"`ք] w(Ndiv_def&NArith#Coq@()Notations$Init#Coq@%Logic$Init#Coq@*Logic_Type$Init#Coq@)Datatypes$Init#Coq@&Specif$Init#Coq@%Peano$Init#Coq@"Wf$Init#Coq@'Tactics$Init#Coq@%Tauto$Init#Coq@'Prelude$Init#Coq@8)Notations$Init#Coq@0&v!D]hwnv %Logic$Init#Coq@0\͉!Ig)Datatypes$Init#Coq@0.i bYN Z*Logic_Type$Init#Coq@0 1jc6&Specif$Init#Coq@0;RWMi\N'Decimal$Init#Coq@0C涳N*ua#Nat$Init#Coq@0eʤģPSR蠠%Peano$Init#Coq@0 jha|ؠ"Wf$Init#Coq@0q+W,J+'Tactics$Init#Coq@0/9m+ a%Tauto$Init#Coq@0̂"&/rk0JqTttֱ'BinNums'Numbers#Coq@0dmk(5Ju<*EqdepFacts%Logic#Coq@0FI$ͼՋ`)Eqdep_dec%Logic#Coq@0u wWIϰ߼&Basics'Program#Coq@0!bs߯? :VU$Init'Classes#Coq@0](p{yOh.'Tactics'Program#Coq@03u%+Equivalence'Classes#Coq@07;ꮹ-SetoidTactics'Classes#Coq@0S_`nOU$&Setoid'Setoids#Coq@0D9AsWE!>$Bool#Coq@0j 2cZ`FW*Equalities*Structures#Coq@0όe얟)H.Ƞ2Relation_Operators)Relations#Coq@0%s鯰s4Operators_Properties)Relations#Coq@0U3y#h&)Relations#Coq@0r砠*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ&NZSqrt&NatInt'Numbers#Coq@0` .%m%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|&NZBits&NatInt'Numbers#Coq@0MlIpKt'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$&NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ)NMulOrder(Abstract'Natural'Numbers#Coq@04> Aat/ j $NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ'NMaxMin(Abstract'Natural'Numbers#Coq@0]v|Qg̟ʠ'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NLog(Abstract'Natural'Numbers#Coq@0K>A@:x쀠BA!qL!rO%Logic$Init#Coq@@"eq @'BinNums'Numbers#Coq@@!N7@@BD&BinNat&NAriths@r@#add &NArith#Coq@!N@ 3 @#mul @3BB'BCAyp@@@@@3Pdiv_eucl_remainder @@@ض˩=@"lt \)Datatypes$Init#Coq@@#sndĩBA_BA@@@@@@@@ ӳ2@ ӳ2[)Datatypes$Init#Coq@@A@ Գq@ Գq\ @A@AB@@@"O@(PeanoNat%Arith#Coq@#Nat@&of_int"O#Nat$Init#Coq@@ 6@A@As2@@&shiftls2 @vY@A@Bs8@@&shiftrs8@vY@A@ѓ@!@&squareѓ@y@A@@'@&to_intϑ@@A@AB/@,@)log2_iter/#@wd@A@/x@&BinPos&PArith#Coq@#Pos@)pred_mask/x)BinPosDef&PArith#Coq@#Pos@ )X@A@Al@J@)sqrt_iterlA@!$:@A@@@@(sub_mask@@)@A@ABCD c@U@'testbit cL@!ć@A@7 B@+@'of_uint7 B"@*`]?@A@AG@0@)mask_rectG'@+ED@A@F˱@6@)add_carryF˱-@+p@A@AB^Ҷ@n@'to_uint^Ҷe@#m@A@ p@A@0double_pred_mask p8@0-+m@A@AC T@Z@!t T@2@A@ @ @ @A@A l@ @#div l@3@A@ Y@@#eqb Y@3@A@AB #@@#gcd #@3n@A@ T@@#leb T@3@A@ACDE "@"@#lor " @3m@A@ q@,@#ltb q@3@A@A @1@#max @3@A@ @7@#min @3`@A@AB @<@ @A@ ~@@@#odd ~(@3@A@AC =@E@#one =-@3@A@ @M@#pow ˑ5@3@A@A c@R@#sub c:@3@A@ @X@#two @@3J@A@AB hx@]@$div2 hxE@>@A@ @c@$even K@>4@A@ACD @h@$ggcd БP@>U@A@ @q@$iter Y@>:@A@A 3"@v@$land 3"^@>m@A@ F)@|@$log2 F)d@>t@A@AB S@@$lxor Si@>@A@ @@$pred o@?U@A@AC @@$size ܑt@?'@A@ !@@$sqrt !|@?@A@A ! @@$succ ! @?\@A@ !7@@$zero !7@@P@A@ *@@%ldiff *@@A@AB g_@@+pred_double g_@25\@A@CD m@@÷ m@2j@A@S@@&of_intS㫑@4}5@A@AS@@&of_natS@4};@A@BEFGH\R@@(mask_ind\R@4@A@\^@@(mask_rec\^@4@A@A!,@@&pred_N!, @4s)@A@B@@&shiftl@5X@A@@"@&shiftr@5X@A@A&@'@&square&ّ@5,x@A@BC"@,@&to_int"#@5L@A@"@4@&to_nat"+@5L @A@AnTq@9@+testbit_natnTq0@6n@A@B@@(succ_posB@@A@.@@'of_uint.@MS@A@AB3~@K@'sqrtrem3~B@7]%{@A@CD,@@'bitwise,z@/v@A@>4'@W@'testbit>4'N@8g$@A@A{U@\@,sqrtrem_step{US@8R@A@u^@@(div_euclu^@ @A@Afz@i@'to_uintfz`@9w@A@Bl@@'comparel@3R@A@CDEFs8@@+of_uint_accs8@5+@A@}@7@,pos_div_eucl}@&`@A@@=@&double%@'޺_@A@ABq@@+of_succ_natq@$@A@w@H@&modulowɑ0@)1@A@ACK@M@&of_intK5@)j,I@A@K@U@&of_natK=@)j2_@A@AI@Z@&shiftlIB@*O@A@O@`@&shiftrOH@*O@A@AB,@e@&square,M@*ow@A@Z@k@&to_intZS@*81@A@ACD`@p@&to_nat`X@*9G@A@e@x@+testbit_nateđ`@+@A@A+{@}@'sqrtrem+{ёe@,J@A@5z@@'testbit5zl@-T|@A@A @@'to_uint ͑q@.@A@ @@+succ_double x@.^4@A@A#@@'compare#ݑ@ )Q@A@BCD%t2@@(size_nat%t2@ @A@%9@@+of_uint_acc%9@ ΋@A@A%V@@+double_mask%V@ S@A@%%@@'div2_up%%@ "@A@ABEF'ş@@'Ndouble'ş@ @A@(b0@@*shiftl_nat(b0@9-@A@A(nՖ@@*shiftr_nat(nՖ@'@A@(@ @0succ_double_mask(@@A@*W$@@,compare_cont*W$@!@A@.0@@.sub_mask_carry.0 @΂@A@ABCD.@N@!t.E@ ;@A@.먩@U@#add.먩L@ `@A@A.U@Z@#div.UQ@ @A@.B@a@#eqb.BX@ @A@A. @f@#gcd. ]@ @A@.=@l@#leb.=c@ @A@ABCEGHI. @q@#lor. h@ @A@.Z@}@#ltb.Zt@ @A@A.p@@#max.py@ '@A@B.@@#min.~@ @A@.@@#mul.@ @A@AC.g@@#odd.g@ @A@.&@@#one.&@ @A@A.뾴@@#pow.뾴@ k@A@.L@@#sub.L@ @A@.@@#two.@ @A@ABCD.,a@@$div2.,a@ @A@.Xz@@$even.Xz@ ?1@A@A.@@$iter.ؑ@ @A@B. @@$land. @ @A@. @@$log2. @ @A@ACE.@@$lxor.@ R@A@.y@@$pred.y@ `<@A@A.Ʉ@@$sqrt.Ʉ@ ;@A@.@@$succ.@ @A@.t @@$zero.t @ Z@A@AB/@@.to_little_uint/@ @A@CDF/@@%ldiff/@ H@A@00@@'compare00h@?H{@A@2kF@@(size_nat2kFn@{@A@AB3@@(tail_add3@^q@A@C3@ @(tail_mul3@^@A@5Z@@*shiftl_nat5Z@y/@A@5f}@@*shiftr_nat5f}@4@A@AB5a@@'iter_op5a@ @A@C6w~@!@'of_uint6w~@^5@A@:x@@,Nsucc_double:x@ ʭ@A@ADE@@&divmod>@C@A@>@@&double>@NĴ@A@A?;@@&modulo?;@"i@A@BEFGHJ@8&Basics'Program#Coq@0!bs߯? :VU[0K11ڤs+Π)BinNatDef&NArith#Coq@03@1O,[{ @0dmk(5Ju<&BinPos&PArith#Coq@0vyػ0= u)BinPosDef&PArith#Coq@0}H d.%,b$Bool#Coq@0j 2cZ`FW*CMorphisms'Classes#Coq@0qیZBeϠ0CRelationClasses'Classes#Coq@0TL;0RUfw1:98@0.i bYN Z)Decidable%Logic#Coq@0ND걸풬/Oߠ'Decimal$Init#Coq@0C涳N*ua*EqdepFacts%Logic#Coq@0FI$ͼՋ`)Eqdep_dec%Logic#Coq@0u wWIϰ߼*Equalities*Structures#Coq@0όe얟)H.Ƞ+Equivalence'Classes#Coq@07;ꮹ-GenericMinMax*Structures#Coq@0måj$$Init'Classes#Coq@0](p{yOh."Le%Arith#Coq@0d}Omq+0\͉!Ig*Logic_Type$Init#Coq@0 1jc6"Lt%Arith#Coq@0KZ-eJkP܏)Morphisms'Classes#Coq@0Imӽ%\$PD.Morphisms_Prop'Classes#Coq@0% :B'.>u%$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI%NBits(Abstract'Natural'Numbers#Coq@0qteo_hɅ $NDiv(Abstract'Natural'Numbers#Coq@0bz$?[p(5$NGcd(Abstract'Natural'Numbers#Coq@08E-S ;j_Ҡ$NLcm(Abstract'Natural'Numbers#Coq@0 ~xZ9L{:$NLog(Abstract'Natural'Numbers#Coq@0K Aat/ j &NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf+NProperties(Abstract'Natural'Numbers#Coq@0unt"kwpYC%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ%NZAdd&NatInt'Numbers#Coq@00h`ZK4*NZAddOrder&NatInt'Numbers#Coq@0e~1>r砠(NZAxioms&NatInt'Numbers#Coq@0] ρ5r&NZBase&NatInt'Numbers#Coq@0^&8yUL&NZBits&NatInt'Numbers#Coq@0MlIpKt%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZMul&NatInt'Numbers#Coq@0ctR~6[Ƞ*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R'NZOrder&NatInt'Numbers#Coq@0 q;Ve7R W,(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x&NZSqrt&NatInt'Numbers#Coq@0` .%m#Nat$Init#Coq@0eʤģPSR蠠)Notations$Init#Coq@0&v!D]hwnv *NumPrelude'Numbers#Coq@05WUVŦ]xVXԠ4Operators_Properties)Relations#Coq@0U3y#h&&Orders*Structures#Coq@0$Znl0\͗+OrdersFacts*Structures#Coq@05Mܿ獐ζΖLB)OrdersTac*Structures#Coq@05'4Ԗ+9%%Peano$Init#Coq@0 jha|ؠ(PeanoNat%Arith#Coq@0O~2$k[#lZ$Plus%Arith#Coq@04tmG'Prelude$Init#Coq@0JqTttֱ/RelationClasses'Classes#Coq@0Gz rA6ՠ4Relation_Definitions)Relations#Coq@0]4Ѐd{n^2Relation_Operators)Relations#Coq@0%s鯰s)Relations#Coq@0-SetoidTactics'Classes#Coq@0S_`nOU$&Specif$Init#Coq@0;RWMi\N'Tactics$Init#Coq@0/9m+ a'Tactics'Program#Coq@03C2 Q@@@@"_7@A@@@@@@@@"_82M접 BAAA"_9'`o@B.positive_scope@1%@2 Q@@@@#_10|@+*@#_112M접 @1pos_div_eucl_spec:1v#_12'`o@B,.@\P@2 Q@@A@#_13@$@A@@@@V@#_142M접 #_15'`o@BUW@y@)Ndiv_eucl9D{(@@&BinNat&NArith#Coq@e@(div_euclu^@$Ndiv9D{(@@@#div l @$Nmod9D{(@@ @&modulowېB1Ndiv_eucl_correct9D{(@@,@-div_eucl_specޕ +Ndiv_mod_eq9D{(@@7@(div_mod'C'Nmod_lt9D{(@@B@&mod_ltXȐ@@@AU|ڣTuG@)hW&G.@E9_ FpWr/7GW@`¨Z>:O_I"!a'BinNums'Numbers#Coq@@(positive*@!b&BinNat&NArith!N@6pos_div_eucl_remainder0JB!@ 7@BA!H%Logic$Init-@"eq @AȐ"H0B@@@@@D!y@ /C*@&6'@%Falsee@30%?B%#6+)Ȑ"H1:@&eq_ind J5OD!e;S@@A@A@@@@D!nEAY-@U@$Truey@APd7^@)False_induُ>kl@g\ZZAolAcaCo@#notШwnf^[Qk