"`Z'Qminmax&QArith#Coq@D+Ring_theory+setoid_ring#Coq@)Ring_base+setoid_ring#Coq@+InitialRing+setoid_ring#Coq@)Notations$Init#Coq@%Logic$Init#Coq@*Logic_Type$Init#Coq@)Datatypes$Init#Coq@&Specif$Init#Coq@%Peano$Init#Coq@"Wf$Init#Coq@'Tactics$Init#Coq@%Tauto$Init#Coq@'Prelude$Init#Coq@+ListTactics%Lists#Coq@(Ring_tac+setoid_ring#Coq@$Ring+setoid_ring#Coq@*ZArithRing+setoid_ring#Coq@\)Notations$Init#Coq@0&v!D]hwnv %Logic$Init#Coq@0\͉!Ig)Datatypes$Init#Coq@0.i bYN Z*Logic_Type$Init#Coq@0 1jc6&Specif$Init#Coq@0;RWMi\N'Decimal$Init#Coq@0C涳N*ua#Nat$Init#Coq@0eʤģPSR蠠%Peano$Init#Coq@0 jha|ؠ"Wf$Init#Coq@0q+W,J+'Tactics$Init#Coq@0/9m+ a%Tauto$Init#Coq@0̂"&/r'Prelude$Init#Coq@0JqTttֱ'BinNums'Numbers#Coq@0dmk(5Ju<*EqdepFacts%Logic#Coq@0FI$ͼՋ`)Eqdep_dec%Logic#Coq@0u wWIϰ߼&Basics'Program#Coq@0!bs߯? :VU$Init'Classes#Coq@0](p{yOh.'Tactics'Program#Coq@03u%+Equivalence'Classes#Coq@07;ꮹ-SetoidTactics'Classes#Coq@0S_`nOU$&Setoid'Setoids#Coq@0D9AsWE!>$Bool#Coq@0j 2cZ`FW*Equalities*Structures#Coq@0όe얟)H.Ƞ2Relation_Operators)Relations#Coq@0%s鯰s4Operators_Properties)Relations#Coq@0U3y#h&)Relations#Coq@0r砠*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ&NZSqrt&NatInt'Numbers#Coq@0` .%m%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|&NZBits&NatInt'Numbers#Coq@0MlIpKt'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$&NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ)NMulOrder(Abstract'Natural'Numbers#Coq@04> Aat/ j $NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ'NMaxMin(Abstract'Natural'Numbers#Coq@0]v|Qg̟ʠ'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NLog(Abstract'Natural'Numbers#Coq@0KI'BinList+setoid_ring#Coq@0Au,Ring_polynom+setoid_ring#Coq@0gaKw9`UW+ListTactics%Lists#Coq@0,Jcy{+InitialRing+setoid_ring#Coq@0k/T=cN(Ring_tac+setoid_ring#Coq@0x2]%762f)Ring_base+setoid_ring#Coq@0fbU(2cNe$Ring+setoid_ring#Coq@0Msᬠt0{#'[{nm!/+OmegaLemmas%omega#Coq@0TJ#Jes)ArithRing+setoid_ring#Coq@0ṔCgt?}%Arith#Coq@0I|кX*o4#Max%Arith#Coq@04=;3$>aU堠#Min%Arith#Coq@0Ce-Fѕ(PreOmega%omega#Coq@0\|چBb~w4%Omega%omega#Coq@0t.J'6\ϨrK,Zcomplements&ZArith#Coq@0@|K8@@>|K8d@@A@ABCD@A@)1OTF_to_TotalOrder?@@@A@@@ %'@=@A@A@@@AA@@A@"eq @@ yW@@B@CAN@;5CcE+@@@@@!(eq_equiv @@ (} u@/RelationClasses'Classes@+Equivalence~@lZu@(eq_equivݣmS@@@A݋X_A@A@@M"lt @@ Ԡà@@@J@m5D@ޠ͠s@@@@@AA@@A@+lt_strorder @@  S@K@+StrictOrder.[@@*☔Р@@E@@%)lt_compat @@ &/@)Morphismsl@&ProperL@׶@ @*respectful%WO?߶@ΩК%Logic$Init@#iffС)Đ@1X%=, @@@AviA*@A@@c @T@'>|K8RA@@ @ )Datatypes*@*comparison;f@@ߏѠeT2@@@@@,compare_spec @y@ Օ܀wfD@02(@+CompareSpec!Q]@)BAK@,compare_spec#8uaC)@@@@@&eq_dec @@ 'l4Zs@/^._&Specif@'sumbool7̂K@Y0@#notШa8|@'xĠsY@@@@@Og @@oՠĠ@@@K@y5D1ߠΠt@@@@@'le_lteq @@ #!@zyɠr@"or @{|@'le_lteq4Y ֠@@@@@+(lt_total @Ơ@@Tՠ@@@@@X%@A@A 6@@ 6@x@A@ H/@@u H/@wݣ@A@A!F]@@!F]d׀@A@B' @@' @#8u@A@/I @@X/I @Z*☔@A@ACD8F@@>8F@@4Y@A@:cl@@:clȠJ @A@A:ctD@@:ctD^Ā@A@B:ct@@:cth@A@:ct@@:ct̠h@A@ACE@A@-OTF_LtIsTotal@@@A@@$B$%x{@@@@@@@@@@@7PA@@w7PA@y+@A@Atq@@tq@A@տ@@տ@A@AB&@@&d@A@,ґ@@,ґ@0@A@A4@@4@8^k@A@>+Q@@>+Q֑@-"@A@AB?4X@@`?4XJ_@A@?;@@T?;Ԡ^S@A@?|K8@A@ABCDE@A@i7MinMaxLogicalProperties@A@@@D!P)OrdersTac*Structures#Coq@N@@@T@@A@A@@@A@@@@A@@ @@A@ABC@A@@C!O@A@!,MakeOrderTac,@A@@@B)(,@@@A@@A/@@@@!tJ@@A@A$:@@"eq$:^@@A@$@ @"le$h@@A@$@@"lt$ h@@A@ABC@A@+*OrderFacts.#@A@@M@*@@@@AA@@A@'le_refl @tRmhNIB<!@iAF*@@@@)lt_irrefl @jѠ faZT9@B/^96@@@@5&eq_sym @ܠ{tnS@CIxHy@i@jAC@@@@R*le_antisym @Ԡàp@Dfe@{]@}D @@'@@q'neq_sym @'۠֠@E@K~N@@@@@@*interp_ord @!o)OrdersTac@#ordȠ@ @@@@@@@@@@@D@D@@@ @k@:)n_"@.,@@ +k= R'6'6'6''+k+7T'+7T'6'ࠒA('&@@"lt\ @@"eq8L@lР@PȠ@@MLK@@A@B@A@xA܀wfD_Z@;4.@@@@@ %trans @{YtoUPIC(@pF"o'"Q!R!zU@@2JE"@@2J @2J@)trans_ord-0uGF@@@@AAۀߠK@Aۓό^@@ABC@@S(eq_trans @[Z9 @YK߀МA\[Ӡ @poN@'h@K+ L+k() LL7#'@z$tϠ6'ˠƠ@@@@@(le_trans @{BМCVSD@ڶ۶ܶ@;@=: L+k() NN7#'9t7&k\@@@@@ʠ(lt_trans @'()wМ=BˠTC!y<@@p@ro L+k() MM7#'ntl[9TO50)#@@@@@+le_lt_trans @\]^j5uSn@ABC@(@  L+k() MN7#'tkҠàgb[U:@@@@@1+lt_le_trans @98g0/ݠ@DsCt"u@OԶ@\֩RӐ L+k() NM7#'ҐtРl@@@@@c%eq_lt @kjI© !ba٠@vuT@@ L+k() ML7#'tϠ6'ˠƠ@@@@@%lt_eq @{B;S PA@׶ضٶ@8@:7 L+k() LM7#'6t4#hY@@@@@Ǡ%eq_le @$%&tm2ŠN=s6@   @j@li L+k() NL7#'htfU3NI/*#@@@@@%le_eq @VWXdoMh@ ; <=@"@/% L+k() LN7#'te̠{a\UO4@@@@@+&eq_neq @zҠvqjdI@G?n>op@`϶@dө gҐ@@@@@M&neq_eq @Ϡk@Ha`?@(@-@@@@@o*not_neq_eq @%٠Ԡ@I@IK~@@E@@)not_ge_lt @ݠD5٠Ԡ͠Ǡ@JѶҶ@h4@@a@@)not_gt_le @-aR@K@Q@@@@@Ƞ)le_neq_lt @J9~o2-@.L  @Ӷ@ ox@@@@@@@@@(max_spec @jY7R@ 2E!n '!m *%Logic$Init#Coq@@"or @@#andЖw@ BA 4 BAA 4AB CBAB@@@ %'A*Structures#Coq@A݋X_A'Classes#Coq@@A@@+max_spec_le @@ FW }V UJ kBA zPBAAY zAB _BAB@@@@@ +1Proper_instance_0 @Ġ+@ G)Morphisms'Classes#Coq@@&ProperL@ @ ~ ö@    @#iffС) @@@pAviA 'Classes#Coq@@A@@ ^*max_compat @*^O@ H3@ @   @   ۩    @@@A$@Aۓό^&@A@ABC@@ +max_unicity @M<r5@ I  !p @倠ڀ CB AB怠 BC AC @@@@@ /max_unicity_ext @tRm@ MJ!f  D"x0 G G@$ J# L" - ECA# D%& QC+*BD jC l [Ӡ43 365@@@@@ (max_mono @Ƞ@ KC@  @Հ@   Š@@*respectful%WO?    A@瀰@      e ^  Q   jMoOpQ rut@@@VA@XA@ZAS@ABC@@ A&max_id @ ڠA2@ L ɩ  AAA@@@@@ Z)max_assoc @ & ZK@ M ⶐ 䶐  ՠ C BA  CBA@@@A,@AAۀߠK-@A @A@ABC@@ (max_comm @ V E #{>@ N    ٠BA ݠAB@@@A-@A@AB@@ (le_max_l @ x g E`@ @O 4  6 B BA@@@@@ Ǡ(le_max_r @   `Ǡ{@ [P) O( Q 5A BA@@@@@ ⠠)max_l_iff @   {Ӡ@ vQD jC lA@С) a 7BAB ]AB@@@@@ )max_r_iff @ Ӡ   @ Ri h %  ZBAA BA@@@@@ *&max_le @   à*@ S   @ A }CB ( I@@@@@ P*max_le_iff @   PA@ T ض ڶ ܩp ĠA CB ϠAC ӠAB@@@@@ }*max_lt_iff @ I 8 }n1@ U    栐A ӠCBꀠ AC AB@@@@@ )max_lub_l @ v e C^@ >V  2  4) 6@  CBA " @@@@@ ʠ)max_lub_r @   cʠ~@ ^W, R+ TI V@ ; CBA B $@@@@@ ꠠ'max_lub @   ۠@ ~XL rK ti v@ [CA@ ` B b C%@@@@@ +max_lub_iff @ ؠ Ǡ  @ Yn m  ,  aCBAj CA BA@@@@@ 9*max_lub_lt @   Ҡ9*@ Z  ö Ŷ@ CA@ P   t5T@@@@@ [.max_lub_lt_iff @ '  [L@ [ 㶐 嶐 穚{ Ġ CBA ϠCA ӠBA@@@@@ /max_le_compat_l @ T C !y<@ \   @ CB  ޠ   @@@@@ /max_le_compat_r @ u d B]@ =]  1  3( 5@ CB     @@@@@ ʠ-max_le_compat @   cʠ~@ ^^, R+ TI V!q Y@ >DC@ C % E &ɩ ( @@@@@ (min_spec @   @ _S yR {QF \BA v ;BABU vAB  JBAA@@@BA;@A@@ )+min_spec_le @     ) @ `  ~ BA  sBAB AB  BAA@@@@@ _*min_compat @ +   _ P @ a4@ @    @   ܩ      @@@A%@A@A@ABC@@ +min_unicity @ L ;   q 4@b  @〠؀ CBAC䀠BCAB  ݠ@@@@@ /min_unicity_ext @  r P   k@KcACC@ FH)  AC  B@ ! "MC ' &A@f?hWϠ 0 /  2 1@@@@@ (min_mono @ Ġ     @d?@@р@yyA@܀@yy ZSF NB dD eF V j i@@@KA@MA@OAH@ABC@@6&min_id @   Ϡ 6 ' @e rAAA@@@@@O)min_assoc @    O @ @f׶ٶ۩ʠ C BA  CBA@@@A!@AA@A@A@ABC@@}(min_comm @ I 8  } n 1@g BA AB@@@A @A@AB@@(le_min_r @ k Z 8   S@3h')  ݠBAA@@@@@(le_min_l @  u S   n@NiBD( BAB@@@@@ՠ)min_l_iff @   n ՠ Ơ @ij7]6_󀠩RBABNBA@@@@@)min_r_iff @ Ġ     @kZYu:BAAqAB@@@@@&min_le @  ֠    @l}|@\CBA  y : {@@@@@A*min_le_iff @   ڠ A 2 @mɶ˶ͩaCBACAĠBA@@@@@n*min_lt_iff @:) n _ "@nנCBAۀ⠐CA栐BA@@@@@)min_glb_l @gV4   O@/o#%'@ AݠCB  @@@@@)min_glb_r @vT   o@OpCE:G@,ACB3  Ԑ@@@@@۠'min_glb @t ۠ ̠ @oq=c<eZg@LAC@Q 3 S #  א@@@@@+min_glb_iff @ɠ   @r_^|qABCB[|ACAB@@@@@**min_glb_lt @à *  @s@AC@  A Cr e &@@@@@L.min_glb_lt_iff @ L = @tԶֶةlACBACĠAB@@@@@y/min_le_compat_l @E4 y j -@ u@ꠐCB  r  @@@@@/min_le_compat_r @fU3   N@.v"$&@ CBߠ    @@@@@-min_le_compat @vT   o@OwCE:GI@.DC@3 5    ڐ@@@@@ᠠ2min_max_absorption @z  Ҡ @uxCiBkZ0B"BAB@@@A@A@A@ABC@@2max_min_absorption @Ѡ   @ygf~CBWBAB@@@>A@@A@BA;@ABC@@)-max_min_distr @  )  @zzClBApCBCA@@@mA@oA@qAj@ABC@@X-min_max_distr @$ X I @{ඐⶐӠCBACBCA@@@A,@A@A@ABC@@/max_min_modular @SB   x ;@|ؠCʠBޠCAѠ䠐CB蠐CA@@@A^@A:@A@ABC@@/min_max_modular @tR   m@M} A C8E4C BCACB CA@@@ A@ Al@ A@ABC@@렠0max_min_disassoc @  ܠ @~ Ms Lujw[+C?BAC4CBA@@@ ,A@ .A@ 0A )@ABC@@0max_min_antimono @Ҡ @^@@@A@@&&Basics'Program@$flip$~~öqũ m o q@@@ wA @A xA@ zA s@ |A!s̓P&Basics'Program#Coq@@ A!t Q @ABCD@@o0min_max_antimono @;*o`#@@@@ H@sA@ S@  ~  XӶǠ ݩ ީ @@@ A U@A A 0@ A @ AN@ AF@ABCD@@/max_case_strong @ Fba@Oء !P@ Ⱥhim@@&Compat@@@  ة "Hl@&@E  ĩ  "Hr@   ̩ Ȑ!ca@-CompSpec2Type2K>%>@ी  C@=,6  I@`vڀw@)CompSpecTӊT;  ,Ȑ"c0 Р@,CompareSpecT, /@CAAAAAA@@@@@@@@D23TIH34kG@j Jw"EQj FȐ!H%lemmaߠh! $@9iff_flip_impl_subrelation2VAr ] @;&5+B7; j;4~@(symmetry0xj@5Equivalence_Symmetric. U@'zFMF@`DS "LTDCA-SA(A'"GT dOM*gajjLrchܠHtw  muA<wow@G`1 0sb@@@Gv<@A@@FZA('@A@3MinMaxDecPropertiesN@A@@ < >@A@@GI@9@ҩ Զ@@7ِ @@= "  T+k()7!7!7777= gR'>#97!7!7!7!7!7  #7"  7!7777"7777! # '>#97!7!7!7!7!7  #7"  7!7777"7777! # '>"97!7! 7!7! 7!7  "7"  7!7777"7777! # '' +k()7!$'Dpp<PࠒDxXEH,hHؠ4Ġ5(@$\`+ 0AABACAAL8th|xTܠzvr@@Ⱥhi@f@A@A@ MA F@ OA AL)Datatypes$Init#Coq@@AB@@>(max_case @@j"@@!X"X04"X1W@Gha%md(g/@ 붐 @𔑠.@@@@a@Ɛg@jkˠ +k()+++7# '''$'<\`O-@@j"@X@A@A@ZA@A@@'max_dec @U@u0)ȀSѠ~뷐"H0ܠBAAAA@@@@@D!s젩۩!E A @=trans_co_eq_inv_impl_morphism&ni$3@6Equivalence_TransitiveW;"3̩@/eq_proper_proxy)fBӠ;"*B+1 $M4%O +9LL;(@+reflexivity(ϓ/ZA/@5Equivalence_Reflexive977!    7777"777  7777"777 9'>977!    7777"777  7777"777 9'' +k7!7!7%' 7! 7!7%'4a@@9D젒F`AABAAQL88x8xX|Р@00Pty$$  lw;*ȠĠ@@@ A )@ A @ A @ABC@@/min_case_strong @зѷɶ@Ӕk۠4@@ŷ@w@ }wr@jp尷nljhbt HC v~@(À853u2m ,*w($UP@(ɀEDuS @ B D@G?@@MO@?@ةڶ@@=ީߐ@@CƐȐ L+k()7!7!7777= eR'>#97!7!7!7!7!7  "7"  7!7777"7777! # '>#97!7!7!7!7!7  "7"  7!7777"7777! # '>"97!7! 7!7! 7!7  #7"  7!7777"7777! # '' +k()7!$'Dpp>HNx<@ؠDpXQ8h@ؠ$A(0T`u0lX:0 ALx |ޠ|xt@@k@@A@A@ OA H@ QA@AB@@8(min_case @~}@m@@y򩚠@(.>WnNO@ ն ׶@ڔ@@ඐ@Ҡ@Kkm@Q@rTUꐐ4\I8֠Ҡ@@m@G@A@A@IA@A@@'min_dec @ܷݩ>@d>aη࠷ҩưԩe֠Y@>trans_sym_co_inv_impl_morphism'\|ީ@/Equivalence_PER/;GTOWR~] ˩a \ |Z@#I"K>BCA x+k()7777"7779 7777"7779 ++7#'()= XR'>G   7777"777  7777"777 7777"7779'>G   7777"777  7777"777 7777"7779'' +k7!7!7%' 7! 7!7%'0РD\$Ġݠ`+ANL8@T8pTX|@%PXDL0hLPt |(DlL\Vx d$pҠ_[W@@@0A @2A+@AB@@ @I@٠@sr@ej+@@@@@8 @@@@"@@@@@U @<@Gŀ$@ܶݶ@Π?e2!@@@@@rƐ @Y@GˀA0@@렩\ÐO>@@@@@0plus_max_distr_l @@@!ǹ!m!pԀ@#Qeq4? @"߀@%Qplus5p1yAC ABACB@@@@@ޠ0plus_max_distr_r @@6A>5;7:A742CA8BA>HCBA@@@@@ 0plus_min_distr_l @@eBmljnihfm@"mcACiABoACB@@@@@>0plus_min_distr_r @@C1CABAECBA@@@@@m@@@Ⱥhi.@Aj"@k-@m@ABC@@@ABS@R@AC@3@A3@@@ABCD@@7PA@KG@*7PA7@,+@A@Atq@PL@tq@A@տ@UQ@տ@A@AB&@YU@&d@A@,ґ@a]@,ґM@0@A@A4@fb@g4R@i8^k@A@>+Q@lh@O>+Q֑X@Q-"@A@AB?4X@qm@?4XJ@A@?;@ws@?;Ԡ^@A@?[J @ACsD,rE@@"O@(PeanoNat%Arith#Coq@#Nat@&of_int"O#Nat$Init#Coq@@ 6@A@A\@&BinInt&ZArith#Coq@!Z@'quotrem\)BinIntDef&ZArith#Coq@!Z@ /@A@\@@+pred_double\@/S@@A@As2@3@&shiftls2*@vY@A@BCs8@8@&shiftrs8/@vY@A@ѓ@>@&squareѓ5@y@A@@D@&to_intϑ;@@A@z@5@&doublez,@/!@A@ABCD/@O@)log2_iter/F@wd@A@NH/@B@&moduloNH/9@1,@A@A\d@G@&of_int\d>@1?A @A@bz@M@&of_natbzD@1?G!@A@#@S@&shiftl#J@1dV@A@#@Y@&shiftr#P@1d\@A@ABCD/x@&BinPos&PArith#Coq@#Pos@)pred_mask/x)BinPosDef&PArith#Coq@#Pos@ )X@A@6@x@&square6o@19@A@AV+L@}@&to_intV+Lt@2@A@V1b@@&to_natV1bz@2 @A@V5=@@&to_posV5=@2@A@ABCl@@)sqrt_iterl@!$:@A@x@@!tx@5@A@Ax @@"eqx @@A@xb@@A@A@@E@(sub_mask@<@)@A@BCDEF c@@'testbit c@!ć@A@7 B@S@'of_uint7 BJ@*`]?@A@AG@X@)mask_rectGO@+ED@A@F˱@^@)add_carryF˱U@+p@A@AB^Ҷ@@'to_uint^Ҷ@#m@A@gL7@@'sqrtremgL7@40@A@Aq@@'testbitq@5)@A@Ҙ@&QOrder"TO@'compareҘd@A@AݎO@@+succ_doubleݎO@6r@A@B p@@0double_pred_mask p|@0-+m@A@CDE T@&BinNat&NArith#Coq@!N@!t T)BinNatDef&NArith#Coq@!N@ 2@A@ @@#add @3 @A@A l@@#div l@3@A@ Y@%@#eqb Y@3@A@AB #@*@#gcd #!@3n@A@ T@0@#leb T'@3@A@ACFG "@5@#lor ",@3m@A@ q@?@#ltb q6@3@A@A @D@#max ;@3@A@ @J@#min A@3`@A@AB @O@#mul F@3B@A@ ~@U@#odd ~L@3@A@AC =@Z@#one =Q@3@A@ @b@#pow ˑY@3@A@A c@g@#sub c^@3@A@ @m@#two d@3J@A@AB hx@r@$div2 hxi@>@A@ @x@$even o@>4@A@ACD @}@$ggcd Бt@>U@A@ @@$iter }@>:@A@A 3"@@$land 3"@>m@A@ F)@@$log2 F)@>t@A@AB S@@$lxor S@>@A@ @@$pred @?U@A@AC @@$size ܑ@?'@A@ !@@$sqrt !@?@A@A ! @@$succ ! @?\@A@ !7@@$zero !7@@P@A@ *@@%ldiff *@@A@AB g_@J@+pred_double g_A@25\@A@CD m@O@÷ mF@2j@A@+@@,compare_spec+⺑m@0@A@7PA@DB@A@ABS@`@&of_intS㫑W@4}5@A@S@f@&of_natS]@4};@A@ACEFGH\R@k@(mask_ind\Rb@4@A@\^@v@(mask_rec\^m@4@A@A!,@{@&pred_N!,r@4s)@A@B@@&shiftlw@5X@A@@@&shiftr~@5X@A@A&@@&square&ّ@5,x@A@BC"@@&to_int"@5L@A@"@@&to_nat"@5L @A@tq@.@A@ABnTq@@+testbit_natnTq@6n@A@տ@&@A@AB@ @(succ_posB@@A@I@@'abs_natI@?n@A@AB.@+@'of_uint."@MS@A@3~@@'sqrtrem3~@7]%{@A@ACDE,@3@'bitwise,*@/v@A@>4'@@'testbit>4'@8g$@A@A{U@@,sqrtrem_step{U@8R@A@Bu^@H@(div_euclu^?@ @A@KL[@ki@A@Kc@ig@A@K@ec@A@ABCfz@@'to_uintfz@9w@A@\ @hf@A@z@fd@A@ABl@`@'comparelW@3R@A@ՠ@|z@+lt_strorderՠّ@8^k@A@ACDEFs8@l@+of_uint_accs8c@5+@A@}@y@,pos_div_eucl}p@&`@A@3x@h@'compare3x_@]=@A@A@@&double|@'޺_@A@BCq@@+of_succ_natq @$@A@w@@&modulowɑ@)1@A@ADK@@&of_intK@)j,I@A@K@@&of_natK@)j2_@A@AI@@&shiftlI@*O@A@O@@&shiftrO@*O@A@AB,@@&square,@*ow@A@Z@@&to_intZ@*81@A@ACE`@@&to_nat`@*9G@A@e@@+testbit_nateđ@+@A@A+{@@'sqrtrem+{ё@,J@A@5z@@'testbit5z@-T|@A@ya@@'le_lteqya@-"@A@ABC @@'to_uint ͑@.@A@ @@+succ_double @.^4@A@AD D@@!t DJ@@A@ K@@"eq K^7@A@A Lv@@"le Lvh2@A@ L@  @"lt Lh/@A@A#@@'compare#ݑ@ )Q@A@BC%t2@@(size_nat%t2@ @A@%9@@+of_uint_acc%9@ ΋@A@A%V@@+double_mask%V@ S@A@%%@@'div2_up%%@ "@A@&@}@A@ABCDEF'ş@@'Ndouble'ş@ @A@(b0@@*shiftl_nat(b0@9-@A@A(nՖ@@*shiftr_nat(nՖ@'@A@(@@0succ_double_mask(@@A@A*W$@@,compare_cont*W$@!@A@,ґ@@A@A.0@@.sub_mask_carry.0@΂@A@BCD.@B@!t.9@ ;@A@.먩@I@#add.먩@@ `@A@A.U@N@#div.UE@ @A@.B@U@#eqb.BL@ @A@A. @Z@#gcd. Q@ @A@.=@`@#leb.=W@ @A@ABCEGHI. @e@#lor. \@ @A@.Z@r@#ltb.Zi@ @A@A.p@w@#max.pn@ '@A@B.@|@#min.s@ @A@.@@#mul.y@ @A@AC.g@@#odd.g~@ @A@.&@@#one.&@ @A@A.뾴@@#pow.뾴@ k@A@.L@@#sub.L@ @A@.@@#two.@ @A@ABCD.,a@@$div2.,a@ @A@.Xz@@$even.Xz@ ?1@A@A.@@$iter.ؑ@ @A@B. @@$land. @ @A@. @@$log2. @ @A@ACE.@@$lxor.@ R@A@.y@@$pred.y@ `<@A@A.Ʉ@@$sqrt.Ʉ@ ;@A@.@@$succ.@ @A@.t @@$zero.t @ Z@A@AB/@@.to_little_uint/@ @A@/`j@@)lt_compat/`j@+@A@ACDF/@@%ldiff/@ H@A@0' @@A@08@ @&eq_dec08@A@AB00@@'compare00@?H{@A@1P%@@!t1P%@  @A@AC1P@@#abs1P@ @A@1P&@@#add1P&@ @A@A1P@@#div1Pґ@ y@A@BD1P@@#eqb1P@ f@A@1P@ @#gcd1P@ 0@A@A1P@@#geb1P @ T@A@B1P@@#gtb1Pʑ@ q@A@1Pĺ@@#leb1Pĺ@ a@A@A1Pň@#@#lor1Pň@ /@A@BCE1P@(@#ltb1Pב@ ~@A@1P@1@#max1P(@ @A@A1P{@6@#min1P{-@ "@A@B1P]@;@#mul1P]2@ @A@1P@B@#odd1P9@ @A@A1Pɣ@G@#one1Pɣ>@ J@A@BC1P@L@#opp1PԑC@ {@A@1P1@T@#pow1P1K@ @A@A1P;@Y@#rem1P;P@ @A@B1P@^@#sgn1PˑU@ r@A@1P@e@#sub1Pɑ\@ p@A@A1Pe@j@#two1Pea@  @A@BCDF1[8@o@$div21[8ޑf@ @A@1[d@x@$even1[do@ I@A@A1[6@}@$ggcd1[6t@ i@A@B1[U@@$iter1[Uy@ @A@1\@@$land1\@ /@A@A1\@@$log21\@ 6@A@BC1\$@@$lxor1\$@ @A@1\Y@@$of_N1\YÑ@ >j@A@A1\@@$pred1\@ j@A@B1\@@$quot1\֑@ }@A@1\@@$sqrt1\@ @A@A1\w@@$succ1\w@ @A@BC1\k@@$to_N1\k@ @A@1]@@$zero1]@ eD@A@1@@(eq_equiv1@A@AB2:@@%abs_N2:@ @A@21@@%ldiff21@ ߵ@A@2=*@@%quot22=*@ @A@ABC2kF@@(size_nat2kF@{@A@3@@(tail_add3@^q@A@ADEFGH3@@(tail_mul3@^@A@4@^\@A@A5Z@ @*shiftl_nat5Z@y/@A@5f}@@*shiftr_nat5f}@4@A@AB5a@@'iter_op5a@ @A@C6w~@@'of_uint6w~@^5@A@8j@ @'of_uint8j@'"h@A@9E@@(div_eucl9Eđ@(*k@A@AB:x@@,Nsucc_double:x@ ʭ@A@CD@#R@A@AB=)]H@L@$sqrt=)]HC@#RE@A@=)a@S@$succ=)aJ@#R@A@A=9R@X@.to_little_uint=9RˑO@#b@A@=@^@%ggcdn=͑U@$*@A@=U@d@%ldiff=U[@$'R@A@>+Q@/-@A@ABCDE>@@&divmod>@C@A@>@@&double>@NĴ@A@A?2@@,pos_div_eucl?2@-u@A@?4X@?=@A@AB?;@:8@A@?I+ListTactics%Lists#Coq@0,Jcy{%Logic$Init#Coq@0\͉!Ig*Logic_Type$Init#Coq@0 1jc6"Lt%Arith#Coq@0KZ-eJkP܏#Max%Arith#Coq@04=;3$>aU堠#Min%Arith#Coq@0Ce-Fѕ%Minus%Arith#Coq@0LFtR")Morphisms'Classes#Coq@0Imӽ%\$PD.Morphisms_Prop'Classes#Coq@0% :B'.>u%$Mult%Arith#Coq@0햖Qyb0$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI%NBits(Abstract'Natural'Numbers#Coq@0qteo_hɅ $NDiv(Abstract'Natural'Numbers#Coq@0bz$?[p(5$NGcd(Abstract'Natural'Numbers#Coq@08E-S ;j_Ҡ$NLcm(Abstract'Natural'Numbers#Coq@0 ~xZ9L{:$NLog(Abstract'Natural'Numbers#Coq@0K Aat/ j &NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf+NProperties(Abstract'Natural'Numbers#Coq@0unt"kwpYC%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ%NZAdd&NatInt'Numbers#Coq@00h`ZK4*NZAddOrder&NatInt'Numbers#Coq@0e~1>r砠(NZAxioms&NatInt'Numbers#Coq@0] ρ5r&NZBase&NatInt'Numbers#Coq@0^&8yUL&NZBits&NatInt'Numbers#Coq@0MlIpKt%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZMul&NatInt'Numbers#Coq@0ctR~6[Ƞ*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R'NZOrder&NatInt'Numbers#Coq@0 q;Ve7R W,(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x&NZSqrt&NatInt'Numbers#Coq@0` .%m#Nat$Init#Coq@0eʤģPSR蠠$Nnat&NArith#Coq@0$W;s #%M)Notations$Init#Coq@0&v!D]hwnv *NumPrelude'Numbers#Coq@05WUVŦ]xVXԠ%Omega%omega#Coq@0t.J'6\ϨrK+OmegaLemmas%omega#Coq@0TJ#Jes4Operators_Properties)Relations#Coq@0U3y#h&&Orders*Structures#Coq@0$Znl0\͗+OrdersFacts*Structures#Coq@05Mܿ獐ζΖLB)OrdersTac*Structures#Coq@05'4Ԗ+9%%Peano$Init#Coq@0 jha|ؠ(PeanoNat%Arith#Coq@0O~2$k[#lZ)Peano_dec%Arith#Coq@0Kݢ*k$Plus%Arith#Coq@04tmG$Pnat&PArith#Coq@0,?pr.gZ(PreOmega%omega#Coq@0\|چBb~w4'Prelude$Init#Coq@0JqTttֱ#0#-\D7* Q,"f\"0=\P|5.߹=頠%Quote%quote#Coq@0J@ŹVz-,3%/RelationClasses'Classes#Coq@0Gz rA6ՠ4Relation_Definitions)Relations#Coq@0]4Ѐd{n^2Relation_Operators)Relations#Coq@0%s鯰s)Relations#Coq@0-SetoidTactics'Classes#Coq@0S_`nOU$&Specif$Init#Coq@0;RWMi\N'Sumbool$Bool#Coq@0sB ,$11.]m'Tactics$Init#Coq@0/9m+ a'Tactics'Program#Coq@03&2 Q@@@@"_7 @A@@@@@@@@"_82M접 A"_9'`o@B'Q_scope@&&@%2 Q@@@@#_10 )(@#_112M접 A#_12'`o@B&(@&>&A@%rHȠ@%rHȠ@%@%頢%%%)@A@%%@@x@%@%xJ%@A@Ax @%@%x ^%@A@x@%@%xh%@A@ABx@%@%xh%@A@xb@%%|@A@AKL[@%x%v@A@Kc@%v%t@A@ABK@%q%o@A@\ @%o%m@A@Az@%l%j@A@*[c9@&@%h*[c9d%g@A@0' @%c%a@A@ABCDE@A& 2 Q@@@@#_13&5@&L@A@@@@@#_142M접 A#_15'`o@B@&&@%s2 Q@@@@#_16&\@%~'@#_172M접 A#_18'`o@B@&ʠ&@%82 Q@@@@#_19&@%CjM@#_202M접 %@%P1~#_21'`o@Cܠޠ@@'' %@%G2 Q@@@@#_22&@%Rj{@#_232M접 %@%_1~#_24'`o@C  @@'5'8%@%b2 Q@@@@#_25&@%mk6@#_262M접 & @%z1Π#_27'`o@C8:@@'c'f%@%z2 Q@@@@#_28' @%k נd@#_292M접 &N@%1Ԡ#_30'`o@Cfh@@''&!@@'rHȠ@'#tӡ'*$@%; @A@%''@@x@'-@&xJ&@A@Ax @'1@&x ^&@A@x@'6@&xh&@A@ABx@':@&xh&@A@xb@&Ǒ&@A@AKL[@&&@A@Kc@&&@A@ABK@&&@A@\ @&&@A@Az@&&@A@*[c9@'Q@&*[c9d&@A@0' @&&@A@ABCDE@%U%S@@L@%W@'PLd%@A@@%\@&ڠd%@A@AB@AB2 Q@@A@#_31%@ G@A@@@@@#_322M접 #_33'`o@Cޠࠐ@'''@2 Q@@A@#_34%@  M@A@@@@ @#_352M접 #_36'`o@C @(&()(,@2 Q@@A@#_37%@  r@A@@@@:@#_382M접 #_39'`o@C:<>@(T(W(Z@2 Q@@A@#_40&@ r@A@@@@h@#_412M접 #_42'`o@Chjl@(((@@@@TEVLLv@9_U#v@vx(Q lbȄ@$2S MR41A9񄕦j!n+QArith_base&QArith#Coq@@!Q4+@!m!p'Qminmax@(max_mono=EԀЩ@%Qplus5p1yA!x*"x'-"Hx0@#Qeq4?B%lemma C)Morphisms'Classes?@=trans_co_eq_inv_impl_morphism&ni$K/RelationClasses @6Equivalence_TransitiveWU$BP"OT@(eq_equivտ,QOrderedType['Q_as_DT@}FEDJ,+@>Reflexive_partial_app_morphism 2R,q!yttC5@*respectful%WO?{{JJ\z@*Qplus_compUUA@6reflexive_proper_proxy5V<@5Equivalence_ReflexiveDz!H@#Qlt4?"H0 rr"@)lt_irrefl&z*@+le_lt_trans#ΒC%Logic$Init@#notШ(CVQMMũϠީǩ$@$Qmax"߀sө @*max_compat'   #$@*Qplus_commUR( $3#,#d,80#&: (+";% @>trans_sym_co_inv_impl_morphism'\|L@/Equivalence_PER/;545/1C@0plus_max_distr_l G&8b`SaQbO@(min_mono:Kmk^l\m5p0$q@&j@$Qmin"mige@*min_compat5hd`aJ`LZG$W=U,ZyS|Vf   QT^r!VnupPfKybtv @0plus_min_distr_l rEM&7 P䬊4mC