"`ĄQհ,QOrderedType&QArith#Coq@D+Ring_theory+setoid_ring#Coq@)Ring_base+setoid_ring#Coq@+InitialRing+setoid_ring#Coq@)Notations$Init#Coq@%Logic$Init#Coq@*Logic_Type$Init#Coq@)Datatypes$Init#Coq@&Specif$Init#Coq@%Peano$Init#Coq@"Wf$Init#Coq@'Tactics$Init#Coq@%Tauto$Init#Coq@'Prelude$Init#Coq@+ListTactics%Lists#Coq@(Ring_tac+setoid_ring#Coq@$Ring+setoid_ring#Coq@*ZArithRing+setoid_ring#Coq@X)Notations$Init#Coq@0&v!D]hwnv %Logic$Init#Coq@0\͉!Ig)Datatypes$Init#Coq@0.i bYN Z*Logic_Type$Init#Coq@0 1jc6&Specif$Init#Coq@0;RWMi\N'Decimal$Init#Coq@0C涳N*ua#Nat$Init#Coq@0eʤģPSR蠠%Peano$Init#Coq@0 jha|ؠ"Wf$Init#Coq@0q+W,J+'Tactics$Init#Coq@0/9m+ a%Tauto$Init#Coq@0̂"&/r'Prelude$Init#Coq@0JqTttֱ'BinNums'Numbers#Coq@0dmk(5Ju<*EqdepFacts%Logic#Coq@0FI$ͼՋ`)Eqdep_dec%Logic#Coq@0u wWIϰ߼&Basics'Program#Coq@0!bs߯? :VU$Init'Classes#Coq@0](p{yOh.'Tactics'Program#Coq@03u%+Equivalence'Classes#Coq@07;ꮹ-SetoidTactics'Classes#Coq@0S_`nOU$&Setoid'Setoids#Coq@0D9AsWE!>$Bool#Coq@0j 2cZ`FW*Equalities*Structures#Coq@0όe얟)H.Ƞ2Relation_Operators)Relations#Coq@0%s鯰s4Operators_Properties)Relations#Coq@0U3y#h&)Relations#Coq@0r砠*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ&NZSqrt&NatInt'Numbers#Coq@0` .%m%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|&NZBits&NatInt'Numbers#Coq@0MlIpKt'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$&NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ)NMulOrder(Abstract'Natural'Numbers#Coq@04> Aat/ j $NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ'NMaxMin(Abstract'Natural'Numbers#Coq@0]v|Qg̟ʠ'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NLog(Abstract'Natural'Numbers#Coq@0KI'BinList+setoid_ring#Coq@0Au,Ring_polynom+setoid_ring#Coq@0gaKw9`UW+ListTactics%Lists#Coq@0,Jcy{+InitialRing+setoid_ring#Coq@0k/T=cN(Ring_tac+setoid_ring#Coq@0x2]%762f)Ring_base+setoid_ring#Coq@0fbU(2cNe$Ring+setoid_ring#Coq@0Msᬠt0{#'[{nm!/+OmegaLemmas%omega#Coq@0TJ#Jes)ArithRing+setoid_ring#Coq@0ṔCgt?}%Arith#Coq@0I|кX*o4#Max%Arith#Coq@04=;3$>aU堠#Min%Arith#Coq@0Ce-Fѕ(PreOmega%omega#Coq@0\|چBb~w4%Omega%omega#Coq@0t.J'6\ϨrK,Zcomplements&ZArith#Coq@0ED&SpecifB@'sumbool7̂K@'FO@#notШ WeXNI::7/A&(Ȑ"H0ih-Рj@#andЖw@BBB@@@@D@@"WG1@4&$_tmp@ ,}AzkBs9UB]7"EQa95@*@(@Y@*@@G@&eq_ind J"!eA@%Falsee@@$Truey@A@)False_induُCo'@@Wɠ@@r@@rdF@A@A@A@@VԠ@@5@@5J@A@@@㱠^@A@AB@A@-HasEqBool2Dec@A@@ ޶ਜ਼&Specif$Init#Coq@@7̂K@BA%Logic$Init#Coq@@#notШРBA +k() 7! 7!= R'+'+0'$'= R'>G '9'+k7%'+9'#= R!'>' LL +-M7777%'+k+ 7!T'GM77&'= R'6'6''+k6' +k+7!L 77"7!T'7!7 7!7%'@g$0hxxT+ @@A@A@ؠ @Elr,,ݐAB@E젒 접F ̠@|u@@@@@@@@.@'Q_as_OTfA^ @]@RP@l@o@A@@A@@N@@L< @;@6@@@V @@@@@a @!@%@@@l @,@ߐ0@@@w @7_Q;B?@@74 @3B.+$F@@B @M Q@@M @Xݐ\tq@@X"lt @@#Qlt4?@DAA@@@@@"le @@#Qle4?|@`]@@@@@ڠ'compare @@(Qcompare7=΀@ʛɀ̀)Datatypes$Init#Coq@@*comparison;f@@@@@@+lt_strorder @@9@/RelationClasses'Classes#Coq@@+StrictOrder.[@f+QArith_base&QArith#Coq@@#Qlt4?@@@@@&)lt_compat @@^A)Morphisms'Classes#Coq@@&ProperL@@A)Morphisms'Classes#Coq@@*respectful%WO?.6@4?6%Logic$Init#Coq@@#iffС)L@@@@@h'le_lteq @@(Qle_lteqO@ ]@#Qle4?|BA@"or @n@p4?BABBA-@@@@@,compare_spec @@-Qcompare_spec%}@B=@+CompareSpec!Q]@fBA2BA8AB@(Qcompare7=΀BA-@@@@@@@@/@@x@@x@5@A@Ax @@x  @@A@Bxb@@xb@r@A@KL[@@?KL[@Az@A@ACKc@@Kc@z/@A@K@@oK@qzbN@A@\ @@\ #@}@A@ABz@@z'@P@A@0' @@40' ,@6/Uݱ@A@ACD@&QOrder:)OrdersTac*Structures#Coq@/OTF_to_OrderTacH搠"TO&Orders*Structures#Coq@1OTF_to_TotalOrderT @S@ %'A*Equalities*StructuresT@@U!O&Orders*Structures#Coq@@!t5<<@@E#OTF)OrdersTac*Structures#Coq@A@@x@H@xJ@A@Ax @L@"eqx ^U@A@x@R@"lexh@A@x@X@"ltxh@A@ABCxbDKczy@*[c9@`@'compare*[c9d@A@A0' {@BCE@A@.iw@A@@@@6@@@<@d@@A@A1фZ@@C1фZJ@@A@1ы@@/1ы֠^@@A@1ьO@ @-1ьOh@@A@1ь^@@+1ь^h@@A@ABCD@A@[u%@@@A@@@ %'@p@A@A@@@AA@@A@ @@@Ѷ@ҔAw@V5Cm@;!@@@@@ @@\ @}@͠'Classes@+Equivalence~@ʐ@(eq_equivݣhcI@@@A݋X_A@A@@DN @M@A@5D@}x^@@@@@AA@@A@ @@@ 8^k@:@+StrictOrder.[@1m@+lt_strorder*☔ˠ@@6@@! @^@+@)MorphismsX@&ProperL @*respectful%WO?X'Z)%Logic$InitZ@#iffС)@)lt_compatX%Ѡ̠@@@AviA'@A@@X @@@{@|)Datatypes#@*comparison;f@(@ߏѠ@@@@@tՐ @@0݀@!x!y%@+CompareSpec!Q]@xBAS@,compare_spec#8uJ@@@@@&eq_dec @@ KL[@ z@.ɶ,ʩ&Specifr@'sumbool7̂K@-|@#notШ4@#xuHC)@@@@@  @ @@i5D1YT:@@@@@ܠv @@~-"@hf'^@"or @cg@'le_lteq4Y|w]@@@@@(lt_total @j@@TŠm@@@s@@X%@A@A 6@w@w 6@yx@A@ H/@~@< H/@>ݣ@A@A!F]@@!F]d@A@B' @@' @#8u@A@/I @@/I @*☔@A@ACD8F@@<8F@>4Y@A@:cl@@:clȠJ@A@A:ctD@@:ctD^@A@B:ct@@:cthy@A@:ct@@:ct̠h]@A@ACE@A@-OTF_LtIsTotal@@@A@@Bz{tѩvҐ@@@@@f@@@@@@Ҙ@aO@Ҙd@A@A+@fT@+⺑Z@0@A@ՠ@lZ@_ՠّ`@a8^k@A@ABya@q_@yae@-"@A@ D@yg@7 DJ@A@A K@~l@$ K^x@A@ Lv@r@$ Lvh@A@AB L@w@# Lh@A@/`j@}@O/`j@Q+@A@08@@08@A@1@@1@A@ABCDE@'eq_refl @`3@@D!Pb8@@ f@@ f9@&@A@A "ˌ@@ "ˌ=@0[@A@@#@yB@{1фZ@A@AB@'@eF@g1ы@A@@.@fM@h1ьO@A@A@2@dQ@f1ь^@A@.@7@.V@gC@A@ABk@;@>kőZ@@@A@}Ou@@@}Ou_@%@A@5|@E@o5|d@q@A@;LG@J@V;LGi@X"@A@ABCDE@A@@C!Oon@A@y,MakeOrderTac|W@A@@@BKN]@A@@A@@@@}@A@A$:@@$:{@A@$@@$z@A@$@ @$y@A@ABC@A@*OrderFacts#w@A@@@: @@8@@AA@@A@'le_refl @ݠ}?:50@ARs@@O@@)lt_irrefl @ĠSNID1@Bf.@@e@@-&eq_sym @ڠid_ZG@ C|}@֩N֐C@@}@@E*le_antisym @|wr_@"D@@hD@@@@_'neq_sym @9 ٠y@(le_trans @  c 4МC @  k @0@/ L+k() NN7#'.t1Ѡq@@@@@h(lt_trans @   ^МB6  @   @Z@Y L+k() MM7#'Xt[.@@@@@+le_lt_trans @> ٷ< ڷ ۩T*]32@C ޶A ߶ @Q& L+k() MN7#'|tRܠנҠ@@@@@+lt_le_trans @b `  NxWV@g e  @K@vJ L+k() NM7#'twD@@@@@۠%eq_lt @ " # $s|{@ ' ( )@o L+k() ML7#'ŐtȠh*% @@@@@%lt_eq @ F G$ H@ K L) M@@ L+k() LM7#'tOJE@-@@@@@$%eq_le @ k lI m@ p qN r@␐ L+k() NL7#'tsnidQ@@@@@H%le_eq @  m > :@  r @@8 L+k() LN7#'3t6 ֠v@@@@@m&eq_neq @G@JG!   @_@ba@@@@@&neq_eq @b5Ġ@eH< ׶: ض ٶ@@{@@@@@*not_neq_eq @yL۠֠Ѡ̠@|IS Q @@@@@)not_ge_lt @c0@Jj h @2*\P@@@@Π)not_gt_le @{H @K  @Jt@@@@@堠)le_neq_lt @_!@L 4 5@0@wt@@@@@@@@@@@Ҙ@@ҘdJ@A@A+@ @+⺑@0@A@ՠ@%@ՠّ@8^k@A@ABya@*@?ya@A-"@A@ D@2 @ DJ ]@A@A K@7%@ K^ 1@A@ Lv@=+@ Lvh@A@AB L@B0@ Lh@A@/`j@H6@/`j<@ +@A@08@N<@08n@A@1@SA@|1d@A@ABCDE@@@@ ӳ2@ ӳ2[)Datatypes$Init#Coq@@A@ Գq@ Գq\ @A@AB@cA q p o@A.0TQ+Ring_theory+setoid_ring#Coq@@ABA.U>[J @ @AB@@"O@(PeanoNat%Arith#Coq@#Nat@&of_int"O#Nat$Init#Coq@@ 6@A@A\@&BinInt&ZArith#Coq@!Z@'quotrem\)BinIntDef&ZArith#Coq@!Z@ /@A@\@@+pred_double\@/S@@A@As2@3@&shiftls2*@vY@A@BCs8@8@&shiftrs8/@vY@A@ѓ@>@&squareѓ5@y@A@@D@&to_intϑ;@@A@z@5@&doublez,@/!@A@ABCD/@O@)log2_iter/F@wd@A@NH/@B@&moduloNH/9@1,@A@A\d@G@&of_int\d>@1?A @A@bz@M@&of_natbzD@1?G!@A@#@S@&shiftl#J@1dV@A@#@Y@&shiftr#P@1d\@A@ABCD/x@&BinPos&PArith#Coq@#Pos@)pred_mask/x)BinPosDef&PArith#Coq@#Pos@ )X@A@6@x@&square6o@19@A@AV+L@}@&to_intV+Lt@2@A@V1b@@&to_natV1bz@2 @A@V5=@@&to_posV5=@2@A@ABCl@@)sqrt_iterl@!$:@A@x@\[@A@Ax @ZY@A@xb@ZY@A@A@@?@(sub_mask@6@)@A@BCDEF c@@'testbit c@!ć@A@7 B@M@'of_uint7 BD@*`]?@A@AG@R@)mask_rectGI@+ED@A@F˱@X@)add_carryF˱O@+p@A@AB^Ҷ@@'to_uint^Ҷ@#m@A@gL7@@'sqrtremgL7@40@A@Aq@@'testbitq@5)@A@Ҙ@PN@A@AݎO@@+succ_doubleݎO@6r@A@B p@w@0double_pred_mask pn@0-+m@A@CDE T@&BinNat&NArith#Coq@!N@!t T)BinNatDef&NArith#Coq@!N@ 2@A@ @@#add @3 @A@A l@@#div l@3@A@ Y@%@#eqb Y@3@A@AB #@*@#gcd #!@3n@A@ T@0@#leb T'@3@A@ACFG "@5@#lor ",@3m@A@ q@?@#ltb q6@3@A@A @D@#max ;@3@A@ @J@#min A@3`@A@AB @O@#mul F@3B@A@ ~@U@#odd ~L@3@A@AC =@Z@#one =Q@3@A@ @b@#pow ˑY@3@A@A c@g@#sub c^@3@A@ @m@#two d@3J@A@AB hx@r@$div2 hxi@>@A@ @x@$even o@>4@A@ACD @}@$ggcd Бt@>U@A@ @@$iter }@>:@A@A 3"@@$land 3"@>m@A@ F)@@$log2 F)@>t@A@AB S@@$lxor S@>@A@ @@$pred @?U@A@AC @@$size ܑ@?'@A@ !@@$sqrt !@?@A@A ! @@$succ ! @?\@A@ !7@@$zero !7@@P@A@ *@@%ldiff *@@A@AB g_@<@+pred_double g_3@25\@A@CD m@A@÷ m8@2j@A@+@#!@A@AS@K@&of_intS㫑B@4}5@A@BS@P@&of_natSG@4};@A@CEFGH\R@U@(mask_ind\RL@4@A@\^@`@(mask_rec\^W@4@A@A!,@e@&pred_N!,\@4s)@A@B@j@&shiftla@5X@A@@q@&shiftrh@5X@A@A&@v@&square&ّm@5,x@A@BC"@{@&to_int"r@5L@A@"@@&to_nat"y@5L @A@AnTq@@+testbit_natnTq~@6n@A@B@@(succ_posB @@A@I@@'abs_natI@?n@A@AB.@@'of_uint.@MS@A@3~@@'sqrtrem3~@7]%{@A@ACDE,@@'bitwise,@/v@A@>4'@@'testbit>4'@8g$@A@A{U@@,sqrtrem_step{U@8R@A@Bu^@:@(div_euclu^1@ @A@KL[@Ց@A@Kc@ԑ@A@K@ё@A@ABCfz@@'to_uintfz@9w@A@\ @Ց@A@z@ԑ@A@ABl@D@'comparel;@3R@A@ՠ@@A@ACDEFs8@L@+of_uint_accs8C@5+@A@}@g@,pos_div_eucl}^@&`@A@3x@H@'compare3x?@]=@A@A@s@&doublej@'޺_@A@BCq@@+of_succ_natq@$@A@w@~@&modulowɑu@)1@A@ADK@@&of_intKz@)j,I@A@K@@&of_natK@)j2_@A@AI@@&shiftlI@*O@A@O@@&shiftrO@*O@A@AB,@@&square,@*ow@A@Z@@&to_intZ@*81@A@ACE`@@&to_nat`@*9G@A@e@@+testbit_nateđ@+@A@A+{@@'sqrtrem+{ё@,J@A@5z@@'testbit5z@-T|@A@ya@  @A@ABC @@'to_uint ͑@.@A@ @@+succ_double @.^4@A@AD D@@A@ K@ @A@A Lv@ @A@ L@@A@A#@R@'compare#ݑI@ )Q@A@BC%t2@W@(size_nat%t2N@ @A@%9@^@+of_uint_acc%9U@ ΋@A@A%V@c@+double_mask%VZ@ S@A@%%@i@'div2_up%%`@ "@A@ABDEF'ş@n@'Ndouble'şe@ @A@(b0@v@*shiftl_nat(b0m@9-@A@A(nՖ@{@*shiftr_nat(nՖr@'@A@(@@0succ_double_mask(x@@A@*W$@@,compare_cont*W$~@!@A@.0@@.sub_mask_carry.0@΂@A@ABCD.@@!t.@ ;@A@.먩@ @#add.먩@ `@A@A.U@@#div.U@ @A@.B@@#eqb.B@ @A@A. @@#gcd. @ @A@.=@#@#leb.=@ @A@ABCEGHI. @(@#lor. @ @A@.Z@5@#ltb.Z,@ @A@A.p@:@#max.p1@ '@A@B.@?@#min.6@ @A@.@E@#mul.<@ @A@AC.g@J@#odd.gA@ @A@.&@Q@#one.&H@ @A@A.뾴@V@#pow.뾴M@ k@A@.L@\@#sub.LS@ @A@.@b@#two.Y@ @A@ABCD.,a@g@$div2.,a^@ @A@.Xz@o@$even.Xzf@ ?1@A@A.@t@$iter.ؑk@ @A@B. @y@$land. p@ @A@. @@$log2. v@ @A@ACE.@@$lxor.{@ R@A@.y@@$pred.y@ `<@A@A.Ʉ@@$sqrt.Ʉ@ ;@A@.@@$succ.@ @A@.t @@$zero.t @ Z@A@AB/@@.to_little_uint/@ @A@/`j@@A@ACDF/@@%ldiff/@ H@A@0' @ B A@A@08@ \@A@AB00@@'compare00@?H{@A@1P%@@!t1P%@  @A@AC1P@@#abs1P@ @A@1P&@@#add1P&@ @A@A1P@@#div1Pґ@ y@A@BD1P@@#eqb1P@ f@A@1P@@#gcd1P@ 0@A@A1P@@#geb1P@ T@A@B1P@@#gtb1Pʑ@ q@A@1Pĺ@@#leb1Pĺ@ a@A@A1Pň@@#lor1Pň@ /@A@BCE1P@@#ltb1Pב@ ~@A@1P@@#max1P@ @A@A1P{@@#min1P{@ "@A@B1P]@@#mul1P]@ @A@1P@@#odd1P@ @A@A1Pɣ@@#one1Pɣ@ J@A@BC1P@@#opp1Pԑ@ {@A@1P1@@#pow1P1@ @A@A1P;@@#rem1P; @ @A@B1P@@#sgn1Pˑ@ r@A@1P@!@#sub1Pɑ@ p@A@A1Pe@&@#two1Pe@  @A@BCDF1[8@+@$div21[8ޑ"@ @A@1[d@4@$even1[d+@ I@A@A1[6@9@$ggcd1[60@ i@A@B1[U@>@$iter1[U5@ @A@1\@E@$land1\<@ /@A@A1\@J@$log21\A@ 6@A@BC1\$@O@$lxor1\$F@ @A@1\Y@X@$of_N1\YÑO@ >j@A@A1\@]@$pred1\T@ j@A@B1\@b@$quot1\֑Y@ }@A@1\@i@$sqrt1\`@ @A@A1\w@n@$succ1\we@ @A@BC1\k@s@$to_N1\kj@ @A@1]@{@$zero1]r@ eD@A@1@ɑ +@A@AB2:@@%abs_N2:z@ @A@21@@%ldiff21@ ߵ@A@2=*@@%quot22=*@ @A@ABC2kF@@(size_nat2kF@{@A@3@@(tail_add3@^q@A@ADEFGH3@@(tail_mul3@^@A@5Z@@*shiftl_nat5Z@y/@A@5f}@@*shiftr_nat5f}@4@A@AB5a@V@'iter_op5aM@ @A@C6w~@@'of_uint6w~@^5@A@8j@@'of_uint8j@'"h@A@9E@@(div_eucl9Eđ@(*k@A@AB:x@m@,Nsucc_double:xd@ ʭ@A@CD@@&divmod>@C@A@>@@&double>@NĴ@A@?2@@,pos_div_eucl?2@-u@A@AB?;@@&modulo?;@"i@A@CEFGIJ@X%Arith#Coq@0I|кX*o4)ArithRing+setoid_ring#Coq@0ṔCgt?}*Arith_base%Arith#Coq@0Ĕ}CS&Basics'Program#Coq@0!bs߯? :VU'Between%Arith#Coq@06v*0ur`C0&BinInt&ZArith#Coq@0BpHޞun^)BinIntDef&ZArith#Coq@0ådR4Tuy'BinList+setoid_ring#Coq@0Au&BinNat&NArith#Coq@0K11ڤs+Π)BinNatDef&NArith#Coq@03@1O,[{ 'BinNums'Numbers#Coq@0dmk(5Ju<&BinPos&PArith#Coq@0vyػ0= u)BinPosDef&PArith#Coq@0}H d.%,b$Bool#Coq@0j 2cZ`FW*CMorphisms'Classes#Coq@0qیZBeϠ0CRelationClasses'Classes#Coq@0TL;0RUfw1+Compare_dec%Arith#Coq@0jXF 8lkj@0.i bYN Z)Decidable%Logic#Coq@0ND걸풬/Oߠ'Decimal$Init#Coq@0C涳N*ua%EqNat%Arith#Coq@0AIgՋXRV *EqdepFacts%Logic#Coq@0FI$ͼՋ`)Eqdep_dec%Logic#Coq@0u wWIϰ߼0όe얟)H.Ƞ+Equivalence'Classes#Coq@07;ꮹ)Factorial%Arith#Coq@0@oehJd-GenericMinMax*Structures#Coq@0måj$"Gt%Arith#Coq@0䙛#c:D $Init'Classes#Coq@0](p{yOh.+InitialRing+setoid_ring#Coq@0k/T=cN"Le%Arith#Coq@0d}Omq+$List%Lists#Coq@0>I+ListTactics%Lists#Coq@0,Jcy{%Logic$Init#Coq@0\͉!Ig*Logic_Type$Init#Coq@0 1jc6"Lt%Arith#Coq@0KZ-eJkP܏#Max%Arith#Coq@04=;3$>aU堠#Min%Arith#Coq@0Ce-Fѕ%Minus%Arith#Coq@0LFtR"M0Imӽ%\$PD.Morphisms_Prop'Classes#Coq@0% :B'.>u%$Mult%Arith#Coq@0햖Qyb0$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI%NBits(Abstract'Natural'Numbers#Coq@0qteo_hɅ $NDiv(Abstract'Natural'Numbers#Coq@0bz$?[p(5$NGcd(Abstract'Natural'Numbers#Coq@08E-S ;j_Ҡ$NLcm(Abstract'Natural'Numbers#Coq@0 ~xZ9L{:$NLog(Abstract'Natural'Numbers#Coq@0K Aat/ j &NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf+NProperties(Abstract'Natural'Numbers#Coq@0unt"kwpYC%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ%NZAdd&NatInt'Numbers#Coq@00h`ZK4*NZAddOrder&NatInt'Numbers#Coq@0e~1>r砠(NZAxioms&NatInt'Numbers#Coq@0] ρ5r&NZBase&NatInt'Numbers#Coq@0^&8yUL&NZBits&NatInt'Numbers#Coq@0MlIpKt%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZMul&NatInt'Numbers#Coq@0ctR~6[Ƞ*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R'NZOrder&NatInt'Numbers#Coq@0 q;Ve7R W,(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x&NZSqrt&NatInt'Numbers#Coq@0` .%m#Nat$Init#Coq@0eʤģPSR蠠$Nnat&NArith#Coq@0$W;s #%M)Notations$Init#Coq@0&v!D]hwnv *NumPrelude'Numbers#Coq@05WUVŦ]xVXԠ%Omega%omega#Coq@0t.J'6\ϨrK+OmegaLemmas%omega#Coq@0TJ#Jes4Operators_Properties)Relations#Coq@0U3y#h&&Orders*Structures#Coq@0$Znl0\͗+OrdersFacts*Structures#Coq@05Mܿ獐ζΖLB#05'4Ԗ+9%%Peano$Init#Coq@0 jha|ؠ(PeanoNat%Arith#Coq@0O~2$k[#lZ)Peano_dec%Arith#Coq@0Kݢ*k$Plus%Arith#Coq@04tmG$Pnat&PArith#Coq@0,?pr.gZ(PreOmega%omega#Coq@0\|چBb~w4'Prelude$Init#Coq@0JqTttֱ0#-\D7* Q,"f\%Quote%quote#Coq@0J@ŹVz-,3%/RelationClasses'Classes#Coq@0Gz rA6ՠ4Relation_Definitions)Relations#Coq@0]4Ѐd{n^2Relation_Operators)Relations#Coq@0%s鯰s)Relations#Coq@0-SetoidTactics'Classes#Coq@0S_`nOU$&Specif$Init#Coq@0;RWMi\N'Sumbool$Bool#Coq@0sB ,$11.]m'Tactics$Init#Coq@0/9m+ a'Tactics'Program#Coq@037rHȠ@52 Q@@@@"_7D@@5@A@@@@@@@@"_82M접@"_9'`o@@@@$2 Q@@@@#_10d@/ @#_112M접 @#_12'`o@B'Q_scope@8;@#2 Q@@@@#_13@.}HG@#_142M접 R@(Q_Setoid'L#_15'`o@@@@2 Q@@@@#_16@)rih@#_172M접 BA@A#_18'`o@BIK@14@2 Q@@@@#_19@'zbN@#_202M접 @,Qeq_bool_iffb(#_21'`o@Btv@\_@#tӡ*Equalities*Structures#Coq@@ @A@Ԡ@@5@@5J@A@@ @㱠^@A@AB@@AB#tӡ2@@A@G@@5@@ 5J@A@@#@ 㱠^@A@AB@_'@@r@+@rd@A@A@AB@ԠrHȠ@٠#tӡ>:@<@A@t2 Q@@@@#_22@x@A@@@@@#_232M접 @#_24'`o@B䠐@@2 Q@@@@#_25@x(*@#_262M접 @#_27'`o@B  @BE@2 Q@@@@#_288@*[c9OQ@#_292M접 BA@A#_30'`o@B24@il@2 Q@@J@#_31_@8^k@A@@@@y@#_322M접 #_33'`o@@@@#_3446@@.[@@@@"#_35X@3typeclass_instances@@@@@@@@CӠ@@@ $Coq.QArith.QOrderedType.Q_as_OT#<>#1R@2 Q@@J@#_36@+@A@@@@@#_372M접 #_38'`o@@@@#_3946@@LO@#_40X@N@@@@@@@ @@@䤐@𐑐鐑,A@@sd r@ $Coq.QArith.QOrderedType.Q_as_OT#<>#2R@2 Q@@@@#_41!@-"q:@#_422M접 E@(Qle_lteqO#_43'`o@B!@VY@٠2 Q@@@@#_44L@0e@#_452M접 p@-Qcompare_spec%}#_46'`o@BJL@@@rHȠ@@@A@Z@@x@@exJ@A@Ax @@Qx ^@A@x@@Pxh@A@ABx@@Nxh@A@xb@@A@AKL[@ݑ@A@Kc@ܑ@A@ABK@ؑ@A@\ @ב@A@Az@Ց@A@*[c9@@]*[c9d@A@0' @ؑ@A@ABCDE@A'q_orderF@@@ ./theories/QArith/QOrderedType.vyy yy @%order'@@@=\P|5.߹=@iąbLk/鄕@9 @b∺xȘćA4/RelationClasses'Classes#Coq@@+StrictOrder.[@A+QArith_base&QArith@!Q4+@ @#Qlt4?@*Qlt_irrefl,ʘ*@)Qlt_trans_`@*Qlt_compat+x LjtXL|