"`r t 䰠(NZDomain&NatInt'Numbers#Coq@d2Relation_Operators)Relations#Coq@4Operators_Properties)Relations#Coq@)Relations#Coq@*Equalities*Structures#Coq@&Orders*Structures#Coq@4Relation_Definitions)Relations#Coq@-SetoidTactics'Classes#Coq@&Setoid'Setoids#Coq@$Init'Classes#Coq@/RelationClasses'Classes#Coq@)Morphisms'Classes#Coq@.Morphisms_Prop'Classes#Coq@*NumPrelude'Numbers#Coq@)Notations$Init#Coq@%Logic$Init#Coq@*Logic_Type$Init#Coq@)Datatypes$Init#Coq@&Specif$Init#Coq@%Peano$Init#Coq@"Wf$Init#Coq@'Tactics$Init#Coq@%Tauto$Init#Coq@'Prelude$Init#Coq@-GenericMinMax*Structures#Coq@(NZAxioms&NatInt'Numbers#Coq@ )Notations$Init#Coq@0&v!D]hwnv %Logic$Init#Coq@0\͉!Ig)Datatypes$Init#Coq@0.i bYN Z*Logic_Type$Init#Coq@0 1jc6&Specif$Init#Coq@0;RWMi\N'Decimal$Init#Coq@0C涳N*ua#Nat$Init#Coq@0eʤģPSR蠠%Peano$Init#Coq@0 jha|ؠ"Wf$Init#Coq@0q+W,J+'Tactics$Init#Coq@0/9m+ a%Tauto$Init#Coq@0̂"&/r'Prelude$Init#Coq@0JqTttֱ&Basics'Program#Coq@0!bs߯? :VU$Init'Classes#Coq@0](p{yOh.'Tactics'Program#Coq@03u%+Equivalence'Classes#Coq@07;ꮹ-SetoidTactics'Classes#Coq@0S_`nOU$&Setoid'Setoids#Coq@0D9AsWE!>*NumPrelude'Numbers#Coq@05WUVŦ]xVXԠ$Bool#Coq@0j 2cZ`FW*Equalities*Structures#Coq@0όe얟)H.Ƞ2Relation_Operators)Relations#Coq@0%s鯰s4Operators_Properties)Relations#Coq@0U3y#h&)Relations#Coq@0r砠*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ&NZSqrt&NatInt'Numbers#Coq@0` .%m%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|&NZBits&NatInt'Numbers#Coq@0MlIpKt'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$&NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ)NMulOrder(Abstract'Natural'Numbers#Coq@04> Aat/ j $NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ'NMaxMin(Abstract'Natural'Numbers#Coq@0]v|Qg̟ʠ'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NLog(Abstract'Natural'Numbers#Coq@0Kg?@@@$@A @@@ABC@@1bi_induction_pred @@L@@!t"2K@@씐AAdn@#iffС)A@l@"ʎ@$@-w@-@4F5@@@4Ad@6A1@AB@@P6central_induction_pred @@ M@HE@Հ@0DƀB@A"n0@Ґ@ @e1:@ @7G %&@@@mA@oAj@qA@ABC@@@@@@ @A@@ABy@@Az@@C@ABC@@z@ABDER@'NZOfNat NAA Y@z @y@ @#;B@@#;Bw@u@@s @rq@#;B @#;I|@f@@Z @Y)@W#;B@V@@TQ @P@3@a#;B7@e#;B@N@@bL @K@A@o#;BE@s#;B@I@@pG @FE@Q@#;BU@#;B9[@#;B_@#;Bc@4#;I|g@8#;I|k@#Gv@3@@( @'k@w@#;B{@#;B_@#;B@#;B@Z#;I|@^#;I|@#G@&@@" @! @#;B@q#;I|@#G@#Gv@@@נ @@@#;B@@@#;B@#;B$@#;I|:@ @ #H@[@ #;B"  @ #GvQi@ #;B@@@  @@ #;B@@@  @@ $#;B@@@ ! @@#;I|@#;梀 @ /#Gv@ F#H@@@ : @򩚠@#;I|@*#;d#@ H#Gv(@B#;梀@@@ S@@@#;B@2@ #;B@A@A#;I|@4@ #;I|@A@#;@7@Q#;@A@AB#;d@9@E#;d@A@#G@<@ N#G@A@#Gv@?@ d#Gv@A@#H@B@ y#H@A@ABCD@%ofnat @]hV@lA  @j#;B\[ kju @ #Gv ;@ #H@ l@#;B x+k +7 + 7#'6'6'v@h(l"\@@@ A 1@A@@ "*ofnat_zero @@ N$@#;I|@NPрš/@ #H@@@ $A@A@@ >*ofnat_succ @@ O 웠@! @oPрBb@@@ HA@A@@ b*ofnat_pred @@ "P @@8@ @Q0#Nat @  `<é@ #G@ʐ@@@ zA@ |A @AB@@ @@@@@A@BT@*NZOfNatOrd PAB  [@  | @ {@ @ #Q@@ #Q y@ w@@  u @ t s@ #Q @ #X@ h@@  \ @ [)@ Y#Q@ X@@ V S @ R@3@ c#Q7@ g#Q@ P@@ d N @ M@A@ q#QE@ u#Q@ K@@ r I @ H G@Q@ #QU@ #Q ;[@ #Q_@ #Qc@ 6#Xg@ :#Xk@ #@ 5@@  * @ ) m@w@ #Q{@ #Q a@ #Q@ #Q@ \#X@ `#X@ #Ų@ (@@  $ @ # "@ #Q@ s#X@ #Ų@ #  @ @@ ٠  @  @@ #Q @ @@ #Q  @ #Q &@ #X  <@ @ #ƭ@ ]@ #Q $  @ # S k@ #Q @ @@   @ @ #Q@ @@   @ @ &#Q@ @@ #  @ @ #X@ !## @ 1#@ H#ƭ@ @@ <  @ @ #X@ ,#倩#@ J#(@ D##@ @@ U"lt @h@5@!t#Q@;@#QA@@@@@AA@@A@"le @h@O@#Q@T@#Q@@@@@%lt_wd @@ Z@d@ #Q@i@ #Q ʩ Oo@ #Q@t@ #Q ՚x@ K#X ^~@ #Q ߚ@ U#X Ϛ@"lt#Y@@@ A Q@A@@ +lt_eq_cases @@ @ #Q!m@ #Q 젩@`#Yv   @"or @@-#Y@ #X@@@@@ 砠)lt_irrefl @@ M@ #Q @#notШ@L#Y F F@@@@@ )lt_succ_r @@ h@ #QJ@ #Q 4@g#Y /@ # g@#YvS@@@@@ '@ )NZOrdSig' @@#Q@@ #Q @A@A#X@@ #X @A@#Yv@ @#Yvh@@A@AB#Y@@#Yh@@A@##@@ /## @A@A#@@ ## @A@#Ų@@ ,#Ų @A@#@@ B# @A@#ƭ@@ W#ƭ @A@ABCDE@ސ @:E3@I1@F#Q87@Q@M#QLKV @ b# @ y#ƭ@@#Qݠ@@OL@A@UT @A@@@@ ѐ @ @ N/@#X l@">[\nB  @ #ƭ@@@ ѐ @*'@ OѩL@#X@=>[\ΩW@ #@H>[\e@@@ /͐ @JG@ PͶ@ʩm@#X@^>[\ũx@ #Ų@i>[\@@@ P H @ G@ 4#Q@ 3#X@ /4@ Ҡ@ B#Q@ A#X Ơ@ ; 0@A@@@ /@A  @@   @ @ ]#Q@ \#X@ X4@ @ k#Q@ j#X )&  @@ Ԡ  @ @ #Q@ #X@ {4@ @ #Q@ #X LI  @@  | @TQ@ |@ {@ g#Q y@ l#Q w@ #X k @ #X h@ e@@ Q N @sp@ A M@ #Q K@ #Q@ I'@ #X = :.@ #X 8@ 5@@ s 1 @@ B 0<@ #Q /A@ #Q .F@ #Q@L@ #X ,@R@ #X )W@ #X '@ &@@   @@ C e@ #Q j@ #Q@p@ #Xv@ # {@ # @ $#X @ @@ Š  @@ D @ >#Q @ C#Q @ >#X@ # @ # @ N#X @ @@   @@ 9E 䚠@ h#Q 㚠@ m#Q ⠩ @ j#X@ !# ީ@ &# ܩ ڐ@ |#X ؐ@ @@  Ӑ @?<@ gF Ҷ@@ S#Q ж Ω ̰@@ [#Q ة @ a#Q ޚ@ #X   @ j#Q@ @ @ q#Q Ƞ  @ c#  @ #Q @ @@ X%le_wd @@@A&NZBase'NZOrder&NatInt'Numbers#Coq@[ @A@'NZOrder&NatInt'Numbers#Coq@+NZOrderPropj @A@@@@"NZ>l@A@@)Morphisms'Classes#Coq@@&ProperL@Q@!t#Q@W@#QA)Morphisms'Classes=@@*respectful%WO?j@#Q@o@#Qs@"eq#Xz@)#Q#~@ #X%Logic$Init$@#iffС)@"le#Yv@@@ %'A*Equalities*Structures#Coq@AviA)Morphisms'Classes#Coq@@Aۓό^ @A݋X_A/RelationClasses'Classes#Coq@@ABC@@AA@@A@*lt_le_incl @@A!n@!t#Q!m@#Q@@"lt#YBA@"le#YvCB@@@@@2'le_refl @Π@B/@.#Q@#YvAA@@@mAW@A@@O.lt_succ_diag_r @ޠ@CL@K#Q@B#YA@$succ#A@@@@@q.le_succ_diag_r @ @ Dn1@m#Q6@[#YvA=@"#A@@@@@/neq_succ_diag_l @.!@,ER@!t#Q%Logic$Init#Coq@@#notШf@"eq#Xm@R#AA@@@A@AAۀߠK@A@A@ABC@@͠/neq_succ_diag_r @i\N@gFʚ@<#Q:@0#XA@#A@@@@@/nlt_succ_diag_l @s@G@`#Q%Logic$Init#Coq@@#notШ@#Y@#AA@@@@@!/nle_succ_diag_l @@H@#Q/@#Yv@#AA@@@@@F)le_succ_l @ՠ@IC@#QA @H#QZ@#iffС)@=#Yv@#BA&@T#YBA@@@A@AA@A@A@ABC@@+le_gt_cases @ @JD@#QJ@#Q@"or @W@|#YvBA_@#YAB@@@A@A@A@ABC@@-lt_trichotomy @WJ<@UK{@#Q@#Q7@#YBAC@0#XBA@#YAB@@@@@(lt_asymm @u@L񚠐@#Q@#Q@@#YBA@#Y@@@AA9@ABA]@DA2@FA0@ABC@@((lt_trans @Ġ@M%@$#Q#@*#Q!p@1#Q@@)#YCB@@2#Y(' @8#YE/@@@Ax@AA@Aq@Ao@ABC@@g(le_trans @@Nd'@c#Qb-@i#Q?3@o#Q@9@^#YvCB@B@g#YvfeH@m#Yv>l@@@A@A@A@ABC@@+lt_strorder @>1#@1#@  a@#Q f@#Q k@#Q@ q@#YvL@ w@#YvR |@#YvK L+k() NN7#'Jtk^PysX@@@@@8 @[XYZМnBVwi@f @V#Q @[#Q @`#Q@ @#Y@ @$#Y @)#Y L+k() MM7#'tŠ@@@@@~+le_lt_trans @-#GȠ@ @#Q9 @#Q3 @#Q@ @o#Yvֶ@ @h#Yܩ @m#YՐ L+k() MN7#'ԐtڠJ: @@@@@ +lt_le_trans @qg%JIޠ @ /@#Q} 4@#Qw 9@#Q@ ?@#Y@ E@#Yv  J@#Y L+k() NM7#'t 9 , ~MGA&@@@@@%eq_lt @*'()ia" P C 5@2 s@ "#Q x@ '#Q }@ ,#Q@ @ #X^@ @#Yd @#Y] L+k() ML7#'\t } p bҠ j@@@@@J%lt_eq @nklmf   y@v @ f#Q @ k#Q @ p#Q@ @.#Y@ @ Z#X @9#Y L+k() LM7#'t   ՠϠɠ@@@@@%eq_le @=3   ؠ ˠ @ @ #QI @ #QC @ #Q@ @ #X@ @ #Yv쩚 @ #Yv吐 L+k() NL7#'t   ZJ @@@@@Ҡ%le_eq @w5- Z Y   @ ?@ #Q D@ #Q I@ #Q@ O@ #Yv*@ U@ #X0 Z@ #Yv) L+k() LN7#'(t I < .]WQ6@@@@@&eq_neq @ [ N @oicH@GC @ 3#QҚ @ 8#Q̚ @ =#Q@ @ !#Xo@ @ )#Xw @ 0#Xr@@@@@M&neq_eq @   wנ@Hz @ j#Q  @ o#Q @ t#Q@9 @ Z#X@ @ `#XF @ g#X@@@@@*not_neq_eq @ ɠ  ݠנѠ@I @ #Q@ @ #Q@km @ #XB @ #X@@ @@)not_ge_lt @   ڠJ: @KJݚ @ #Ql #@ #Q@ +@ #Yv N 1@#Y @@@@۠)not_gt_le @   ue4.( @vK I@ #Q N@ #Q@ V@#Y+ [@ #Yv6@@@@@)le_neq_lt @ J = /^XR7@L2 s@ "#Q x@ '#Q@ ~@ #Yv@򐩚 @ #Xa @#Y@@@@@5@@@@@@@@@@<_neq @ ~ q c@ |R ߚ @ #Q ݚ @ #Q@ @ #YBA ^ @ T#X  ݐ@@@@@ &le_neq @   @ S  @ #Q  @ #Q Ȁ @ #YBA /@#andЖw@ @ #YvBA  @ #XBA@@@@@ O*eq_le_incl @  ޠ @ T L@ #Q J@ #Q@@ #XBA#@ H#Yv G F@@@@@ w(lt_stepl @   @ U7@ s#Q=@ y#QC@ #Q@I@ w#YCB@R@ #X^ uX@ #Y |d@@@@@ (lt_stepr @ H ; -@ FV*l@ #Qr@ #Qx@ '#Q@~@ #YCB@@ !#X  @ #Y  @@@@@ ᠠ(le_stepl @ } p b@ {W_@ #Q@ #Qꚠ@ \#Q@@ #YvCB@@ V#X ߩ@ #Yv ΐ@@@@@ (le_stepr @   @ X@ #Q$@ #Q@ #Q@@ #YvCB@@ #X  @ #Yv  @@@@@ K$ @  ٠ @ Y G @ F#Q E@ L#Q "@ R#Q@@ A#YvCB@%@ S#Y I H+@ Y#Y ! O@@@@@  @   @ Z {>@ z#Q yD@ #Q VJ@ #Q@P@ ~#YCB@Y@ ~#Yv } |_@ #Y U @@@@@ +le_antisymm @ O B 4@ M[ s@ #Q y@ #Q@@ #YvBA@@ #Yv  @ (#X @@@@@ ⠠)le_succ_r @ ~ q c@ |\ ߚ@ #Q ݚ@ V#Q @ #YvB@ #A p@ #YvBA@ e#XB@ #A@@@@@ ')lt_succ_l @ à  @ ] $@ #Q "@ )#Q@@ !#Y@ #BA@ /#Y % $@@@@@ U,le_le_succ_r @   @ ^ R@ Q#Q P@ W#Q@!@ F#YvBA)@ N#Yv M/@ # R@@@@@ ,lt_lt_succ_r @@_ C@ #Q ~I@ #Q@O@ }#YBAW@ #Y {]@ B# @@@@@ ,succ_lt_mono @M@2@K` q@ #Q w@ #Q k@ #YBA@ #Y@ s#B@ z#A@@@@@ ꠠ,succ_le_mono @yk@a 皠@ #Q 嚠@ #Q @ #YvBA@ #Yv@ #B@ #A@@@@@#<_0_1 @@b@#Y@#ƭ@##@@@_AW@A`A {@bAP@dAN@ABC@@F&le_0_1 @ՠ@c@*#Yv @ #ƭ@ ##@@@@@a<_1_2 @@d @N#Y%@ -##)@ -#倐@@@A@AA @A@A@ABC@@<_0_2 @ @eC@q#YH@ >#ƭL@ P#倐@@@A@A@@&le_0_2 @=0"@;f`@#Yve@ [#ƭi@ m#倐@@@@@<_1_l @XK=@Vg|@#Q@#Q@@#Y@ #ƭB@@#Y@#Y@ ##@@@A @A/@A@ABC@@+lt_ge_cases @y@h@#Q󚠐@#Q t@#YBA@#YvAB@@@@@%+le_ge_cases @@i"@!#Q @'#Q @#YvBA@!#YvAB@@@@@R+lt_gt_cases @@jO@#QM@#Q ɀ%@#XBA ހ1@_#YBA9@g#YAB@@@@@,eq_decidable @+@)kO@#QU@#Q)Decidable%Logic#Coq@@)decidable rh@#XBA@@@@@&eq_dne @ZM?@Xl~@-#Q@3#Qxրڀ@/#XBA@7#XBA@@@@@&le_ngt @t@m𚠐@#Q@#Q@#YvBA@#YAB@@@@@$&nlt_ge @@n!@ #Q@&#Qހ<@%#YBA@$#YvAB@@@@@U,lt_decidable @@oR@Q#QP@W#Qƀ$@R#YBA@@@@@z<_dne @ @pw:@v#Qu@@|#Q4Q@#YBAY@#YBA@@@@@&nle_gt @K>0@Iqo@#Qu@#Qiǀ@#YvBA@#YAB@@@@@ࠠ<_nge @|oa@zrݚ@#Qۚ@#Q@#YBA@#YvAB@@@@@,le_decidable @@s@ #Q @#Q@#YvBA@@@@@6&le_dne @ҠŠ@t3@2#Q1@8#QNR @2#YvBA@:#YvBA@@@@@k*nlt_succ_r @@uh+@#Qf1@m#Q%>@l#YAE@*#BL@z#YBA@@@@@5lt_exists_pred_strong @>1#@ ؚ@I#Q@@O#Q%@U#Q@Z#Q@@%#Yv@@#Y  %<@l#Q@@7#Yv;9@@@@@6strong_right_induction @@}~@@#Q|z@@#Q@#Q@v#Xk ,@#Q@s@#Q@@n#Yv;@@#QZ@#Q@ @#Yv@@y#YM@#Q@@#Yv@@@ 7@A 0@@AРDq@ABC@@x/right_induction @@~߶@8@#Qݩ۰@@@#QF@#QJ@#X O@#Q@ֶ@՚V@#Q@\@#YvԶ@ө zd@I#Ѷ蚠i@#Q@o@#YvЩ @@@@@à0right_induction' @_RD@]*@@2#Q,(&@@:#Q42@@#Q:@"#XL ؚ@I#Q@@O#Q@@#Yv {@+@[#Q@@&#Yv*@) А@#'>@n#Q  @@v@@7strong_right_induction' @@@z@@#Q|xv@@#Q@#Q@r#Xg(@#Q@o@#Q@@j#Yv 3@{@#Q@@v#Yvz@ @#Qb@#Q@@#Yv0̶@@#YVJf"@#Qc@@@@@u&ls_ls' @@Aܶ@5@#Q޶کذ@=@#QC@#Q욠G@#XL@#Q@Ӷ@ҚS@#Q@Y@#Y}@wb@G#暠g@#Q@m@#Yv%y@u@$#QΚz@)#Q@@#Yv8@@#Yvb͐@r#ѐ@@@@@E@ABC@@㠠(ls'_ls'' @rd@}BJ@@R#QLHF@@Z#QTR@`#QZ@B#X7l@i#Q@?@o#Q@@:#Yv @L@|#Q&@#Q@@L#Yvζ@@S#Yvʐ@#Zζi@#Qmq@#QK@#Q@@q#Yv%@@w#Yvc @#Qb@#Q@@#Yv<@@#Yv @#@@@@s%lbase @@ Cڶ@3@#Qܶv8@#Q>@#QC@#Q@I@#Yv@O@#Yv*8U@:#@@@@@(A'A_left @D7)@BD@h@#Qm@#Q@򚠐s@"#Qy@(#QҚ~@-#Q@@#Yv@@#Yve@>#Q@@ #Yv<Ґ@@K@@蠠5strong_left_induction @wi@EO@@W#QQMK@@_#QYW@e#Q_@G#X<q@n#Q@D@t#Q@@?#Yv @Q@#Q+@#Q@@Q#Yv@@W#Yvΐ@#^Ҷm@#Q@@h#Yvj@@@ @@@ABC@@J.left_induction @٠@F@ @#Q@@#Q@#Q@#XӶ_!@#Q@@(@#Q@.@#Yն@K6@#;@#Q@A@#YvҐ@@@@@/left_induction' @0#@.G@T@#Q@\@ #Qb@#Q f@#Xk@#Q@𚠐q@ #Q@w@#Yv@}@,#Q@@#Y*@@p#Զ@?#Qѐ@@@@㠠6strong_left_induction' @rd@}HJ@@R#QLHF@@Z#QTR@`#QZ@B#X7l@i#Q@?@o#Q@@:#Yv@K@{#Q@@F#Yvy@X@#Q2@#Q@@X#Yv@@_#YvА@#f:u@#Q7@@i@@I/order_induction @ؠ@I@ @#Q@@#Q@#Q@#XҶ^ @#Q@@'@#Q@-@#Yv@K5@#@;@#Q@A@#YԶ@_I@.#͚N@#Qk@@@h@f@AB@@0order_induction' @@3%@>J @d@#Q  @l@#Qr@!#Qv@#X-{@*#Q@@@1#Q@@#Yv@@u#@@E#Q@@#Yv/@.ᐩ@#Ų(@X#Q[@@Z@@1order_induction_0 @}@Kc@@k#Qea_@@s#Qmk@y#Qs@[#XP@򐚠@#ƭ@Z@#Q@@U#Yv@#ƭ@$@#[@s@#Q@@a#Y@#ƭ@@#|P @#QM@@@@@_2order_induction'_0 @@Lƶ@@#Qȶĩ°@'@#QЩ-@#Q֚1@#X@U8@.#ƭ@>@#Q@D@#YvI@?#ƭ@fQ@6#@֚W@#Q@]@#Yvb@X#ƭ@٩j@i#Ų׶o@#Q@@@@@ <_ind @^QC@\M)@@1#Q+'%@@9#Q31@?#Q9@!#XK@H#Q@@#@@V#Q@@#Y%@$ː@#"@i#Q@@'#Y!Q@@@@@&le_ind @@Nz@@#Q|xv@@#Q@#Q@r#Xgi@#Q@q@E@#Q@@k#Yvo@n@#lX@#Q@ @~#Yvk@@@@@]&Rlt_wd @@OZ@#Q@#@#Q@(@#Qѩ.@#Q@3@#Qܚ7@#X=@#Q暠A@#X÷ŚF@#QK@#Q@kЖw@W@#Yv2\@#Y@@@u@o@@ABC@@&Rgt_wd @NA3@LPq@ #Q@x@'#Q@}@,#Q&$@2#Q@@7#Q1@#X3@A#Q;@##X@J#Q@O#QU@#Y|@ #Yv@@P@@%lt_wf @@Q@m#Q"WfA@,well_founded8E@{#QP@#Q*@#Q@Q#Yv@I#Y#@@@A𱍠G@A7iA)@AB@@=%gt_wf @٠̠@R:@#Q>@#Q@#Q` @#Q@z#Y詚@#YvS@@6@@k,ofnat_S_gt_0 @@+Q+$+@"lt#Y @@@*A+@A@@+-ofnat_S_neq_0 @@+R+$$G@%#XL@*#ƭ @!<>[\$BA@@@@@+,/ofnat_injective @@+S+!1%!3@l@%#X!B&A%@"eq @!L++@@@+;A%@A@@+U(ofnat_eq @@,T,!Z&!\$t,KBPA*!rBA@@@+cA%@A@@+}(ofnat_lt @@,=U,+%&@%$wB|A%%%@@"lt UxcBA@@@@@+(ofnat_le @@,nV,\%K&q%O$р@"le#YvBA5@"le UxT@BA@@@@@+@@@@&@$@+A%@ABC c@O@!S@AB d@3@A \@0@'^@ABCDE)@*NZOfNatOps,AC+,@+ @+蔑 %'A*Equalities*Structures+W@@+吠@ %'@ @A@A@@@+䠠+= @+@@+$7a@$@+$7a*ؐ@@@@@++ݐ @@++|@+~@9@+$7a=@+c$7h~@@@7A݋X_A@A@@,+Ґ @+њM@+$7a@@@@@+Ϡ+̐ @+˶@Z@+$7a^@+$7a@@@@@+ࠠ+ʐ @+ɶ@k@+$7ao@+$7a@@@@@++Ȑ @@+ǰ@~@,$7a@,$7a+@, $7a@,$7a@+$7h~@+$7h~@,$Dx@@@AviA+@A@@,+ @@+@@,.$7a@,2$7a+@,8$7a@,<$7a@+$7h~@+$7h~@,,$C@@-@@,G+ @@+@,U$7a@+$7h~@,D$C@,]$Dx++@@@@@,e+ @@+@@,t$7a+@,B@@,|$7a+,2@,$7a+@,)$7h~++ɶ@+ @,$D@+ꚠ@,$7a+++@,$Dx++@,$7a+@@@@,+ @+*@,$7a@@@@@,+ @+6@,$7a@@@@@,+ @@C@,i$7h~H@+$8M@,$DxR@,$D@@@@@,Ԡ+ @@_@,$7h~d@+$8 fi@,$Dxn@+$8@@@@@,#add @d@}@-$7a@@-$7a@- $7a@@@@@-#sub @d@@-$7a@@-$7a@-!$7a@@@@@- #mul @d@@-0$7a@@-5$7a@-9$7a@@@@@-8&add_wd @@-@@-I$7a@@-N$7a@-R$7a-@-X$7a@@-]$7a@-a$7a@-$7h~-@-k$7a@-o$7a@-$7h~@-$7h~@$7'@@`@@-z&sub_wd @@-Q@@-$7a@ @-$7a@-$7a-J@-$7a@@-$7a @-$7a$@-J$7h~-]*@-$7a.@-$7a2@-X$7h~6@-\$7h~:@$8 ʀ@@@@-&mul_wd @@-@J@-$7a@O@-$7aS@-$7a-Y@-$7a@^@-$7ab@-$7af@-$7h~-l@-$7ap@-$7at@-$7h~x@-$7h~|@$8^@@@@-'add_0_l @@-d@. $7a@-$7h~@"$7'@.&$D-`-`@@@@@.*add_succ_l @@-@.+$7a"d@.0$7a@-$7h~@E$7'@.8$Dx-S-@.>$Dx@W$7'"x@@@@@.L'sub_0_r @@-@.[$7a@.$7h~@X$8 ʀ-@.t$D-@@@@@.j*sub_succ_r @@-К@.y$7a"@.~$7a@.&$7h~@{$8 ʀ- @.$Dx-ө@.x$C@$8 ʀ"Ő@@@@@.'mul_0_l @@-%@.$7a*@.P$7h~0@$8^5@.$D-9@.$D@@@@@.*mul_succ_l @@.!G@.$7a#L@.$7aQ@.w$7h~W@$8^]@.$Dx.#b@$7'h@$8^#..@@@@@.@-,NZAxiomsSig'-}@@$7a@v@/[$7a-|@A@A$7h~@x@/B$7h~-{@A@$7'@{@$7'd@@A@AB$8^@~@$8^d@@A@$8@@-$8-@A@A$8 @@$8 ʠd@@A@$8 f@@-$8 f-@A@A$C@@.$C-@A@$Dx@@/ $Dx-@A@$D@@/$D-@A@ABCDE@% @** '@*@* $7a''@*@*$7a*** @/)$Dx/㐚@/@$D@%%@'$7a%@@'P@A@'-u@A@@%@@/% @ @0{N/@*]$7h~@%>D̳%9@/g$D@%@@/Ҡ% @&#@0O%%H@*v$7h~@&>D̳%S@/o$Dx@& >D̳)(@%@@/% @FC@0P%%@%i@*$7h~@&!>D̳%t@/}$C @&,>D̳(M@%@@0+ofnat_add_l @@0W0&*@*$7h~@$7'=@&I>D̳BA0t@0Y*ũ0qA0a0`@/$DxCA@@@JA0a@AKA*7@MA*@OA0_@QA0Z@ABCD@@0R)ofnat_add @@1X1)Datatypes$Init#Coq@@#nat@+ )Datatypes$Init#Coq@@#nat@YQ%$Init#Coq@@#add `BAjhBmA@@@A0@AA*@A*@A0@A0@ABCD@@0)ofnat_mul @@1iY1WW+l[?@#mul BA4@3$8^BA@@@A0@AA*@A+3@A0@ABC@@0⠠+ofnat_sub_r @@1Z1d+&驚π^@u$8 ʀB΀A1?@1$+1<A1,1+u@0~$CBB@@@A1,@AA+@A+l@A1*@A1%@ABCD@@1)ofnat_sub @@1[1˛)Datatypes+p@#nat@+ @`AB@#sub 11V!1%1@@@@@1V@@@@D@D@ABZA+@]A1@A^A1n@`A+@G@A+A+@BCDE/@@@@1@A ӳ2@ ӳ2[1x@A@ Գq@ Գq\1|@A@AB@1@A1@1}@AB@@A@BC@@A+@B+a@@AC@@A,@B+@@ACDEF@@"O@(PeanoNat%Arith#Coq@#Nat@&of_int"O#Nat$Init#Coq@@ 6@A@As2@@&shiftls2 @vY@A@Bs8@@&shiftrs8@vY@A@ѓ@!@&squareѓ@y@A@@'@&to_intϑ@@A@AB/@,@)log2_iter/#@wd@A@l@2@)sqrt_iterl)@!$:@A@ACD c@7@'testbit c.@!ć@A@^Ҷ@?@'to_uint^Ҷ6@#m@A@A,@D@'bitwise,;@/v@A@l@J@'comparelA@3R@A@ABs8@O@+of_uint_accs8F@5+@A@.@W@!t.N@ ;@A@A.먩@\@#add.먩S@ `@A@B.U@a@#div.UX@ @A@.B@h@#eqb.B_@ @A@A. @m@#gcd. d@ @A@.=@s@#leb.=j@ @A@ABCDE. @x@#lor. o@ @A@.Z@@#ltb.Zz@ @A@A.p@@#max.p@ '@A@B.@@#min.@ @A@.@@#mul.@ @A@AC.g@@#odd.g@ @A@.&@@#one.&@ @A@A.뾴@@#pow.뾴@ k@A@.L@@#sub.L@ @A@.@@#two.@ @A@ABCD.,a@@$div2.,a@ @A@.Xz@@$even.Xz@ ?1@A@A.@@$iter.ؑ@ @A@B. @@$land. @ @A@. @@$log2. @ @A@ACE.@@$lxor.@ R@A@.y@@$pred.y@ `<@A@A.Ʉ@@$sqrt.Ʉ@ ;@A@.@@$succ.@ @A@.t @@$zero.t @ Z@A@AB/@@.to_little_uint/@ @A@CD/@@%ldiff/@ H@A@3@@(tail_add3@^q@A@A3@@(tail_mul3@^@A@B6w~@ @'of_uint6w~@^5@A@@@&divmod> @C@A@>@@&double>@NĴ@A@A?;@ @&modulo?;@"i@A@BDEFG@ &Basics'Program#Coq@0!bs߯? :VU$Bool#Coq@0j 2cZ`FW*CMorphisms'Classes#Coq@0qیZBeϠ0CRelationClasses'Classes#Coq@0TL;0RUfw13o0.i bYN Z)Decidable%Logic#Coq@0ND걸풬/Oߠ'Decimal$Init#Coq@0C涳N*ua*Equalities*Structures#Coq@0όe얟)H.Ƞ+Equivalence'Classes#Coq@07;ꮹ-GenericMinMax*Structures#Coq@0måj$$Init'Classes#Coq@0](p{yOh."Le%Arith#Coq@0d}Omq+-0\͉!Ig*Logic_Type$Init#Coq@0 1jc6"Lt%Arith#Coq@0KZ-eJkP܏%Minus%Arith#Coq@0LFtR"30Imӽ%\$PD.Morphisms_Prop'Classes#Coq@0% :B'.>u%$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI%NBits(Abstract'Natural'Numbers#Coq@0qteo_hɅ $NDiv(Abstract'Natural'Numbers#Coq@0bz$?[p(5$NGcd(Abstract'Natural'Numbers#Coq@08E-S ;j_Ҡ$NLcm(Abstract'Natural'Numbers#Coq@0 ~xZ9L{:$NLog(Abstract'Natural'Numbers#Coq@0K Aat/ j &NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf+NProperties(Abstract'Natural'Numbers#Coq@0unt"kwpYC%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ%NZAdd&NatInt'Numbers#Coq@00h`ZK4*NZAddOrder&NatInt'Numbers#Coq@0e~1>r砠(NZAxioms&NatInt'Numbers3@0] ρ5r10^&8yUL&NZBits&NatInt'Numbers#Coq@0MlIpKt%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZMul&NatInt'Numbers#Coq@0ctR~6[Ƞ*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R%0 q;Ve7R W,(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x&NZSqrt&NatInt'Numbers#Coq@0` .%m#NatML@0eʤģPSR蠠)Notations$Init#Coq@0&v!D]hwnv *NumPrelude'Numbers#Coq@05WUVŦ]xVXԠ4Operators_Properties)Relations#Coq@0U3y#h&&Orders*Structures#Coq@0$Znl0\͗+OrdersFacts*Structures#Coq@05Mܿ獐ζΖLB)OrdersTac*Structures#Coq@05'4Ԗ+9% G0 jha|ؠ(PeanoNat%Arith#Coq@0O~2$k[#lZ$Plus%Arith#Coq@04tmG'Prelude$Init#Coq@0JqTttֱ/Z/Y/X@0Gz rA6ՠ555@0]4Ѐd{n^2Relation_Operators)Relations#Coq@0%s鯰s)Relations#Coq@0-SetoidTactics'Classes#Coq@0S_`nOU$&Specif$Init#Coq@0;RWMi\N'Tactics$Init#Coq@0/9m+ a'Tactics'Program#Coq@0362 Q@@J@"_96,@6(*@H@A@@@@@@@@#_102M접#_11'`o@C)nat_scope*type_scope@@6<@6#@#_12,*I@@6D@AA@@@@@@@@@@#_1346@6@6,L@@@#_14X@3typeclass_instances6B@@@'META715@@ 6C@@'META7166U@#%'6a.06M96L@=?6N6E6@KB6F6@B'META714@@@@64J6@ Coq.Numbers.NatInt.NZDomain#<>#1=yv@62rHȠ60@68#tӡ4@46:3@A@33@@"2@4Z4Y@A@A"9@4X4W@A@"!@4V4U@A@AB"@4T4S@A@"ɓ@4R4Q@A@"@4P4O@A@"ʎ@4N4M@A@ABCD@A12 Q@@A@#_166X@1HS@A@@@@@#_172M접 #_18'`o@B@@@6C5@02 Q@@A@#_196@0z@A@@@@ @#_202M접 #_21'`o@D @@@@7C6p6#1B@02 Q@@A@#_226@0HI@A@@@@;@#_232M접 #_24'`o@B@@@66M@0r2 Q@@A@#_256@0}(){@A@@@@b@#_262M접 #_27'`o@A@@6@0G2 Q@@@@#_280 "@#_292M접 @#_30'`o@A@@6@012 Q@@A@#_317@0< H@A@@@@@#_322M접 #_33'`o@A@@7@02 Q@@A@#_347<@0 @@A@@@@@#_352M접 #_36'`o@A@@7&@02 Q@@A@#_437_@0@A@@@@@@@@@@#_442M접7o@0 #_45'`o@7y@0*D@@@@@20&20,@02 Q@@A@#_467@07lX@A@@@@@@@@@@#_472M접7@0+7lX#_48'`o@7@057lXC@@@@260\2<@02 Q@@A@#_527@0*(H5@A@@@@@@@@@#_532M접7@09(H5#_54'`o@7@0C(H5C.function_scope@@@A2l1=@0.2 Q@@A@#_587@09-/@A@@@@@@@@@#_592M접8 @0H-/#_60'`o@8@0R-/B3@@A2@032 Q@@A@#_618*@0>3@A@@@@@@@@@#_622M접89@0M3#_63'`o@8C@0W3Da@@@@A2͠2Р1@0S2 Q@@A@#_648`@0^Wq@A@@@@@#_652M접 #_66'`o@F@@@@A8@AA0|@0@2 Q@@A@#_678@0K%#@A@@@@!@#_682M접 #_69'`o@GŠ@@@ʠ̠@@A930@AA0@@01rHȠ0/@.2 Q@@@@#_71.@A@@@@_@#_722M접 AA@A#_73'`o@A\@2@#_74@GȐ@@@%[ _ ]@G  @@![9!]@@@ AȠ@@@#_75%c?@%ofnat9Ƞ@@@.9@@@@-90@%[ n ]/2 Q@@A@#_770@/7?@A@@@@@#_782M접 #_79'`o@@@@/2 Q@@A@#_800@/7@A@@@@@#_812M접 #_82'`o@A@/*@/2 Q@@A@#_830@/7E!@A@@@@@#_842M접 #_85'`o@B@@/+2a@@/rHȠ.@/#tӡ:V1 @/ 7d@A@1 ,ڠ@@#Q@-7@A@A#X@-7@A@#Yv@--@A@AB#Y@--@A@##@-7@A@A#@-7@A@#Ų@-7@A@#@,7@A@#ƭ@,7@A@ABCDE@A/$#tӡ7@7/&7@A@7},@@#Q@-$7@A@A#X@-#7@A@#Yv@-"-!@A@AB#Y@- -@A@##@-7@A@A#@-7@A@#Ų@-7@A@#@-7@A@#ƭ@-7@A@ABCDE@A/@#tӡ*@*/B7@A@*֠-@@#Q@-@7@A@A#X@-?7@A@#Yv@->-=@A@AB#Y@-<-;@A@##@-:7@A@A#@-97@A@#Ų@-87@A@#@-77@A@#ƭ@-67@A@ABCDE@+/Y7@AB 2 Q@@@@#_88/f@>G%@A@@@@@#_892M접 #_90'`o@A@3@2 Q@@@@#_91/@#_T@A@@@@@#_922M접 #_93'`o@A@3@2 Q@@A@#_94/@6<@A@@@@@#_952M접 #_96'`o@CϠѠ@@332@2 Q@@A@#_97/@#x@A@@@@@#_982M접 #_99'`o@B@4%4(@2 Q@@A@$_1000@$x@A@@@@'@$_1012M접 $_102'`o@B%'@4N4Q@2 Q@@A@$_1030-@xx@A@@@@P@$_1042M접 $_105'`o@BNP@4w4z@@rHȠ@#tӡM@O8@A@2W _@@$7a@ 9 @A@A$7h~@ 9 @A@$7'@  @A@AB$8^@  @A@$8@ 9 @A@A$8 @  @A@$8 f@ 9 @A@A$C@ 9 @A@$Dx@ 9@A@$D@ 9@A@ABCDE@A 2 Q@@A@$_108'@ )J@A@@@@@$_1092M접 $_110'`o@B@@4à @ 2 Q@@A@$_111O@ (@A@@@@@$_1122M접 $_113'`o@Bà@  @ 2 Q@@A@$_114x@ (8@A@@@@@$_1152M접 $_116'`o@B점@ & )@ 2 Q@@A@$_117@ )pz{@A@@@@@$_1182M접 $_119'`o@B@@"5@@ 2 Q@@A@$_120@ (@A@@@@?@$_1212M접 $_122'`o@C=?@@  @@@@mS ~5@ʥS*ԻT>M@8YV#7/ @PND [x 9^܄GS10p!n)Datatypes$Init#Coq@@#nat@!AC(NZDomain&NatInt'Numbers@@!R4Relation_Definitions)Relations@(relation'JjA!xB!yC%eq_xy !f@EF!g@G%eq_fg)Morphisms'ClassesI@*respectful%WO?%*U@'nat_indJ_]H`@(nat_rectbjhJ$lj+? ,omDCqo#IHn?@@!FK@@A@A@@@@DM`$0\fa@nIX rCTa`Vbb444fdB`8vakiGudC`@&ProperL@@@FFj@@np ]VĚ@"NZ@!t"2!m ,NZDomainProp@1central_induction/ %Logic@"ex @㷐!k橛@"or @-@"eq"9ũ@6ķ7@$succ"ө̩  ׵BCЩΩ.Morphisms_Prop@/ex_iff_morphisma.,&! *۩%$971 3.'%@/or_iff_morphism3 U@#andЖw@A@"H˩CB @M!H,/RelationClasses@,transitivity>4 [ @6Equivalence_TransitiveWb@(eq_equiv3@(symmetry0xjn@5Equivalence_Symmetric. U$/8&E$ w'.2;NE:@Q{+ vu=@M0{3zB5[3 +5 Je@+nat_rect_wd*@H$M>I@'succ_wd7KɀEbC ;EZ/*C>@2pointwise_relation-rӀA@#iffС)yC찶@ O  oAtAAN p@+reflexivity(ϓ/ȩw@5Equivalence_Reflexive#Ec\j@&eq_ind J̩.RKnѩjj5Y0g%Peano@/nat_rect_succ_r DU\qE LFHP~BɠgY!͠#]m۷@Ʒɷ@㠩ݠ]ߠoӷԩYݶ̩M~˩IS  D  >շ驚:@(succ_injwBɩ"x1/)m+t/f1,+W&St:<76 U@(eq_ind_r!2#s ?vJD|E ]A`DG{@YT S]XRP@$pred"ɓ起YSl'+0C^@p0r2m0e#IHk$l.~>v{Gz5@'pred_wd.tFN?S12 FF7S%lemma>1_SJ@6trans_co_impl_morphismoPKpL?4\v@)pred_succ(к}vJ&]loOsbl ĠuTxwgO iztˠNC@Р`ʩͩՠex  Ȑ!e@4itersucc_or_itersuccHS׷ةoQ@   ةɐ"H0@%۠n  ֩cΩܩ"ҩ {e  L@.succ_swap_predz%aV@4itersucc_or_iterpredHIހh@$zero"ʎ4p@h@'initialNb@#notШTL@ \T%$"Bn"EQkb(1n*#,6@%Falsee@@@D@  @C0#NEQ&@|KB2@2subrelation_properJ74@:<@,PER_morphism qL@/Equivalence_PER/;BIK&Basics'Program@$flip$ @$impl7o@$unitUe@Ae@6subrelation_respectful>6z Ʃl@0subrelation_reflv $( 0 .(t@9iff_flip_impl_subrelation2VAː+͐xM1XG⠩@=trans_co_eq_inv_impl_morphism&ni$_@/eq_proper_proxy)f"CV6&1CxC+@2*3@ 809 ɵ '@&ex_ind 5{E=FI"H1Ր$>됩C*%R[(`@Zc7Ʃ@bʩen@sktH CPC鐑$init{'Initial v"ImxvoIfJd^k`t&l@{UrVpj@ln3!pbl e@y${, v(u=/D3 vt7aE=(#;UC=#FK@gj.n  n82@:5Lsta6e`Q.qiiIMC,MpkP-woA@@,:)!(.]%ȷɩ㠩ݠ`ߠ@Էթٷz|ܷ߷@x }gG^XW;TC%éɩ@1  sC"۩w0萑,eq_decidableWOX4!]"NBȐ!oB,@F@D<    `@)False_induُO (<D@0not_iff_morphism Z ũ @4iff_impl_subrelation5'2"q"6@+initial_alt Hr4=)succ_ontopvqAGy@EH8 |>80A;V)?W=HS\@9succ_onto_gives_succ_pred-/P[_4JL     D\pggR@6reflexive_proper_proxy5nf8zk}@Etැ"H2@zzu@,bi_inductionb$U@j@Wn<"H3 !G hyQa(GFvDI7Es?N="n0'[ݶ*@5;.@ȩ2()Ӡ թ#ة&!@0 ' %!zg鐷2J @3-/*u"Hk :q(p76N2CBAV: IHCML!(YT(#X$%oS`,Cڐe y] l38Cڐp3#@1bi_induction_predWq*D;?Ac@#;B@#;I|ư  @.4g@Y#H@#Gv3@# lC 'NZOfNat@%ofnatPр })@s@ @?Y&8%#Nat@o `<3Q@t#Gi6H5--ԩ%A5xr@zc}J\I$pOaN@巐$_tmp:gH|vr-e+*@Q)Nd0CgyfAn;mlrC@VlMEp{BQ@"lt#Y@#ƭ@"@]#Q )'@.#*NZOfNatOrd@.lt_succ_diag_r2%怐C$˷=;"IH,@(lt_trans ӡk+ !#,2'!Ʃ?8 AE35>D9+MF Ӛ"@-iff_Symmetric!x ==@,succ_lt_monokDC]VRXMQwICwuc\K@>[\ِS@<_neqUkZ@,ofnat_S_gt_0>G%b:@@#X# $rjn@-5 w|k׷o 8v#@-ofnat_S_neq_0_T):@+J(3R'v9q;@40@2(6'(ܷIht[URsŐSYU2]|ߩ},aѐӐom Ҡ@+succ_inj_wd2٩T ֩X ֩1@(eq_trans!y [[O8@'f_equal=@   G    $ "X #@v (6@/ofnat_injective6<  3  6 4Bj   > < A ?u @0@/ Uxc ~ IǷ M K;  % %ʩ:$ǚ@.iff_Transitive*zJKDDM@%lt_wd$eK ;K ;#>@*ofnat_zero5]GD@ @7<e@)lt_irrefl38c SAР@"le UxT@A@B@B@@@@@@D  @$ h@  f9 k + 0     wB@ @$Truey@A  LtR   " $ ©2  Zǩ/Q c   @e é<r$97p%Rͩm* 3;.BFj@c@7Vg"Lt%Arith @'lt_le_S0?nEY(PeanoNat 0@)lt_0_succ5% cC#n e   -  v  k==  Ԡy.$vtEbG @>Reflexive_partial_app_morphism 2R,@{ }QwSp ѠTr9@ U @ܠ}@(lt_asymm j 67 2 0@n @$ E >}J C6 F$&4   !  LV@BZ]Š46 G䐩; D 4@N/H  d 8@U%ڶ@([ ݠM4 k붐!B 3@5ݚ w@9iff_iff_iff_impl_morphism8C ;  = 5@ 7zũ/. e((   Q@-iff_Reflexive/h/l@*ofnat_succ5! +| )4.*'",Is CC & >B:4?;83/ʩ b , *W RR*R 5 /} U G4LH"E@<    ^^6 8 "Le@&le_n_S8   CkLd, I^ GQ5\@ La^8[V3RrJmNLCT=, Qf OY=wOS984Y3, Vk T^B |T>-,*^), [p YcGY2%  [ @*lt_n_Sm_le  C. ǐ   + o i@z#Yvf m-$ u s ۩  ܩx  , }@+lt_eq_cases#gyԩ@$   0    @(ofnat_ltx净 멷 T$   D$,   G    ))'@(ofnat_eqx  @ T5@   A@    -\@*lt_le_incl   !  O  R P ' 婜A   +y@+le_lt_or_eq3Z # a _  d b C  S@ $7a@ {$7h~ @#add$7' g*NZOfNatOps@>D̳  S @  V  @ $Dx V $%@'add_0_ll5 . e    "0 0 ,!Ω$ ҩ$:3 S<5<@ N5i4/ v7'4  {I@&add_wd3Z#     QJ   U7 6ڠVD@"5x 8XT- DX/ $ha.%J^%  n@*add_succ_l^ n w y@ _8LC  x`` vq   j i  ~ "Cl n C. u t  ʐ   . r ֩ ԩ    ѐ @>trans_sym_co_inv_impl_morphism'\|pU@ ` }     񠩚@+ofnat_add_l)JꚀ %  ) 'l   }2CȠ% 9  ; 9  d b] ʐ2   _  Cݠǐ ɐC㠩ؐ@     $ Y W  \ Z  [琩@#mul  ,@$8^l  l   ѩ @G$Dv@'mul_0_l(܀vC  |!2     ,   Z @.먩{1 f  )/  /$.)$@9-Hb x946 ϠK9@)ofnat_add(& .NT#LX%^W-R^OO d@*mul_succ_l9f X c Ȑ"R0hܵ(C s@tt  vvooii f  s{l 9  C ||w y C  }D- ǰYY CA[Cnbffv r@(add_commbC >   z 搑  J   M @#sub$8 ʀ "   & $@ $C @'sub_0_r8H CƠ     k 6#IHm! Ӡ$ ө&) ϩq$- &1  "*  . t@*sub_succ_r.B > @ /C  8?? :L (  *G  6CIKCX x  T  L | z  { > gl V $ [c R%{@p Mu e 3 jr ( j @+ofnat_sub_r)pz{ m H     de9. x t H*4 v   n^ &    G R4  TMACNC Y;E 1  %Minus@)minus_n_OL] 6  Ƿ(  ɷ ; J  ζ @  h]K  wYc  L ]  ߷@Q @Ozo] E   li   @  N l  ?VK Q    ͷ"m0  JH F Ơ s ũ~ f    N@@ qͩ E ۩ T   "     s         L   $   ȩ@ *Jf(Cڠϐ , ,( ) #"XRf~xAk