"`ĄI#WKL%Logic#Coq@()Notations$Init#Coq@%Logic$Init#Coq@*Logic_Type$Init#Coq@)Datatypes$Init#Coq@&Specif$Init#Coq@%Peano$Init#Coq@"Wf$Init#Coq@'Tactics$Init#Coq@%Tauto$Init#Coq@'Prelude$Init#Coq@<)Notations$Init#Coq@0&v!D]hwnv %Logic$Init#Coq@0\͉!Ig)Datatypes$Init#Coq@0.i bYN Z*Logic_Type$Init#Coq@0 1jc6&Specif$Init#Coq@0;RWMi\N'Decimal$Init#Coq@0C涳N*ua#Nat$Init#Coq@0eʤģPSR蠠%Peano$Init#Coq@0 jha|ؠ"Wf$Init#Coq@0q+W,J+'Tactics$Init#Coq@0/9m+ a%Tauto$Init#Coq@0̂"&/rk0JqTttֱ&Basics'Program#Coq@0!bs߯? :VU$Init'Classes#Coq@0](p{yOh.'Tactics'Program#Coq@03u%+Equivalence'Classes#Coq@07;ꮹ-SetoidTactics'Classes#Coq@0S_`nOU$&Setoid'Setoids#Coq@0D9AsWE!>$Bool#Coq@0j 2cZ`FW*Equalities*Structures#Coq@0όe얟)H.Ƞ2Relation_Operators)Relations#Coq@0%s鯰s4Operators_Properties)Relations#Coq@0U3y#h&)Relations#Coq@0r砠*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ&NZSqrt&NatInt'Numbers#Coq@0` .%m%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|&NZBits&NatInt'Numbers#Coq@0MlIpKt'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$&NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ)NMulOrder(Abstract'Natural'Numbers#Coq@04> Aat/ j $NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ'NMaxMin(Abstract'Natural'Numbers#Coq@0]v|Qg̟ʠ'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NLog(Abstract'Natural'Numbers#Coq@0KI'WeakFan%Logic#Coq@0fwwC(}'BinNums'Numbers#Coq@0dmk(5Ju<*EqdepFacts%Logic#Coq@0FI$ͼՋ`)Eqdep_dec%Logic#Coq@0u wWIϰ߼)BinPosDef&PArith#Coq@0}H d.%,b&BinPos&PArith#Coq@0vyػ0= u)BinNatDef&NArith#Coq@03@1O,[{ &BinNat&NArith#Coq@0K11ڤs+Π$Pnat&PArith#Coq@0,?pr.gZ'ZAxioms(Abstract'Integer'Numbers#Coq@0\}zK=PK%ZBase(Abstract'Integer'Numbers#Coq@0 TL}2_} ؠ$ZAdd(Abstract'Integer'Numbers#Coq@0Y9Vgⲫ򐠠$ZMul(Abstract'Integer'Numbers#Coq@0Mtr\b"H#ZLt(Abstract'Integer'Numbers#Coq@0xK|j2[&=}۠)ZAddOrder(Abstract'Integer'Numbers#Coq@0w:}H#NK}{)ZMulOrder(Abstract'Integer'Numbers#Coq@0Dr~-~ECM'ZMaxMin(Abstract'Integer'Numbers#Coq@0bAX1'ZSgnAbs(Abstract'Integer'Numbers#Coq@02`ou{Z'ZParity(Abstract'Integer'Numbers#Coq@0S)*Dd$ZPow(Abstract'Integer'Numbers#Coq@0AşsאI)ZDivTrunc(Abstract'Integer'Numbers#Coq@0`]f5FԠ)ZDivFloor(Abstract'Integer'Numbers#Coq@0dj_TYQc|$ZGcd(Abstract'Integer'Numbers#Coq@0G0=$ZLcm(Abstract'Integer'Numbers#Coq@0(9g%MmN]%ZBits(Abstract'Integer'Numbers#Coq@0ܹCF5s+ZProperties(Abstract'Integer'Numbers#Coq@0Ve*ʞ_OV)BinIntDef&ZArith#Coq@0ådR4Tuy&BinInt&ZArith#Coq@0BpHޞun^$Mult%Arith#Coq@0햖Qyb0(Zcompare&ZArith#Coq@0'ҤjI=D'Between%Arith#Coq@06v*0ur`C0)Peano_dec%Arith#Coq@0Kݢ*k+Compare_dec%Arith#Coq@0jXF 8)Factorial%Arith#Coq@0@oehJd%EqNat%Arith#Coq@0AIgՋXRV &Wf_nat%Arith#Coq@0UJX AJhO*Arith_base%Arith#Coq@0Ĕ}CS&Zorder&ZArith#Coq@0fVk.BG)%Zeven&ZArith#Coq@0i?eK#aU堠#Min%Arith#Coq@0Ce-Fѕ(PreOmega%omega#Coq@0\|چBb~w4%Omega%omega#Coq@0t.J'6\ϨrKd.`MhzE1yER|MР#WKL%Logic#Coq@A,is_path_from,<@)Datatypes$Init@@$list]@ @$boolZ'@@@#nat@!P@!A@@$here)next_left*next_right !l0@G/@#notШBADC-A (&G!n4@ @ETBJKAF JB"$FD7eP@@+/^_B.BB@@EBDDBDD@@*t@@@@@@@@CABBDCD@@A@AAjh@@@@AA@@"s @,Ring_polynom+setoid_ring#Coq@@&PEeval"s @@A@AA@A@0is_path_from_ind @}!fy@wjokkr h@cf@Π@*t@cl@eolGix&˶@t@i@lHB@!Fζ嶐!i3%&ط ; %'> L: 3"# '> M: 3"# ''+k() %'+7Tk + 77 T'+ 7"T'%'Рi8AIhd̀@@@@@=is_path_from_characterization @@@ihAt]%Logic$Init#Coq@@#iffС)]@CBA@"ex @)Datatypes$Init#Coq@@$list]@"l'4@#andЖw@<@"eq @#@#nat@)Datatypes$Init#Coq@@&length䷀֐AC"n')Datatypes$Init#Coq@@#nat@@%Peano@@"le UxT@ADy@#notШb@#appʀ$List%Lists#Coq@@#rev$t@&firstn42@@@ o~}@A al@A@@-infinite_from @!@+@&@q@]@?,!PD0 h+k() +7T' 7&'THt@@@@@٠1has_infinite_path @MK;@ @@]R!XIw@'WeakFan@&approxm )oPE6@g@A}>A +k+ +-7T7%' + 77 T'+ 7!T' 7$'6'𠑑t-@#l䠑tỳ@@@@@&5inductively_barred_at,<@@@&now_at,propagate_atŶ~@zw˶@|yjBBbCDCD@@((q@@aaa@cc@@@BACBD@@A@AA@@@@]9inductively_barred_at_ind @ϷʷMݶ@qS@E@N(q@2@@ B1@D˩4B@64 ߩ2  ;'9'ARS@@@@@@@@@@@@D1@8%&J 7"!y-,?*[G4t^J? ܩ6  p  !@-+.@8@O.%S >@b,ZE@m@(q@b@a@ `@_\"U>m@X4: 0+k() ,P'(*()= R.'> & '> M: 3" L:3"# ''+k() %'+7Tk + 77 T'+ 7"T'%'Р|ĠdAJ{w@@@@@!Y @A@ uxA@B@B@@@@@Dr@$Truey@!b@Жw@q@@@@@@@@A`԰}f@'An@W L,mk(*()=; RS'>#= R8'+"77!'M:7!' 3!7%'6''M: 7&'+k6'+k6'+ +77 TTk+ 77 T'6'6',접3`̠䠐?@@A@@Ec@@ABAGX@0Ġg0@@@@@5is_path_from_restrict @@5A>A@+@6CB@@@@@@>inductively_barred_at_monotone @@XB)(J>dgf@YAB@@ ""@@@@@ڠ+demorgan_or @NL?mo@?'ʩD@"or @K@@b@<x9YΩ ; +k() + 7!7 T' 7  7 7%'ِP#i\@@@@@>demorgan_inductively_barred_at @a|@I9ـƩ^[v@d +k+7T'+ 77 T'M: L:7!7&'РTɐLd@@@@@G &inductively_barred_at_imp_is_path_from @@C@@> n9Aζڶ@‐U@@@@@m &is_path_from_imp_inductively_barred_at @@Dඐ춐թ@kCBA@כ%Logic$Init#Coq@@%Falsee@@@@@@.find_left_path @@;E  -!盠Z@`@@C @BAB@퀰  Bw@$boolZ'@@B B@A'@@@@@ߠ(Y_unique @@FSR@A"l1ϐo"l2Ԑt@}PR@@ XŀEU@?ZӀPb@@@HAAw@yAt@AB@@6 @iF@"eq @@&length䷀@6 Xŀ@D +k() + 77 7%'L:7! 77!77"7%' ֐| t"yH۠tא:@@@RA@TA1@Dihg@@A@ABC@@w(Y_approx @@G@0A㩛)Datatypes$Init#Coq@@$list]@@'WeakFan%Logic#Coq@@&approxm )@@ XĀ@@@@@2PreWeakKonigsLemma @@VH'&@lA@]@'A)Datatypes$Init#Coq@@$list]@AUs@(@@@@@⠠?inductively_barred_at_decidable @@IV!xxl@M|p@  @BJBQGzc@\`^Hdhf@@@@@ ,inductively_barred_at_is_path_from_decidable @@J:'@9BB逐@@@@@A/WeakKonigsLemma @@K_L@^B܀B@A婚@@@@@p@@@ ӳ2@ ӳ2[@A@ Գq@ Գq\@A@AB@cAwvu@A.0TQ+Ring_theory+setoid_ring#Coq@@BA.U>[J @AB"!C@@"O@(PeanoNat%Arith#Coq@#Nat@&of_int"O#Nat$Init#Coq@@ 6@A@A\@&BinInt&ZArith#Coq@!Z@'quotrem\)BinIntDef&ZArith#Coq@!Z@ /@A@\@@+pred_double\@/S@@A@As2@3@&shiftls2*@vY@A@BCs8@8@&shiftrs8/@vY@A@ѓ@>@&squareѓ5@y@A@@D@&to_intϑ;@@A@z@5@&doublez,@/!@A@ABCD/@O@)log2_iter/F@wd@A@NH/@B@&moduloNH/9@1,@A@A\d@G@&of_int\d>@1?A @A@bz@M@&of_natbzD@1?G!@A@#@S@&shiftl#J@1dV@A@#@Y@&shiftr#P@1d\@A@ABCD/x@&BinPos&PArith#Coq@#Pos@)pred_mask/x)BinPosDef&PArith#Coq@#Pos@ )X@A@6@x@&square6o@19@A@AV+L@}@&to_intV+Lt@2@A@V1b@@&to_natV1bz@2 @A@V5=@@&to_posV5=@2@A@ABCl@@)sqrt_iterl@!$:@A@@@6@(sub_mask@-@)@A@ADEF c@@'testbit c@!ć@A@7 B@D@'of_uint7 B;@*`]?@A@AG@I@)mask_rectG@@+ED@A@F˱@O@)add_carryF˱F@+p@A@AB^Ҷ@@'to_uint^Ҷ@#m@A@gL7@@'sqrtremgL7@40@A@Aq@@'testbitq@5)@A@ݎO@@+succ_doubleݎO@6r@A@A p@l@0double_pred_mask pc@0-+m@A@BCD T@&BinNat&NArith#Coq@!N@!t T)BinNatDef&NArith#Coq@!N@ 2@A@ @@#add @3 @A@A l@@#div l@3@A@ Y@%@#eqb Y@3@A@AB #@*@#gcd #!@3n@A@ T@0@#leb T'@3@A@ACEG "@5@#lor ",@3m@A@ q@?@#ltb q6@3@A@A @D@#max ;@3@A@ @J@#min A@3`@A@AB @O@#mul F@3B@A@ ~@U@#odd ~L@3@A@AC =@Z@#one =Q@3@A@ @b@#pow ˑY@3@A@A c@g@#sub c^@3@A@ @m@#two d@3J@A@AB hx@r@$div2 hxi@>@A@ @x@$even o@>4@A@ACD @}@$ggcd Бt@>U@A@ @@$iter }@>:@A@A 3"@@$land 3"@>m@A@ F)@@$log2 F)@>t@A@AB S@@$lxor S@>@A@ @@$pred @?U@A@AC @@$size ܑ@?'@A@ !@@$sqrt !@?@A@A ! @@$succ ! @?\@A@ !7@@$zero !7@@P@A@ *@@%ldiff *@@A@AB g_@1@+pred_double g_(@25\@A@CD m@6@÷ m-@2j@A@S@=@&of_intS㫑4@4}5@A@AS@B@&of_natS9@4};@A@BEFGH\R@G@(mask_ind\R>@4@A@\^@Q@(mask_rec\^H@4@A@A!,@V@&pred_N!,M@4s)@A@B@[@&shiftlR@5X@A@@b@&shiftrY@5X@A@A&@g@&square&ّ^@5,x@A@BC"@l@&to_int"c@5L@A@"@t@&to_nat"k@5L @A@AnTq@y@+testbit_natnTqp@6n@A@B@@(succ_posB@@A@I@@'abs_natI@?n@A@AB.@@'of_uint.@MS@A@3~@@'sqrtrem3~@7]%{@A@ACD,@ @'bitwise,@/v@A@>4'@@'testbit>4'@8g$@A@A{U@@,sqrtrem_step{U@8R@A@u^@9@(div_euclu^0@ @A@Afz@@'to_uintfz@9w@A@Bl@'@'comparel@3R@A@CDEFs8@,@+of_uint_accs8#@5+@A@}@R@,pos_div_eucl}I@&`@A@3x@(@'compare3x@]=@A@A@^@&doubleU@'޺_@A@BCq@@+of_succ_natq@$@A@w@i@&modulowɑ`@)1@A@ADK@n@&of_intKe@)j,I@A@K@v@&of_natKm@)j2_@A@AI@{@&shiftlIr@*O@A@O@@&shiftrOx@*O@A@AB,@@&square,}@*ow@A@Z@@&to_intZ@*81@A@ACE`@@&to_nat`@*9G@A@e@@+testbit_nateđ@+@A@A+{@@'sqrtrem+{ё@,J@A@5z@@'testbit5z@-T|@A@A @@'to_uint ͑@.@A@ @@+succ_double @.^4@A@A#@'@'compare#ݑ@ )Q@A@BCD%t2@,@(size_nat%t2#@ @A@%9@3@+of_uint_acc%9*@ ΋@A@A%V@8@+double_mask%V/@ S@A@%%@>@'div2_up%%5@ "@A@ABEF'ş@C@'Ndouble'ş:@ @A@(b0@K@*shiftl_nat(b0B@9-@A@A(nՖ@P@*shiftr_nat(nՖG@'@A@(@V@0succ_double_mask(M@@A@*W$@\@,compare_cont*W$S@!@A@.0@b@.sub_mask_carry.0Y@΂@A@ABCD.@@!t.@ ;@A@.먩@@#add.먩@ `@A@A.U@@#div.U@ @A@.B@@#eqb.B@ @A@A. @@#gcd. @ @A@.=@@#leb.=@ @A@ABCEGHI. @@#lor. @ @A@.Z@ @#ltb.Z@ @A@A.p@@#max.p@ '@A@B.@@#min. @ @A@.@@#mul.@ @A@AC.g@@#odd.g@ @A@.&@&@#one.&@ @A@A.뾴@+@#pow.뾴"@ k@A@.L@1@#sub.L(@ @A@.@7@#two..@ @A@ABCD.,a@<@$div2.,a3@ @A@.Xz@D@$even.Xz;@ ?1@A@A.@I@$iter.ؑ@@ @A@B. @N@$land. E@ @A@. @T@$log2. K@ @A@ACE.@Y@$lxor.P@ R@A@.y@`@$pred.yW@ `<@A@A.Ʉ@e@$sqrt.Ʉ\@ ;@A@.@l@$succ.c@ @A@.t @r@$zero.t i@ Z@A@AB/@w@.to_little_uint/n@ @A@CDF/@|@%ldiff/s@ H@A@00@@'compare00@?H{@A@A1P%@w@!t1P%n@  @A@B1P@|@#abs1Ps@ @A@1P&@@#add1P&z@ @A@A1P@@#div1Pґ@ y@A@BC1P@@#eqb1P@ f@A@1P@@#gcd1P@ 0@A@A1P@@#geb1P@ T@A@B1P@@#gtb1Pʑ@ q@A@1Pĺ@@#leb1Pĺ@ a@A@A1Pň@@#lor1Pň@ /@A@BCD1P@@#ltb1Pב@ ~@A@1P@@#max1P@ @A@A1P{@@#min1P{@ "@A@B1P]@@#mul1P]@ @A@1P@@#odd1P@ @A@A1Pɣ@@#one1Pɣ@ J@A@BC1P@@#opp1Pԑ@ {@A@1P1@@#pow1P1@ @A@A1P;@@#rem1P;@ @A@B1P@@#sgn1Pˑ@ r@A@1P@@#sub1Pɑ@ p@A@A1Pe@@#two1Pe@  @A@BCDE1[8@@$div21[8ޑ@ @A@1[d@@$even1[d@ I@A@A1[6@@$ggcd1[6@ i@A@B1[U@ @$iter1[U@ @A@1\@@$land1\@ /@A@A1\@@$log21\ @ 6@A@BC1\$@@$lxor1\$@ @A@1\Y@$@$of_N1\YÑ@ >j@A@A1\@)@$pred1\ @ j@A@B1\@.@$quot1\֑%@ }@A@1\@5@$sqrt1\,@ @A@A1\w@:@$succ1\w1@ @A@BC1\k@?@$to_N1\k6@ @A@1]@G@$zero1]>@ eD@A@A2:@L@%abs_N2:C@ @A@21@R@%ldiff21I@ ߵ@A@2=*@X@%quot22=*O@ @A@ABC2kF@@(size_nat2kF@{@A@3@x@(tail_add3o@^q@A@ADEFGH3@}@(tail_mul3t@^@A@5Z@@*shiftl_nat5Z@y/@A@5f}@@*shiftr_nat5f}@4@A@AB5a@@'iter_op5a@ @A@C6w~@@'of_uint6w~@^5@A@8j@@'of_uint8j@'"h@A@9E@@(div_eucl9Eđ@(*k@A@AB:x@6@,Nsucc_double:x-@ ʭ@A@CD@[@&divmod>R@C@A@>@b@&double>Y@NĴ@A@?2@S@,pos_div_eucl?2J@-u@A@AB?;@m@&modulo?;d@"i@A@CEFGIJ@<%Arith#Coq@0I|кX*o4)ArithRing+setoid_ring#Coq@0ṔCgt?}*Arith_base%Arith#Coq@0Ĕ}CS&Basics'Program#Coq@0!bs߯? :VU'Between%Arith#Coq@06v*0ur`C0&BinInt&ZArith#Coq@0BpHޞun^)BinIntDef&ZArith#Coq@0ådR4Tuy'BinList+setoid_ring#Coq@0Au&BinNat&NArith#Coq@0K11ڤs+Π)BinNatDef&NArith#Coq@03@1O,[{ 'BinNums'Numbers#Coq@0dmk(5Ju<&BinPos&PArith#Coq@0vyػ0= u)BinPosDef&PArith#Coq@0}H d.%,b$Bool#Coq@0j 2cZ`FW*CMorphisms'Classes#Coq@0qیZBeϠ0CRelationClasses'Classes#Coq@0TL;0RUfw1+Compare_dec%Arith#Coq@0jXF 8 {0.i bYN Z)Decidable%Logic#Coq@0ND걸풬/Oߠ'Decimal$Init#Coq@0C涳N*ua%EqNat%Arith#Coq@0AIgՋXRV *EqdepFacts%Logic#Coq@0FI$ͼՋ`)Eqdep_dec%Logic#Coq@0u wWIϰ߼*Equalities*Structures#Coq@0όe얟)H.Ƞ+Equivalence'Classes#Coq@07;ꮹ)Factorial%Arith#Coq@0@oehJd-GenericMinMax*Structures#Coq@0måj$"Gt%Arith#Coq@0䙛#c:D $Init'Classes#Coq@0](p{yOh.+InitialRing+setoid_ring#Coq@0k/T=cN"Le%Arith#Coq@0d}Omq+$List%Lists#Coq@0>I+ListTactics%Lists#Coq@0,Jcy{ %0\͉!Ig*Logic_Type$Init#Coq@0 1jc6"Lt%Arith#Coq@0KZ-eJkP܏#Max%Arith#Coq@04=;3$>aU堠#Min%Arith#Coq@0Ce-Fѕ%Minus%Arith#Coq@0LFtR")Morphisms'Classes#Coq@0Imӽ%\$PD.Morphisms_Prop'Classes#Coq@0% :B'.>u%$Mult%Arith#Coq@0햖Qyb0$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI%NBits(Abstract'Natural'Numbers#Coq@0qteo_hɅ $NDiv(Abstract'Natural'Numbers#Coq@0bz$?[p(5$NGcd(Abstract'Natural'Numbers#Coq@08E-S ;j_Ҡ$NLcm(Abstract'Natural'Numbers#Coq@0 ~xZ9L{:$NLog(Abstract'Natural'Numbers#Coq@0K Aat/ j &NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf+NProperties(Abstract'Natural'Numbers#Coq@0unt"kwpYC%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ%NZAdd&NatInt'Numbers#Coq@00h`ZK4*NZAddOrder&NatInt'Numbers#Coq@0e~1>r砠(NZAxioms&NatInt'Numbers#Coq@0] ρ5r&NZBase&NatInt'Numbers#Coq@0^&8yUL&NZBits&NatInt'Numbers#Coq@0MlIpKt%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZMul&NatInt'Numbers#Coq@0ctR~6[Ƞ*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R'NZOrder&NatInt'Numbers#Coq@0 q;Ve7R W,(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x&NZSqrt&NatInt'Numbers#Coq@0` .%m#Nat$Init#Coq@0eʤģPSR蠠$Nnat&NArith#Coq@0$W;s #%M)Notations$Init#Coq@0&v!D]hwnv *NumPrelude'Numbers#Coq@05WUVŦ]xVXԠ%Omega%omega#Coq@0t.J'6\ϨrK+OmegaLemmas%omega#Coq@0TJ#Jes4Operators_Properties)Relations#Coq@0U3y#h&&Orders*Structures#Coq@0$Znl0\͗+OrdersFacts*Structures#Coq@05Mܿ獐ζΖLB)OrdersTac*Structures#Coq@05'4Ԗ+9% 0 jha|ؠ(PeanoNat%Arith#Coq@0O~2$k[#lZ)Peano_dec%Arith#Coq@0Kݢ*k$Plus%Arith#Coq@04tmG$Pnat&PArith#Coq@0,?pr.gZ(PreOmega%omega#Coq@0\|چBb~w4'Prelude$Init#Coq@0JqTttֱ%Quote%quote#Coq@0J@ŹVz-,3%/RelationClasses'Classes#Coq@0Gz rA6ՠ4Relation_Definitions)Relations#Coq@0]4Ѐd{n^2Relation_Operators)Relations#Coq@0%s鯰s)Relations#Coq@0-SetoidTactics'Classes#Coq@0S_`nOU$&Specif$Init#Coq@0;RWMi\N'Sumbool$Bool#Coq@0sB ,$11.]m'Tactics$Init#Coq@0/9m+ a'Tactics'Program#Coq@03<N$@@B@A@@@@@@@"_8@A@@@@@@@@A B C@"_9'`o@@C.function_scope)nat_scope*list_scope@AVn@#_10'`o@4@AC@@AR@#_11'`o@I@BE.*/@@@Am`@@#_12'`o@h@CEMIN@@@A@@*2 Q@@G@#_13@5-Jo@#_142M접 HH@A#_15'`o@H@@AAAAA堐@#_16? 3V._ind_from_prop<2 Q@@E@#_17#@;;@A@@@@@#_182M접 #_19'`o@Cʠɠ@A5@2 Q@@@@#_20 ,@#_212M접 @#_22'`o@B@AZ@2 Q@@@@#_23 Q!@#_242M접 %#_25'`o@A@A@̠N$@@B@2@Ġ@@@H@#_26+t@EAI BM@#_27'`o@@C?>=@A@#_28'`o@*@ADUQV@@A@@#_29'`o@B@BEmin@@@AנŠV@@2 Q@@ @#_30@3ؠ@#_312M접 GG@A#_32'`o@G@@AAAA@#_33? 3V72 Q@@E@#_34@#_352M접 BB@A#_36'`o@B᠐@A@.2 Q@@A@#_38b@9(u@A@@@@@#_392M접 #_40'`o@F   @@@A{@E2 Q@@A@#_41@P u@A@@@@J@#_422M접 #_43'`o@FC?DF@@@Aʠ͠d@Z2 Q@@@@#_44@e9:@#_452M접 #_46'`o@Czvx@A@H2 Q@@@@#_47c@#_482M접 #_49'`o@A@A@62 Q@@A@#_50@A>j@A@@@@@#_512M접 #_52'`o@EƠ@ƠŠ@@AU63@E2 Q@@A@#_53T@P BB8@A@@@@@#_542M접 #_55'`o@E@@@APhР@O2 Q@@A@#_56@Z@A@@@@7@#_572M접 #_58'`o@E0,1@@@AnL@=2 Q@@A@#_59@H. 3@A@@@@l@#_602M접 #_61'`o@Ge@bd@@@@A(+MP@p2 Q@@@@#_62<@#_632M접 #_64'`o@B@A5@2 Q@@A@#_65@+@A@@@@@#_662M접 #_67'`o@DƠ@à@@AS@2 Q@@@@#_68O@VF@A@@@@@#_692M접 #_70'`o@C@@@A@2 Q@@A@#_71z@/ @A@@@@(@#_722M접 #_73'`o@D!#"!@AAx@2 Q@@A@#_74@&@A@@@@Y@#_752M접 #_76'`o@BRT@AA@2 Q@@F@#_77@9P@A@@@@@#_782M접 #_79'`o@Cy{@@AA@@@]5t\ЃqZ@0mqJB ?$>G@UFg Vg{@z/R1Q P%gvꢄT::Z0!P@)Datatypes$Init#Coq@@$list]@@$boolZ'@A!n@#nat@!l#%Logic$@#andЖw@A@#WKL/@,is_path_from*t@CBA@"ex @G"l'J&*@"eq @<U@&length䷀ND"n'G@%Peanob@"le UxT@/EI@#notШGw@#appʀp$List%Lists~@#rev$t| @&firstn42UV%@TNLJD^<@:`A0F+&HuJkj!Hzy@0is_path_from_ind-Jo߀ Ttnl Z@LIRVAɷʩ~xAs@qgaAΩƩ ɶ@vHqܩlީbA&۷"H0%"Le%Arith@)le_n_0_eqǩ9ʩ@&eq_ind J@J  Byܷ"HP淐$_tmp멜)BA34@֩ʐKŰ02BBB@@@@D@ LM78@琩LMݩ4O1w`aKMBɶ Q@ 0 Mh91y-UBBB@@@@D@97m1zL+p@)O Z:olܩZTRPJ;D@BhA:O50tq#Hl'.$HPl'X@V|өLNGB8Xɷʩ~x(p@nm©fPa\ǩCʶ@Aw=qܩlީbǰP@$eq_S `@@萷A@B@B@@@@@D Ϡ@!aR/ٷ@@A@A@@@@D@PL젷ʠ`q"n0Рrc/8+-/ȩư13j"CՐQ P@&le_S_n8ދذCڰE@)app_assoc4HL!C퐩RTذVD'FgPNLJF:/D_`B5ʩ3t-u+)^@ ApWr @@D><9*o@75h$4TL@M;@-+'y5 e H@:4BFWhb\@NHC9Z'׷j@^XéSũIW~1ܩdfѩt jթlCztߩoesK`@ŰR@y@ugذi̐dԷ@@٩ 9eo @àѠ̩o n.@(list_indj'78 @٠/ϐ萩ɰ4 7%F.@ kݐװBf"AD(PeanoNat`#Nat@&le_0_l?VVV@@@@@@@@D!b_No@PqY@97Gk<YzǶb@A)rYt&ېz |~Pe"S_TSK$IHl'v:@_,*]mGbC@Agĩ7됩1,"rDuBCyy`ٵa˩_mX@&le_n_S8w.mll,xqjdϩ_ѩU u;@(eq_ind_r!2#rݩtߩoe QR4 Z\ CѰ FqoS@SQة۩C$ߠPƐh栩 1fbYUU "$]Q6)+LZH°-Nİ/^1R`Ґ CN#LJ201+L#Hle"(=7XA?  ,L!">_LJma_NQO9-ʩ21/Mn@UȩQ~D9N.IHis_path_fromb`.ߩK%@fd2Cmnl:WLL>)(<xvD/_%X)ZN\[ַyl,mb3)UrLg޷Y'#k^Opn?oSf$Hbar@5inductively_barred_at(q@Qa@9inductively_barred_at_ind3$$gǶ|goͷ']Ai׷%Hbar1% 'IHHbar1Ƕ,5%Hbar217'IHHbar2Ӷ:sٷ߶\F'4@*nle_succ_0$#̛@%Falsee@@)False_induُaBK۷Ω}ѩհce婜mBA^_f쐑/-)Hdemorgan@>demorgan_inductively_barred_at n9r5@'nat_indJ&$?@Ґ  &Gڐ~Z/C@>#IHn;\#ln  GE@'and_ind14ۀЩK k"H1ðɩ"H2_O@+demorgan_or9ـѠNa|^Mc~O"H3 Ȑ"H4 @v@"or @43J87a CЩvx%! _ "H5@@ SXTjs@Ʃ@(@ "[ЩAo q OI@&or_ind"|=~=`be4<CȐ#HnP* @NIe+@Q@ް)J@ =?@xk@w]m0@qR!7#ΐ@'@@+[:#!@G|ސuz@B@w@BGwC><é:7f6>_HF@@'( )X' >9S8&ΐ[@n@lR>)<;C {!A䠩~ BAAAA@@@@@D@!۰cZW#\j#E'@_*cdp@{Ppo@\:wu7YyABDDBDD@@@@@@@@@@@@@@@@D˷@X@@^"l0ط1k;QAVz@I-ڷF~.J"?ACDCD@@@@@@@@@@@@D@R_̶@<@cQ:hưHɰnͰO(аR=T  ְ&?c1Vܰ,67 J/i0;Wp)> ptzc9" EǩiԷ)muFo0|UD3跐!e69:8=I@:/@$Truey@ASM<k;|̶4\(*) +@@ka.~~o18pYWʩSF;P842sm2G۩߶WK#sq]R#OKIi]5@@OBBbFL0w<k- Gp@@fzyKǩoQ1੷̩tzxv@q?'acӷ-gM8KRb~>@'f_equal=ӷ׷{UP@TmF\DذDΩyh-glQT"谐UX^t\*\,M/ (@s@ްɐ@3)_5! >$(ݐX.۩㐐Yh3萐Z97Tm ީ^Mĩ Z x]=^詐_W  &&-e7L7+۩(/٩U ?$tL(^0aa.=-c.1g [E5k\n]rpҩ=RذaTif;ްb[o+&L&_* `ﰐc2K% D\V y^xxP@iT@nѠ]Ԡm_Ʒ ө_=9詷@(ܩ*ة*Cֶ0ԶDѷH5ܩ49Ͷ!ڷ=ɷ"|tAշyb^:a}{yjvsrCbrw`WrS_۰ZHBOGHB@lˠkΐ   j^ @zݶ@ΰ @M@je=氷P &1gڰ \~K߰ a:) dk("M@Ȑʶ@*  i ? &K"Ʃ +oa˩ 0Ue 3 3`  5[  9A   <os > A ?Ye퐩k / %W@n< W  6"@ [=t^ .k n÷ N oz- A}@0N i  HR mO  Q=a" G, F F W lh FDB@> R< x: { y: fR \7 # \  | [( o~.+%& s_DB w@ &is_path_from_imp_inductively_barred_at BB8i9 r qW q qI@ b MM@@  Y  B Kɩ {ˠ   (DeMorgan"l1 ũ  ȶ"l2 ˶@ ~ G x@ @!Y Xŀ 5 @ c    n ~ ط  ޶@    @ C @      A      x     *  L     а    ,  %/ ذ     %>    1| ˷ H $IHl1F @D@:@C - ;L   @ ʰ  Ķ@L `@O   Ұ "  =   样 ~ ذ  Ҡ * J 5\ F_ s X *  ݠ &  (   W -'  ; c  -t = H  &  3L ] + + ,/X PX  < # >     5ȩ   9  F Gǩ  0 K  s@   Q@@@@A V P S ' N Q O - :@-infinite_from'AѶ@@ ' w O j ! >W ;#HY1 D A h k iͰ G\ٷh @ B 0- Ԡ S z } {߰Q Y,  K  s  * u    a#HY2'DA  g    m@g   <  : C s b    y ?VSq y    R4 q    (Mda       _ ub  (cg *ni ƶ_vs     %   q 4t  u &    p  Ϸ  Щ4   s   ڷ  ۩?  < O$   ѷ  @    Ɛ  RȐ!fa    @@D@ Ҁ| '  mB ٷ@* ΰ     m,z    @  逷I 9   ܰ 6 o  ?@ #  % %  A  *  < @(eq_trans!y C  6O  8Qa ) J J JD  $ ? & A l F F  O  / J it M* v ^ ^hh         d b3 B c4 V E f@'WeakFan 6@&approxm ) @@!X XĀ b 9  < ҩ   ? o o ^ #IHl@ H  K " #A @ D)! $ W30 7$ ! )n [  "Hb>; 2/ { 4 נ  ;HE  k     qD MH UR x x    p n  hk 7 R b_      q  9^  L *1  Ϸ  Щ    ~ M @!   ڷ ! a@    Z    (  6  w  p@  3   ط  ٩= J   ݷ  ީB # / $HYl'"HY     N /  @   g   ʠ   V    @(Y_unique. 3 > j t   ة  o{ L   @ &inductively_barred_at_imp_is_path_from>j     .n   !x +@  . 䠩   ܩ ܠ % "e y s,ک@  =   '   4 t  r;@  0  @| vC¶@A@ _ ] < ] H b ` ? ` \ A b M $ U D e    +  - , S V T  2M  - @ H 7 ^ a _ð =s Y h@ m kϰm I# }@  O Q h w@ W  |  }q [# \ [l@I@( a {N B? v e    k> n m o   Z  Z@l@j z  k  e  J y      Z ŷ@ Z    C \Ca      ҷ$Hinfj   @  ŷf  ݶ@w  c  ැ"Hl| <  ׷  _  v  j      rc    Z @  [   I     ̐+ "Ha         B  z; @(Y_approx+    ƩT      젩  נ  r   \ Ʃ  &  # x*Ơ |X @  =  > q k  m     F   ͷ@   3  ~    [     ` . ܷ@    D G E # L 1  ; V 8  '#HY' © + R U SU 1  .@ 2 Y \ ZN 8  FP =V :  `ȩ u ~  7 ɰ= E C ;sQ[  =  & qͰS H!Ȑ!s+Compare_dec @)le_lt_dec   V&Specif @'sumbool7̂K@ ;  ;@"lt Uxc i 2BAAAA@@@@@D( N© V  f     y l  &  ; o = @5is_path_from_restrict(uD  $     @.find_left_pathM -  q#Hlt  > l n # @>inductively_barred_at_monotone u]   r  ? @*lt_le_incl F    1h  "f   ߩ ~ E 3  O J < I  S  @      N/ w =@  @  YY@;I @M V@ 蠩 נ   c 3@  @   o  d @8 ! #    > @  r!   . z  @0@.!  q  253 )i e<@Q@O8E R &%'>g@p  lLm#!W65C `C  < :9  ѩ< K  A Ƿhf`@ж@@6J  1 K ӷ    C&  VF    ]x ,  ک/ ɐ . 4 g/gn ӷ 2з -i  0e c   "c  [ F   A t  L TW  J E 42 H} {   :  T  g@@ddc k  k޶Ƿ ީ D r ɩ ̶ M  Ȑ!o+ T ܩ m@ Y   [ A|T  cA   Z  iB  @ X @A@ Ӡ= >  ɰ2   9P o k  ԰$  t B' (    mU+  wr r  zg     , &  é  eU   r 4ض@b@q 6lCH)' \"CY km·@ ة  g ީV o m2   ڷ@ Ơ ^ Ƞ T *t f Ѡ f a@ ՠ ! # ٠   ;  + [' CA ~    omg@@<rP'@@T8 R dy  G}Z  ߩJ=B NA 6 aQ4< թ ? 9 Y Ҷ   ]7 p  j #  $ H ww~  )} %{ l  y"H6qTN u D$ 7c$z)  =~X  ;     I "I G %F ӷ!  R    V / ^ T 2i   \ 58 Z 8<3-@!!@99   ?C }   @ Pʶ@(@ Р :   ư3 ɰ Ͱ а ݩ =    ְ&?i  b  ۰+  I./ n '  m ʩwqw _5   |   з % iM B ,   ʩa//\  1 Щ5x 8k  o: ^=; X ܩ  )ʶ ͩ " T aO $  d nDe  $N ߶ ک ! C H a   <   -W6P44 @%[ն@(x n;b֩~C@$HdecnlfA װ2R  ٰ4T a@?inductively_barred_at_decidable/ ,<] ܩ  0a / @  H}7 ; 7@ҩ? ;D sɩ"@I    4@   P &T  PשX  T Uʰ  S0  Y{C bװ751C ^ * Y WC  e g@ ,inductively_barred_at_is_path_from_decidable&   @2PreWeakKonigsLemmaVF;< ̃[ֵ