"`nK D.ClassicalFacts%Logic#Coq@()Notations$Init#Coq@%Logic$Init#Coq@*Logic_Type$Init#Coq@)Datatypes$Init#Coq@&Specif$Init#Coq@%Peano$Init#Coq@"Wf$Init#Coq@'Tactics$Init#Coq@%Tauto$Init#Coq@'Prelude$Init#Coq@0)Notations$Init#Coq@0&v!D]hwnv %Logic$Init#Coq@0\͉!Ig)Datatypes$Init#Coq@0.i bYN Z*Logic_Type$Init#Coq@0 1jc6&Specif$Init#Coq@0;RWMi\N'Decimal$Init#Coq@0C涳N*ua#Nat$Init#Coq@0eʤģPSR蠠%Peano$Init#Coq@0 jha|ؠ"Wf$Init#Coq@0q+W,J+'Tactics$Init#Coq@0/9m+ a%Tauto$Init#Coq@0̂"&/rk0JqTttֱ7PropExtensionalityFacts%Logic#Coq@0 +_.ɓoFؘ'Hurkens%Logic#Coq@05[gNk2up$Bool#Coq@0j 2cZ`FW&Basics'Program#Coq@0!bs߯? :VU$Init'Classes#Coq@0](p{yOh.'Tactics'Program#Coq@03u%+Equivalence'Classes#Coq@07;ꮹ-SetoidTactics'Classes#Coq@0S_`nOU$&Setoid'Setoids#Coq@0D9AsWE!>*Equalities*Structures#Coq@0όe얟)H.Ƞ2Relation_Operators)Relations#Coq@0%s鯰s4Operators_Properties)Relations#Coq@0U3y#h&)Relations#Coq@0r砠*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ&NZSqrt&NatInt'Numbers#Coq@0` .%m%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|&NZBits&NatInt'Numbers#Coq@0MlIpKt'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$&NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ)NMulOrder(Abstract'Natural'Numbers#Coq@04> Aat/ j $NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ'NMaxMin(Abstract'Natural'Numbers#Coq@0]v|Qg̟ʠ'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NLog(Abstract'Natural'Numbers#Coq@0KLJO|BHv0@?"@u# z@>@<< +k()= R '>'' +k+T'')GAC|@@@@@bn @^A?6C0)~-{,w+[@g('@_} +k()= R '>'' +k+T''IgAC|@ @@ @̷}ͷ`^UbOt°b@ih@jȐ[ZY@VU܀@i@jᐐ  +k()= R '>'' +k+T'  777&'%ܠ.AC| @i@@ʠ:prop_ext_retract_A_A_imp_A @@(E@s@@Ƕ@Ő@@@@@ᠠ,has_fixpoint,<0.@31102Build_has_fixpoint75!F@@#ඐ#Fix!f@2- @@BB@[@(@@@AABBA@AAXV@@@@# @a_!h@A@A#$@@@@@ @@77\?@6<:i>37 @}{@\@m@@,)) +k()= R '>''+k+ + TT''''>AB|@@@NX @:82<-_+c.@m쀰iKs4o3@0/o@URV@쀰\_`c +k()= R '>''+k+ +TT'7" 7"7&''^uAB|,̀@+@@1ext_prop_fixpoint @@F@5Ҷ@Ʃ`@@@@@@1proof_irrelevance @"a1ڶ"a2@А +7Tk+ T'+T'7&'Pp@@@@@à#aux @@!G$bool$true%false)bool_elim!C@@Ŷ@䶐.bool_elim_redl $"c1"c2Щҩ嶐.bool_elim_redr2 ک% @@N@!P@GB@-@!bJʩ=H@@@@@ހԐ@@@@@%boolP,<@A@%trueP&falseP..@@@@@@@@@[@R @@@B@@@A@@@A@@@@@@@)boolP_ind @!_"I#@-R @@@@@@@@@D@ #W@1o2Y3*6 +k()= R''''+k'*A@@@@@@@;/boolP_elim_redl @@lcqa/z.1@7:47z0A@@@@@W/boolP_elim_redr @@}KJLOHBА@@@@@o*boolP_indd @}tZ.g{a\}c{DD@   h +k()= R''''+k$'lA@@@@@@@@(2(GE0@1@ ڐ@@@@@ $p2p2 @@gLkjhfb`\Z,or_elim_redr^\ ]C^!]Rڶ%R'#) LKI64i2S0@zqo@1/@@@@@24proof_irrelevance_cc @@M{y*5kIzAMzOD>uq?R@D9@7;~o@Q<=nUKUTnT'SljK@@$@$I6@A@A%^@%^J9@A@&@&K>@A@A'@'ܠLA@A@(@(ME@A@)Z@)ZNI@A@ABCD@HA@@AA1DH@A1I!M@A1E%I@A1J`N@ABCD@@%wp2p1 @@Nֶ¶#wemjllӶ'Hurkens|7NoRetractToNegativeProp@%NProp8]@ @"El83ۀ{&Specif@#sig#* @A @)ҷ ة éĐ!k˩.@;@@Ő@@@@@%wp2p2 @@ROVUSQMKGE)'ecG1@޶M_@UO&ϩZ@@@@@5wproof_irrelevance_cc @@oPsrpnjhdbZX ߶Gֶgeg0Q.@@+@+ؠP@A@A,@,Q@A@-V@-VR@A@A.@.S@A@/@/ԠT @A@0@0U@A@ABCD@@@AA@A@A@A@ABCD@@L @H~\QӠb@PdYj@&or_ind"dbqPSA (+k()G'@@@@@ua @q·>}@ȶyɶʶɶF)twB$@@@@@'or_indd @!oAǷ"ƷBAAAA@@@@@D<@  +k()= R'>$'>$''+k$'AABAAB@@@@@@Ӡ5proof_irrelevance_cci @@1Q}@@@@@ޠ9wem_proof_irrelevance_cci @@@AB@@K;generalized_excluded_middle @H@c@t +7Tk+7T'+ T7%''pP`@@@@@g -excluded_middle_independence_general_premises @@Y@@&9MU3@@@mA@A@@z'Minimal @@)Datatypes@#nat@з!n @#andЖw@@ȩ%Peano@"le UxT@e@@)Datatypes$Init#Coq@@#nat@'񐐠 +k() + 7T 7%'+  T'7%'/L)Dt@@@@@̠5Minimization_Property @RHR@ө$U!mX@d;뀠 @@>  +k+7T'+  T'+ 77%'7%';xopd@@@@@ 1unrestricted_minimization_entails_excluded_middle @@ XZ9unrestricted_minimization @< YՐ@@@@@ 1excluded_middle_entails_unrestricted_minimization @@ k['@@@@@  4undecidable_predicate_with_the_minimization_property @@ v\!s@@\Z'@#yR  fbA@@@@@ 9 4representative_boolean_partition_imp_excluded_middle @@ ]@!R@@$boolZ'@@@/RelationClasses'Classes#Coq@@+Equivalence~@; @ @iCCmkE٠s i!yL@j \ Ps[ @@@A@A@@ z 4excluded_middle_imp_representative_boolean_partition @@ ^@ C@B@Eƶ@>  3 @ Жw@ ҩ  Զ;@  ٩䀰&  @@@@@ 4excluded_middle_iff_representative_boolean_partition @@ _D R@@ @~ At߶A  ΐ y@   "$ ש ܐ@@@@@ @@@$@A%^@B&@'@A(@BC)Z@+@A,@B-V@.@A/@B0@1R-@2@AB ӳ2@ ӳ2[)Datatypes$Init#Coq@@A@ Գq@ Գq\ @A@ACDEF@@@@ABC@@A@B@CD@@A@@AF@B@@ACDE@@"O@(PeanoNat%Arith#Coq@#Nat@&of_int"O#Nat$Init#Coq@@ 6@A@As2@@&shiftls2 @vY@A@Bs8@@&shiftrs8@vY@A@ѓ@!@&squareѓ@y@A@@'@&to_intϑ@@A@AB/@,@)log2_iter/#@wd@A@l@2@)sqrt_iterl)@!$:@A@ACD c@7@'testbit c.@!ć@A@^Ҷ@?@'to_uint^Ҷ6@#m@A@A,@D@'bitwise,;@/v@A@l@J@'comparelA@3R@A@ABs8@O@+of_uint_accs8F@5+@A@.@W@!t.N@ ;@A@A.먩@\@#add.먩S@ `@A@B.U@a@#div.UX@ @A@.B@h@#eqb.B_@ @A@A. @m@#gcd. d@ @A@.=@s@#leb.=j@ @A@ABCDE. @x@#lor. o@ @A@.Z@@#ltb.Zz@ @A@A.p@@#max.p@ '@A@B.@@#min.@ @A@.@@#mul.@ @A@AC.g@@#odd.g@ @A@.&@@#one.&@ @A@A.뾴@@#pow.뾴@ k@A@.L@@#sub.L@ @A@.@@#two.@ @A@ABCD.,a@@$div2.,a@ @A@.Xz@@$even.Xz@ ?1@A@A.@@$iter.ؑ@ @A@B. @@$land. @ @A@. @@$log2. @ @A@ACE.@@$lxor.@ R@A@.y@@$pred.y@ `<@A@A.Ʉ@@$sqrt.Ʉ@ ;@A@.@@$succ.@ @A@.t @@$zero.t @ Z@A@AB/@@.to_little_uint/@ @A@CD/@@%ldiff/@ H@A@3@@(tail_add3@^q@A@A3@@(tail_mul3@^@A@B6w~@ @'of_uint6w~@^5@A@@@&divmod> @C@A@>@@&double>@NĴ@A@A?;@ @&modulo?;@"i@A@BDEFG@0&Basics'Program#Coq@0!bs߯? :VU$Bool#Coq@0j 2cZ`FW*CMorphisms'Classes#Coq@0qیZBeϠ0CRelationClasses'Classes#Coq@0TL;0RUfw1+Compare_dec%Arith#Coq@0jXF 8rqp@0.i bYN Z)Decidable%Logic#Coq@0ND걸풬/Oߠ'Decimal$Init#Coq@0C涳N*ua*Equalities*Structures#Coq@0όe얟)H.Ƞ+Equivalence'Classes#Coq@07;ꮹ-GenericMinMax*Structures#Coq@0måj$"Gt%Arith#Coq@0䙛#c:D 'Hurkens%Logic#Coq@05[gNk2up$Init'Classes#Coq@0](p{yOh."Le%Arith#Coq@0d}Omq+ 0\͉!Ig*Logic_Type$Init#Coq@0 1jc6"Lt%Arith#Coq@0KZ-eJkP܏)Morphisms'Classes#Coq@0Imӽ%\$PD.Morphisms_Prop'Classes#Coq@0% :B'.>u%$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI%NBits(Abstract'Natural'Numbers#Coq@0qteo_hɅ $NDiv(Abstract'Natural'Numbers#Coq@0bz$?[p(5$NGcd(Abstract'Natural'Numbers#Coq@08E-S ;j_Ҡ$NLcm(Abstract'Natural'Numbers#Coq@0 ~xZ9L{:$NLog(Abstract'Natural'Numbers#Coq@0K Aat/ j &NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf+NProperties(Abstract'Natural'Numbers#Coq@0unt"kwpYC%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ%NZAdd&NatInt'Numbers#Coq@00h`ZK4*NZAddOrder&NatInt'Numbers#Coq@0e~1>r砠(NZAxioms&NatInt'Numbers#Coq@0] ρ5r&NZBase&NatInt'Numbers#Coq@0^&8yUL&NZBits&NatInt'Numbers#Coq@0MlIpKt%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZMul&NatInt'Numbers#Coq@0ctR~6[Ƞ*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R'NZOrder&NatInt'Numbers#Coq@0 q;Ve7R W,(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x&NZSqrt&NatInt'Numbers#Coq@0` .%m#Nat$Init#Coq@0eʤģPSR蠠)Notations$Init#Coq@0&v!D]hwnv *NumPrelude'Numbers#Coq@05WUVŦ]xVXԠ4Operators_Properties)Relations#Coq@0U3y#h&&Orders*Structures#Coq@0$Znl0\͗+OrdersFacts*Structures#Coq@05Mܿ獐ζΖLB)OrdersTac*Structures#Coq@05'4Ԗ+9%%Peano$Init#Coq@0 jha|ؠ(PeanoNat%Arith#Coq@0O~2$k[#lZ$Plus%Arith#Coq@04tmG'Prelude$Init#Coq@0JqTttֱ7PropExtensionalityFacts%Logic#Coq@0 +_.ɓoFؘ/RelationClasses'Classes#Coq@0Gz rA6ՠ4Relation_Definitions)Relations#Coq@0]4Ѐd{n^2Relation_Operators)Relations#Coq@0%s鯰s)Relations#Coq@0-SetoidTactics'Classes#Coq@0S_`nOU$&Specif$Init#Coq@0;RWMi\N'Tactics$Init#Coq@0/9m+ a'Tactics'Program#Coq@032 Q@@@@"_5 @A@@@@@@@@"_62M접 @"_7'`o@@@@w2 Q@@@@"_8$@"_92M접 #_10'`o@@@@g2 Q@@@@#_11.:9@#_122M접 7#_13'`o@@@@]2 Q@@A@#_14 @h!@A@@@@V@#_152M접 #_16'`o@A@@v@m2 Q@@A@#_170@xB@A@@@@y@#_182M접 #_19'`o@A@@@2 Q@@A@#_20S@.۲@A@@@@@#_212M접 #_22'`o@B@@@@2 Q@@@@#_24s&@#_252M접 #_26'`o@@@@2 Q@@A@#_27@mjS@A@@@@@#_282M접 #_29'`o@A@@@2 Q@@A@#_30@&@A@@@@@#_312M접 #_32'`o@C@*type_scope@@!@@@N$@@B@@@@@-@#_33C@A@@@@@/A3@#_34'`o@@B*,@@@@#_35'`o@!@AE:<.function_scope@@@AAA@ڠ2 Q@@H@#_36*@-m@#_372M접3CC@A#_38'`o@:Djl@@@@@@@2 Q@@H@#_39MiP@#_402M접VCC@A#_41'`o@]D@@@@@ˠ@@#2 Q@@H@#_42y@.9[@#_432M접 CC@A#_44'`o@D@@@@@@@#_45L4xA^A]A[A@5@2 Q@@A@#_46@@A@@@@@#_472M접 #_48'`o@C@@@!@@@N$@@B@@@@@@#_49V@A@@@@@.A2@#_50'`o@@A)@@@#_51'`o@@AC5@@AA@ˠ2 Q@@H@#_52U3X_@#_532M접^BB@A#_54'`o@eC\@!@@A@2 Q@@H@#_55@@Q\@#_562M접 BB@A#_57'`o@C@J@@ΠA@#_58L4xՠA"A A@.@2 Q@@A@#_59y@>E@A@@@@@#_602M접 #_61'`o@C@@@᠐@@@2 Q@@@@#_62@S)@#_632M접 蠠#_64'`o@@@@2 Q@@A@#_86@x@A@@@@@@@@@@@@@@#_872M접@x#_88'`o@@xH@@נ٠۠@@@@@AAAA@2 Q@@A@#_89@T&@A@@@@@@@@@@@@@@#_902M접@T&#_91'`o@#@T&HX@@ "@%@@@@AAAA@ˠ2 Q@@@@#_92L@g@A@@@@@@@@#_932M접Z@g#_94'`o@b@g@@@ؠ2 Q@@@@#_95o@6l#@@@@#_962M접|@6lCB@@#_97'`o@@6l@@@2 Q@@@@#_98@F@@@@#_992M접@CC@@$_100'`o@@@@@2 Q@@@@$_101@_fi@@@@$_1022M접@_fDDC@$_103'`o@@_fD@@@@@@@A@ 2 Q@@@@$_104@,a0@@@@$_1052M접@$,a0@$_106'`o@@,,a0C.@@@@@@@2 Q@@@@$_107@,a6 @@@@$_1082M접@),a6@$_109'`o@#@1,a6CX@@@@@@@2 Q@@@@$_1108@(>젠@@@@$_1112M접E@5>$_112'`o@M@=>@@@2 Q@@A@$_113Z@$>@A@@@@@@@@$_1142M접h@2>$_115'`o@r@<>B@@@1;@6N$@@B@;O@44@@@@$_116@ER @A@@@@@@@@A@@@ B@@@@$_117'`o@@aR @@@@$_118'`o@@kR @A@@@$_119'`o@@uR @B@@@X2 Q@@G@$_120@c:=@@@@$_1212M접@p:DD@A$_122'`o@@y:D@@@@@@@z@$_123? 3V._ind_from_prop@@@l2 Q@@@@$_124@wDPy@@@@$_1252M접@DP@$_126'`o@@DPCN@@@@@@@z2 Q@@@@$_127.@DV@@@@$_1282M접;@DV@$_129'`o@C@DVCx@@@@@@@2 Q@@G@$_130X@;PB͠@@@@$_1312M접e@;PBDD@A$_132'`o@n@;PBDe@@@@A@@ @2 Q@@A@$_133@N@A@@@@@@@@$_1342M접@NÐ$_135'`o@@NA@@]@2 Q@@A@$_176@y@A@@@@@@@@@@@@@@@@@@$_1772M접@y$_178'`o@@yLɠˠ͠ϠѠӠՠ@@@@AAAAAAA@@@@@@2 Q@@A@$_179 @z@A@@@@@@@@@@@@@@@@@@$_1802M접!@z$_181'`o@+@zM"$&(*,.n@@@s@@AAAAAAA@@@ˠ@=@٠2 Q@@@@$_182h@?#Q@A@@@@@@@@@@@@@@@@@@@$_1832M접@?#Q$_184'`o@@?#QKР@@@AAAAAAAA@@@@Ԡ2 Q@@A@$_224@{`@A@@@@@@@@@@@@@@@@@@$_2252M접@{`$_226'`o@@{`L٠۠ݠߠ᠐㠐堐%@@@@@AAAAAAA@@@@ʠ2 Q@@A@$_227@{a@A@@@@@@@@@@@@@@@@@@$_2282M접3@{a$_229'`o@=@{aM468:<>@@@@@@@AAAAAAA@@@ܠpg@ 2 Q@@@@$_230z@vD/@A@@@@@@@@@@@@@@@@@@@$_2312M접@0vD/$_232'`o@@:vD/K@@@AAAAAAAA@@@@2 Q@@@@$_236@!@A@@@@@@@@$_2372M접@!@$_238'`o@@!F!堐@@@@@AA@@2 Q@@@@$_239 @!9@@@@$_2402M접@!@$_241'`o@ @!FUWY@@@@@AA@@N2 Q@@@$_242B@Xamp@@@@$_2432M접O@eamFF@A$_244'`o@X@namFSUW@@@@AAA_@M2 Q@@@@$_245}@Xj@A@@@@@@@@@$_2462M접@gjՐ$_247'`o@@qjD͠@@@A@@@@t2 Q@@@@$_251@@A@@@@@@@@@$_2522M접@𷕐$_253'`o@@D@@@A@@@@2 Q@@@@$_254@A@@@@ )@$_2552M접  '$_256'`o@@@@2 Q@@@@$_257@-r E@$_2582M접  C$_259'`o@@@@2 Q@@@@$_260{8 `@$_2612M접  ^$_262'`o@@@@2 Q@@A@$_2634@Ze@A@@@@ }@$_2642M접 $_265'`o@A@@@2 Q@@@@$_266" @$_2672M접  $_268'`o@@@@2 Q@@A@$_269r@)@A@@@@ @$_2702M접 $_271'`o@@@@2 Q@@A@$_272@!@A@@@@ @$_2732M접 $_274'`o@A@@ @2 Q@@@@$_275y" @$_2762M접  $_277'`o@@@@2 Q@@A@$_278@#I.@A@@@@ @$_2792M접 $_280'`o@A@@@2 Q@@A@$_281@'@A@@@@ ;@$_2822M접 $_283'`o@A@@@2 Q@@@@$_284" \@$_2852M접  Z$_286'`o@@@@2 Q@@A@$_2870@ @A@@@@ y@$_2882M접 $_289'`o@@@@2 Q@@@@$_290 @$_2912M접  $_292'`o@@@@2 Q@@A@$_293j@.&!1@A@@@@ @$_2942M접 $_295'`o@A@@@2 Q@@@@$_297@;# @$_2982M접  Ӡ$_299'`o@B )nat_scope@A@2 Q@@@@$_300@ YI @$_3012M접  $_302'`o@A @A@|2 Q@@@@$_306@-d@A@@@@@@@@@$_3072M접@-d$_308'`o@@-dB 㠐 #@A@@2 Q@@@@$_313@(Q@A@@@@@@@@@$_3142M접@(Q$_315'`o@@(QB  @AA@2 Q@@D@$_322/@a@A@@@@@@@@@$_3232M접>@a$_324'`o@H@aA ?@A@à2 Q@@@@$_326Y@;@A@@@@ @$_3272M접 $_328'`o@A b@A@2 Q@@@@$_329|@+c@A@@@@ @$_3302M접 $_331'`o@C@ @@ӠA@2 Q@@@@$_332@4@A@@@@ @$_3332M접 $_334'`o@@@@@@$RzqIF\(4@ pha&A7@_$C :^4S`@A)H쓷-Qi>u ,+!H.ClassicalFacts%Logic#Coq@@/prop_degeneracyv=!AA!B"H0$Init@#iffС)BAР @#andЖw@BBB@@@@D@@C@D#@"eq @2  #Hab#Hba@EȐ!oF:@"or @KC@$Truey@'SK@%Falsee@BAAAA@@@@@D@!:f'<h)>jG,Wg 2H2@2Kw ,My&O{I h"H1 x@(eq_ind_r!2#<^Jwdw@)False_induُB@#notШK/` WYA+Al:FO7-64-\5w2iF8?6e1IC@3prop_extensionalityNе(}wq@>  A ]=<˷Be8!xC@/excluded_middle/ߕ<#Ext<"EM 7f@jڰܰ2ӰéA@ɶ@@s@*8ɩ@̶@ LC17PropExtensionalityFacts3@7PropExt_imp_ProvPropExtY<v1/!a @""'@@&@@(@)@NCA.D1!PGY@'retract# z@(; AAAmBAnC-A &k@5prop_ext_A_eq_A_imp_A&:NMrge6RBCC@@@@@D@)_>@,has_fixpoint@@:prop_ext_retract_A_A_imp_A"g1K"g2@N^'g1_o_g2@cRb@UPi} A\!f`[txbj'@k@ {CJx  g'%%C,$bool˷$true%false)bool_elim!C׶@Ķ@ƶ@.bool_elim_redl ޶"c1Ͷ"c2ѩө.bool_elim_redrٶ ۩İܩ Ȑ2bool_dep_induction@@@!bb G#IndABB@@@@D@ @1ext_prop_fixpoint>E!G@@$Gfix@KaȐ#neg.L 2 7@ M"6 N#Heq #v3~ 8 &L"9,Ӱ.$&'!5+5"- E.&%'2%JV@&eq_sym X0/S1FS<)C@?@,,A8BLE1s`by·{h}"a1l"a2pZ^`ts]_aceyadcU{hhjlrkj\ceyfqcکtIxx@#auxx u /;kp<2C@1proof_irrelevanceS@c@$p2p1y( $.80+C@,[ZXVQOKI@>0.#wemigӐշilY[r=7NoRetractToNegativeProp@%NProp8] 䐩搩@"El83ۀ[@ \@ _M _*a&Specif@#sig#* @AR@/:!h   |in!kItEFI?=~B@@?@.0JZ@[@a#nnaT@&eq_ind JglhY}@puu̐htCMO Ci)'~$#+)ܩ-u 5\0r@wegv@w@v C@onl۷ba_b@k@@bD$_tmp ˩ %BBB@@@@D!sIb#"x0N!pjؐZGFCݐ_8L^C0@㐩;0"na+p@EөڐܐJ 7d %@'{fC@UT\ZXWLIa_C@ɐ|zvtki\,#*ECA':嵷Ȑ"NB a@ 5fC6aȐm:@r+ؠP,Q-VR.S /ԠTĠ0U@%wp2p2{a,69HTY@%wp2p1{`(=O[`[MȐ!FD:}<>ÐCCECCCF&詚@4proof_irrelevance_cc?#Q @&or_ind"@!@T!@'or_inddam琑@5wproof_irrelevance_ccvD/    @Π@"HB>߷%HnotB<  ]@C2@,GodelDummetti@ <@ -RightDistributivityImplicationOverDisjunction:@"GD9758d9$HCAB@) 3@@  @ @$9#HBA y "HC-Z@I"HAMNe#HAB?-l@WpZZCB%DistrEusqt9Odc6fe8@U@j$@>@AvZ@]up$HABAyQwdyI$HABBZ5kRCugxa ^@ @J@d@@թh&HnotAA ٰߵ%HnotAC &HAnotAڰ起_CC@4weak_excluded_middle-逐"IP@=IndependenceOfGeneralPremises əзѷҷȐ!eЛ)Datatypes@Z'@  @@@@@@@@A՜A*@@"ex @"#蠷 A+ ʩ. /B3$4@橷7.)BBB@@@@D@'C4D@<7  8HH@?>@@@D*M@@FA̩砶@@@V@¶@ESCȐ!iI@ :Godel_Dummett_iff_right_distr_implication_over_disjunction)踀6+@ @|#1YB7\@ Findependence_general_premises_right_distr_implication_over_disjunction#I.E@f@.DrinkerParadox=@a2Wp@@!@Sg$InhAWBEYzGH0["Hx^C'Drinkery1RV@@9!Q[@qLM+JPawRS@QRST@XY@12356@b3e5 89@?/"HQnC向#GEM@;generalized_excluded_middle9MU[vUpS~U@Vvi@Ԡ̶@A@K:bvjk@ij8ƷAǷ$HnotSC9unrestricted_minimization@@#nat@쩚@5Minimization_Property YVՠϰ眠A԰쩜B ' j(蠩(*,CȐ$p₀ @@0ŷ@ߠ@++B-(<@   $h₀F/fQ<dRR@@A@A@@@@DaZ@,@\B.0Xn&":&!fQ8C1D4'*Q>_m!mpg@'Minimal;뀠4IM@m{| *P#'R0@)+ؐ\:y_@T:u@婛%Peanou@"le UxT@sr"hm#hmm@@'and_ind14ۀж@)@Y!@$6ͰriqŶ@VDé[t@NӶ@é?"64ڶ@G&:.<i>@@.@+@b@@v"1wĩ]|(PeanoNat%Arith#Nat@*nle_succ_0$C$@ٷ@ΠM@8~v<쐷zxY@|j @̠-/Ԡz  ,  @:%ߠ{  6 VA')WE ڷ@H3 ۩@ ! H# 1hS1fT '^W= ) +a^f_#HPnȐ#dec"n0h Tqj UXȐ]Wqyr 1 Eft&Wf_nat@ +dec_inh_nat_subset_has_unique_least_element ΀ + R Q @8has_unique_least_element;ǜ 2\@| h@&unique" V䶐"x'@r.,  p p"n'  j@ | {@ p r@ש q  @ zݶ$@" v y QO   $HPn'2Ƕ@ 6˶@ 5  { ѷdҩb   Cΐz@zکΠܷݩ J  õ-䷐"hn |ԩ'@Xķ@. ` 6 h  U Ґ=  Է@ ɠU ð] G  Р ʰ ␷%hk₁b%hk₂ Ӱ'  +X " ۰/F ީ  5 &%lemma  멚)Morphisms'Classes %@>trans_contra_inv_impl_morphism&W!:/RelationClasses @3PreOrder_Transitive4(ۀDN@+le_preorder+U4    U@&le_0_l?  "CQ J; 8CM-ReprFunChoice!R@j@k C@%@+Equivalence~@t 8Z gww iy / + A !y@  H 0&  ^   9 R Q > g z%A Y   F ^ ^ K (    Q f @ 9 R W k D> j   X ] [ E& ] _ r  M  J uCi@)SymmetricFgqD <!z  =@ W p s u ]@ _` 5    I@ c | n  9 : @ p   ԰  F v 5 @(eq_trans!y M x }    I ذ  ?   |  c   ߰ F  C@*Transitive++-|  }@٠ 7   ~}@  {  N Ð B"Hf$Bool @(bool_dec4i ֐ ؐ橛a@'sumbool7̂K@ ʰ  ` BAAAA@@@@@D ٰ-   q  3   젩   (<@   A / @   6J@  N <   ;  з@ ꠩ W) @Y@  ] K  "&Hfalse    T  Y Yk@ ^ 2 p `  I 5@ * $h hz@  *~ 6n 7 W  D l  @  4x '@ @ : 2~ 3 gP U%HtrueA Ȑ$Heq0 In a Lq  s : Ou _ l 6 . { m . R p"HP N[' u ]Z w$Hneq  !  " b j q ' ^C@ V qa @ } ' eOͶ@ b }h V ~  Wն@ j a x  հ>  CIC ͐  з|z x     - k@    3٠ 7   ~}@z   @      @   РBCC@@@@@D@  Ϡ   @  ϐ5Equivalence_Reflexive@)ReflexiveW5Equivalence_Symmetric|/ ȷ6Equivalence_TransitiveI4   8@w/ %<=@ 0 @   4  G@ a@   "H2@ @ && m   H !L^ I aQT@L  9Wh@ ,` JHB@>< 8  r@(i _vw@ .@9 (N - ض@ .@86@@4 44 &y[ 000  u@, ^f l S m Z Ƕ@𩚠L@+reflexivity(ϓ/ 9S@}