uз+QArith_base&QArith@#Qeq4? @/Qpower_positive:Rހ@!Q4+@A3@!Z7@B;CAA?#IHn-%lemma2(#B$)Morphisms'ClassesL@=trans_co_eq_inv_impl_morphism&ni$.D/RelationClasses@6Equivalence_TransitiveW NN@(Q_Setoid'LT@%Qmult5oHQLC OQQ-@>Reflexive_partial_app_morphism 2R,(!y++m7@*respectful%WO?22tt t@*Qmult_comp<@5Equivalence_Reflexive"Hn@)False_induُueeR!A3)YnR$HFfwcwwZ@1Qpower_positive_09*^C̠z1J@ɵpi$_]wC!aoȷ!Xg!Hcܶ ȠE͠F Ӡɠ<õȐ!o@.Qmult_integralpG٠@"or @ݩ BAAAA@@@@@D@HDI㠷"H086 I.&@4JS"K"H1 [DC;B@eq-#bZXPP N7T%F@T=:+74;\CSC9@"3 CH~6"C!pig"HpU@#Qle4?|=cзus LT[:zx9e@1Qmult_le_0_compatJ3b: JJC`h۷M C$goҵVC)lt#]L6B˷϶@4d5xĠXf=;ש8)DatatypesF@*comparison;f@&BinInt&ZArith@'compare3x)BinIntDef@]=@#mul1P] @ @$Qnum4O@$Qden4̩ϩ '8Cé@&eq_ind JB9!eEE@@@@@@@@@@@D!cNA@%Falsee@@$Truey@ A)CC3)v"@3Qpower_pos_positive܀CAu#!@0Qinv_le_0_compat q* CPnmڷ!bݷ86)з;9$Ԡ#̩֠ FD 3)m2&$<頩ru7?~A,PR  - -  ֠ :Ȑ(hyp_list@$list]@A@$prodt@,Ring_polynom+setoid_ring@%PExprk@@ Ȑ'fv_list$BKMĩOG QG/&Qfield@2Qfield_ring_lemma1\h𚠐(Ring_tac(@0ring_subst_niter!r3Gjl:Dqs vx z"}     "ڵR:@$boolZ'@A@} Ȑ#lmpf@.mk_monpol_list(њ@%Qplus5p1y@&Qminus̀@$Qopp4\@(Qeq_bool=ʀ+InitialRing@(triv_div3wZ̩ś@#Monf@@#Polj@@#Peqj*)@*norm_subst7:d0?:50+{0A<72-cPC%ՠ&EC $3Sy@ynlG4X/0 9:id_ZU%10 ;<kfa\W'zCOEکIPөѰUӰɩ8*n@bO#sJ0%TUzup@Ch^Hc;LI1W2xT'RW@!C3U_kX$NL\XiXXPZ@4Qmult_power_positive" <s ZsCנyM۠ݠH{t$jhzx~z_ÐIŐ0x(ΐnҐfԐ$@/Qinv_mult_distr ;@RCӠ ѩթ~א0з䠩ڠ$堩>$/,詷" ĠƠ)*@>trans_sym_co_inv_impl_morphism'\|$@/Equivalence_PER/;, נ4;e38::,:B4:q$>N CA7RS_]e]$ M SME!!Š #)# 5T0T(T-W#CXNij `oCbXAt@(nK4v~CwQJ$@>[̩BΠ@3Qinv_power_positive1ˏ_K CȠha$WUx_b$CҐnoe\Zg?^$~|oq;u?ِ E@+Qmult_power7xywڠꐩ$~,yvoXjeZ @*Qinv_power\nsCB ;.@$Qdiv4Z=֩"J֩ @(inject_Z:*$ҩOS%©!@+Qpower_comp ɩq˩8d1@*Qmake_Qdiv 6. 9s3Ew5 y0  $D*M=!l@*Qdiv_power3ۀE>#S!C$W`G.Z@)Qdiv_comp 8N955 b7995@(Qpower_1/˵ ,EکI;ɰ0C@yf:a0<kl*Wc0>mn,YCrDFG!m+Ring_theory@+pow_pos_add?b[$VD!qYZO)@+Qmult_assoc$ADm{CH&BinPos&PArith#Pos@#add=6z 85zzD@0subrelation_reflv ?8( A 8(L@9iff_flip_impl_subrelation2VA}_Lz@4Qpower_positive_comp,TĀm    ̩ѩҩשI ةߩ"}$sq*-u-~$ɠ"i&$$KF&<ϩˠn,ify3IEW#NEQݠ砩$\`NN bTTbV@+Qdiv_mult_l=:@5Qpower_not_0_positiveG_-Ȑ!R4Relation_Definitions)Relations@(relation'JjȐ"R0Cж@à ;=!#G$*נ!$2&6Y7T ,0_@4Qpower_plus_positive:)b@(eq_ind_r!2#`KaLB/(Q3+@'sub_addؾYwCZZcFe@C9`i|k?\j)kClvftH  }k\8Ŷƶ@g@1P&@ ̀ɩ6?f"m0׷۶@|ϠͩeGՠwRFDB$! t7i99@Ro0q_A0sa C6h5ַa_A><|321)X׵@o˩PRCϠ O?: CNµzxZWUNMC⠩b<M" @  ^53,7@˩+&q©2-4/ְD|zqpogX_Z=@=20 0-(#q j O ש O@#appʀt@)condition. _  Ω -@&FEeval>@  " #R MH= C * }$ m  ,PL @  * +Z UPE K 2 , uȐ#res?@Ȑ&res_eqˠF @Hm(  8 9h c^YT  $Ȑ$res0A Ȑ'res_eq0ߠ 4@Ȑ$res1 ذȐ'res_eq1 @ b  3 A@@-Qfield_lemma55cYTO~Px$lock"le'(lock_def $  Y|8 @ o p .  @w q M@8 E t u 3  E| v  G ~QM h0YC< S   A  S  5 ` n@ a@$Fapp{F \@&Fcons2w$ c   Q2 g7V C   Q#   թ? $ y  w ʐ > ΐʠ\ ɰ ?? = A @5Qpower_minus_positive Z q  1lN/-4K ѩM pD  ,J !!+'  @@ $     ¶ @  $      ȶ@ @<        ; +k ܩm  mfݩ @       E 5u ȩw  ʐNq-@   #    N > ' X]_\B@,, afG@++ 6  J M    ' ° 8   = 83   h X#8   B =8 %  m ]    # @#andЖw@A ꐩ ; )  ? -L'C><  1 2a \W D 9 3 |9  @C E  g C ?P  P F r(]' $  W  L Zԩb W 4 }   7éڰ " = $ &wh@@ $ . ] ^ ~ I@ $ 4 c d " O@@t< 8 g h & z 8o i  :e` }P@ > m n ,  >u o  @MT@ B q r 0  By s  GEDB?;9 G|42@0*5@      2 [ i('" : o8 V   D  V  V$8 [   I  [  թ ]v+) zC< c   Q  c   p ~@C   ȩ XO @'pos_sub< @+ie & @,pos_sub_spec= ,C   9  kǩ     ٷ5    @ Ƞ  H   {    trTQO  HGC ܠ  \     J\  -õ 3     . 9   ]   e@    3 ש  9  ) ΰ 1        %   ( G )    {ywu|F nc \` ,D@WUS@LCU@ ɰXN$   D ?:5  @A@%<   H C> +   s c6 ,@   L GB7 = $ w g0@   N ID9 ? & y  i21g`iԵ@ X  l o 4   ҩѰG̷Ʒ©  <8  / 0_ ZU B 7 1 zCΩA8  4 5d _Z G < 6  CD<  7 8g b] J ? 9 #  #@  #C KY A ! $  R  a c \ 1RR Р T 8  pa@@@ $ ) X Y ~y  D@@ nA@ / ^ _ y  /f ` C@ 1 ` a {  1h b 64s31.*m!gf!@     v  G U 쵩> XUJNFC< F u v 4  F} w } S a@C  à   ൩ bߩ [$ Q  O l; 1  q X4 @Զж@2Ҷ@ Fթ$ b   P  }@@ z@ h   V  h  ѩ|@ j   X  j  omljgc(Z&DU*OZ@      W  MLGCA=wE}C< }   k  }    @*C    {ѩrsC Ǡ  G 7 yD    $      ߰   U C ⠩  b < ) =   5c 6 4   ;p !۷ԩ  2 -x ũ  7  8 ٠ O   84  ? ' ʩ B  ,    W  Jy Kx  Nw Ov  :   M M  e O  >   T T  i V   % _ -  $  * !     P@(Qpower_0.9 ֩ { t  } ꐩ    s k ? -  - w    Š w D w       Ϡ  -  U C           a O      {        @ UR / qM ^  a O  c b , 5  w  #  e  S d P Ȑ*to_rewrite  ; j  =   멵#Heq *  _  # Ȑ-list_hyp_normJ Ȑ0list_hyp_norm_eqI@Ȑ*ring_lemma @2Qfield_ring_lemma2\i  :   c q"pe &#npe @ E  0 a    O       n |  /@&PEeval"s 8 j    X   j    N 6@(Pphi_powcH q    _   q     멚%@-get_sign_None} 8 & | A  } F  @ h  0     r     ' T  Ȑ#thm m   ͠)8     |      = $ |@ y ȩ 0          8  0 g Ȑ$thm0    ߠ;8         *  O 6  s ө   u   C@  W  ĩ  z t \ C  ߩ  ~ a   ;   Bw )  )       b   b ,        f d b }       z y  ~  t   M y    w  )    @~z8   >  9 4  i Y  éuH   @  ; 6   1 k [p  j fc^\'8   G  B =  r bd ߩ C v  w $ܵs@ ٰ ( 0  $% T  O J E @  V^ k;8  +, [  V Q 3 - v&A?  %D  1A  G  C@_I 7G]CK 9    i e    Ѡ l         ۠J9 a O  Sp         Br O ` V3u Q b"e$  gShh   = l ?    * _  # H M ~JB 9@ 6  w0R  @       T$o ʰdr8[  I  [    p*  a  , | qC@ /C U   6"p0ŷ  b X 1  㵩 y  h j  L!   HC       e,`]vV     @S D  F  = <Q y A 7 r TO MKJHA  # @  ԩ 0       D  <  頩E8    4$ Y @  ݩ      C@  C  eL ?  F{ -9   g f  hk  j j  l:      q,  u s q       Ű     "\ l he`^o Եk@ Ѱ  0 L G B = 8  N k  X e 58%& U P K-'p   ;*) > +,+ C@V@./TCB0 ` \   ȠH z  Ҡv0XFJ    9 K(j FW{\ ^ ϩxaMbb 6e 8   橵# X   A miF wC`;\ z2@/ ~ p0Kz{ 9      f [i8R @  R|sg*  {X v, sVC@/CLڠ- WM&ص n ]aC穷 }  l^,YVoO J~:M > @  7 6Ks ; 1 l NI GE D   @ Ω 0      >  6 1㠩?8   . ũ+ש  -C@0Cީ`G :Av(4  PaacTcNee3    jj,lLnlj       |   Ue a^YW֩ oj ϵf@̰  0 G B = 8 3 I Q^ .8 N I D&y i 4*n x : '/=C@U?-5SCA/_ \ h@+Qpower_plusr~F% hf g @)peano_indAqoZPW @ =N @ #F bX0%g\ BA( Ǡ<$siOkm @$succ=)a @#R {  ݠaP8} /0c)C L+d$ZXI iy֩ HfmM<~.^H u f s 07Ǡ0]l$0y à ʩm,he~^ YT 6LڠР,Ԡ.  ,ڠ, U7}ZlrO G@'add_1_lU  O@*mul_succ_lKTƐOIGE>I wJ=W )@~ⰷ|SQJUH bKWCQkaT#J 4" # GC$^!xam@ A/ 0 ?86T C2l/;o{3QOy=wuz*CFCݩDy c!QG)J 0!$YNЩQ ))7֠@4Qpower_mult_positiveئ A(jCkX F%?$5w3 $!V=@/C rӷשʠȩ>͠ooCӠ9̷֠ tSm$ca.,*rgI} . p 9 9 .^4C ѷ 1ҵo$}heА;e  n ِSҰ)UҠS  { { VqCڠ.ې (Coq_QArith_Qpower_Zpower_Qpower_subproofJ@"ge1P,@7:86/:@V@1P, _@#pow1P1Y@ ؀w<  ߰M Oy D  &;'%Uз,*Z ۩S Pd,N©rv`*ZArithRing@.Zr_ring_lemma1 80I@$to_N1\k@  7W}@}rp({3 @ "1P@ # p %Zbool@(Zeq_bool0߀@'quotrem\@/ŀ,ߐ`Z?TO0Q  E2Q0S   G2CtWv l oa>[MԩFB֩@!N7@Bi@3|P w0R@m{onީȩ Z穚@%1\w@&    堩  n E ; àL C uR T   Ð!֠ ީؠ, .@,Qpower_plus'Hj ɵک0"é3-42+6 ǰ @@  C Ʃ D/  -% -%) % +))+Ґxo; C@}t@ ="H.C  bHdwhrjm{ln5[@Ͱ[Pɩt٩0v[ ~ i0x]  k \CְzSe~f9v:ĩ蠩 2C8&I{ 9=+Ω >ð RΩ+ʰ IOа  [ ϩذ  WjܩM$ݩ) `- d<Jf@թu86ef$6 m g8 o͠ Ge H IB yF } Q,HJyz8Jyz  {W Ob L@5v0Q?l̩7ao8XFX  " OB^|u`by O@L0hV ɩjpl*թ|8sas  -u  S 8  <  5Hv  ͠{ Ő֠TM ͐  Ӑ1栐Uʐ \ ސ $  ԩʠ˩btC@  쐩Jݩީ ; 6ߩ 'B&Zpowerj@*Zpower_exp: 1 y BL )LIGB==71 =.C; %ˠ|a_)Decidable^@+dec_not_notHɀm&Zorder@'dec_Zge(6pRyV@ g1P-z@&ex_ind 5{VM%Zvar0&Omega1 &Omega0{)auxiliary@/HC>CA7C@(Zlt_left,ڀA+OmegaLemmas%omega@'new_var&/wSX@*Znot_ge_lt>?t @*Qlt_le_dec-  @#Qlt4?q  Ʃ  xys!A qyy@+Qlt_le_weak# %~`][RQPH;e*CxHC&@&0 Z0 \'C-SetoidTactics@0default_relation  @3equivalence_defaultú<!&Lީ +%0ض9 Ʃ @ ɚ@(Qle_compX %     ''    `^֠?3rd EsMMHn@nca<)M$0./^YTOJ &001`[VQLWoCHE@c4ȩKj;b2e0:TtV ;:@Z   B\\   |^^  '@4iff_impl_subrelation5P7R>8{Y q^`Mv@-Qle_minus_iffW)C@<~y20*m-11C@Crp1t`< Dӷ!зA5Om򩚠@=Rx@#FuP#IHp _bgOiXw[ϩ @#inj4|efg/j.    u &2"$-   ( M +-6 89 2 ֩ѐT,79B D  Щ(A Lh;FH$ N3L g FQS U#^ r@*pow_succ_r;9 ]}I!QB@@@@@D@̰W{ 6@ӰdJ%װb !l-߰pmm lQw]N]CO(ee@+pow_twice_r<-鵀j0@'inj_pow,:(ŀ|&@'inj_mul,:$?ug0 mP{tӐ?PǩʠlHNtc@)G^Y^{N}/Mf[k OC_䠩 |Q }=驷Cө ;KJ۩Lma@(eq_trans!ytf36ԩ;Ġ @'f_equal=ඐ!f$&!ې7ݐ Bඐ;?ҐBD?)M$M4Щ+C/""Cǩjj &L Cԩ  ~ /{yܩİr&Y |?#ppiy\ozذ| Xv߰TA)$QuM"MU'Ѡ 2""yh%2]@k>ʩ@  [ Ҡs,\^uYZe;XnũpcxxzXM hC5OVhnC;UWgC] z 3_}WKe|.hͩ@'pow_1_rΩ@<^C`z b$PwYkXh$h