"`T \-RelationPairs'Classes#Coq@()Notations$Init#Coq@%Logic$Init#Coq@*Logic_Type$Init#Coq@)Datatypes$Init#Coq@&Specif$Init#Coq@%Peano$Init#Coq@"Wf$Init#Coq@'Tactics$Init#Coq@%Tauto$Init#Coq@'Prelude$Init#Coq@4)Notations$Init#Coq@0&v!D]hwnv %Logic$Init#Coq@0\͉!Ig)Datatypes$Init#Coq@0.i bYN Z*Logic_Type$Init#Coq@0 1jc6&Specif$Init#Coq@0;RWMi\N'Decimal$Init#Coq@0C涳N*ua#Nat$Init#Coq@0eʤģPSR蠠%Peano$Init#Coq@0 jha|ؠ"Wf$Init#Coq@0q+W,J+'Tactics$Init#Coq@0/9m+ a%Tauto$Init#Coq@0̂"&/rk0JqTttֱ&Basics'Program#Coq@0!bs߯? :VU$Init'Classes#Coq@0](p{yOh.'Tactics'Program#Coq@03u%+Equivalence'Classes#Coq@07;ꮹ-SetoidTactics'Classes#Coq@0S_`nOU$&Setoid'Setoids#Coq@0D9AsWE!>$Bool#Coq@0j 2cZ`FW*Equalities*Structures#Coq@0όe얟)H.Ƞ2Relation_Operators)Relations#Coq@0%s鯰s4Operators_Properties)Relations#Coq@0U3y#h&)Relations#Coq@0r砠*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ&NZSqrt&NatInt'Numbers#Coq@0` .%m%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|&NZBits&NatInt'Numbers#Coq@0MlIpKt'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$&NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ)NMulOrder(Abstract'Natural'Numbers#Coq@04> Aat/ j $NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ'NMaxMin(Abstract'Natural'Numbers#Coq@0]v|Qg̟ʠ'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NLog(Abstract'Natural'Numbers#Coq@0KI+Relations_1$Sets#Coq@0k<⪚(тc1&Sorted'Sorting#Coq@0bb1z٠*SetoidList%Lists#Coq@0k窪ܸqSL%Iv# s4ciNmJΠР-RelationPairs'Classes#Coq@A*RelCompFun @!A&C@@@!B%נB @@!R4Relation_Definitions)Relations@(relation'JjA!f@C!aD"a'E B@87@10@-,)Relations#Coq@@(relation'Jj-+@C+D H+k()  %'@@%@P@A@&@^@A@AB@TA8ӠA4Relation_Definitions)Relations#Coq@@jA @AB@@AA@@A@'Measure,<W@HHs*G}@@)ӠF@@@ mA-Build_Measureuotgy@@@AB@ @@@@3" C@@A@@@@BA@CC32,@@)@,@A@*@6@A@AB@@I+fst_measure @.K@@/ML@@@a" C@A)Datatypes$Init@$prodt@ @#fst @딑+@䔑)@@" C@)Datatypes$Init#Coq@@&t@%B)Datatypes$Init#Coq@@#fst  (+k()G'@@.@\@A@/M@W@A@AB@bA@AcA@eA ϲ6W*)(@@ABkA ӳ2[@hA@jA вuX @nA Գq\@ABCD@@̠+snd_measure @D2 OB@@?3 IPI@@|0{@#sndv@Z@S@ol6HAc@#snd>P\@@2 @4@A@3 I@/@A@AB@:A@A;AY@=AU@AB7A@9A@;AT@=AR@ABCD@@'RelProd @4 Q@@5 ǠR@@"RAq"RB/RelationClasses@4relation_conjunctionl۠@.L j @,@*@')݀DC +k()7!7!7 7!7!7 7!7&'Р0X?Р|Lp@@4 @a@A@5 @\@A@AB@gA@AhA@jA@ABkA@oA@AiA@kA@ABlA@oA@ApA@A@A@ABCDE@@4RelCompFun_Reflexive @@+@8!U@@9!àV @@!H^ "H0@)ReflexiveWF@@@&A݋X_A@A)AB@,A@A&A@(A<@*A@ABCD@@ࠠ4RelCompFun_Symmetric @@hAX=M7EC641/+@)SymmetricFgq)@@%@@5RelCompFun_Transitive @@BoTdN\ZMKHFB@*Transitive++-ǩ@@@<@@6RelCompFun_Irreflexive @@Ck{esqdb_]Y@+IrreflexiveHt}ީW@@S@@%6RelCompFun_Equivalence @|{yvtp@+Equivalence~@Arq@Sـx @5Equivalence_Reflexive@.!ɠߩl@7StrictOrder_Irreflexiveπ`S穚t@6StrictOrder_Transitiveah@#&& +k()7"7  7"     7:'xnl*̀@@@@Π1RelProd_Reflexive @@VDF@#|]D@@AA#^K@@+",#'%!-@0$@@@A#@AA@"A ϲ6W@AA*@ A@"A вuX@ABCD@@1RelProd_Symmetric @@E}7r1۶ܶV$+Q&*@@@$@ABAz@DA@AB&@GAr@AHAl@(@ABCJA ӳ2[@*@AHA@+@AKA}@+@NA Գq\@ABCDE@@12RelProd_Transitive @@Fc] 9W};V@@N@@C3RelProd_Equivalence @uoihf@z@[\Հ  @78@><;=#$A +k()7"7"7  7" 7"    7   7"  7"    7;'ࠒ9T02)Tx6@@@@.FstRel_ProdRel @@Ggea@4relation_equivalences9ݩ^0@@񛠠%LogicA@$Truey@@@@@AA#@@AB@A&@@@ABCD@@.SndRel_ProdRel @@FH6+!/*,, @@(@@@@A@@ABA7@@@@ABCD@@ܠ*FstRel_sub @@dITI@+subrelation0s48+=@@>@@*SndRel_sub @@{Jk%`ɶʩ@@/@@+pair_compat @@K{5p/ٶک)Morphisms}@&ProperL@]@^/ @*respectful%WO?e@jdh_ ns8A@@@VAviA@A:@9@ATA@6@5@ABCD@@7*fst_compat @@Lic  4@+Y@@@@AU@S@AB+@O@N@#@ABCD@@Q*snd_compat @@M})'&(N@Es@@@o@Al@E@AB4@i@h@=@ABCD@@k1RelCompFun_compat @@N?ζ"RiҐö"Roא^Ʃs@Ķ@ckǶ@fénhΩ|@G@Hnv@qO٩{ uҩS ݐ@@@oA8ӠA@Ar@@o@@ABCD@@@@@%@A&@B)c@*c@A.@BC/M@2 @A3 I@B4 &@5 '@A8!@@A@B9!@@A@@#|@@A@A#@@A@AB ӳ2@@A@ Գq@@A@ACDEF@"@A@@ @ABC  D@@A@B@@ABC@@A@B@?@A>=BCDE;<6@4@4@@ABCD@@AB@$A@@AB@C@$@@ABDEF@ A@@AB@C @*@ADE@@@AB@@A A@L@K@ABCDFGH@@"O@(PeanoNat%Arith#Coq@#Nat@&of_int"O#Nat$Init#Coq@@ 6@A@As2@@&shiftls2 @vY@A@Bs8@@&shiftrs8@vY@A@ѓ@!@&squareѓ@y@A@@'@&to_intϑ@@A@AB/@,@)log2_iter/#@wd@A@l@2@)sqrt_iterl)@!$:@A@ACD c@7@'testbit c.@!ć@A@^Ҷ@?@'to_uint^Ҷ6@#m@A@A,@D@'bitwise,;@/v@A@l@J@'comparelA@3R@A@ABs8@O@+of_uint_accs8F@5+@A@.@W@!t.N@ ;@A@A.먩@\@#add.먩S@ `@A@B.U@a@#div.UX@ @A@.B@h@#eqb.B_@ @A@A. @m@#gcd. d@ @A@.=@s@#leb.=j@ @A@ABCDE. @x@#lor. o@ @A@.Z@@#ltb.Zz@ @A@A.p@@#max.p@ '@A@B.@@#min.@ @A@.@@#mul.@ @A@AC.g@@#odd.g@ @A@.&@@#one.&@ @A@A.뾴@@#pow.뾴@ k@A@.L@@#sub.L@ @A@.@@#two.@ @A@ABCD.,a@@$div2.,a@ @A@.Xz@@$even.Xz@ ?1@A@A.@@$iter.ؑ@ @A@B. @@$land. @ @A@. @@$log2. @ @A@ACE.@@$lxor.@ R@A@.y@@$pred.y@ `<@A@A.Ʉ@@$sqrt.Ʉ@ ;@A@.@@$succ.@ @A@.t @@$zero.t @ Z@A@AB/@@.to_little_uint/@ @A@CD/@@%ldiff/@ H@A@3@@(tail_add3@^q@A@A3@@(tail_mul3@^@A@B6w~@ @'of_uint6w~@^5@A@@@&divmod> @C@A@>@@&double>@NĴ@A@A?;@ @&modulo?;@"i@A@BDEFG@4&Basics'Program#Coq@0!bs߯? :VU$Bool#Coq@0j 2cZ`FW*CMorphisms'Classes#Coq@0qیZBeϠ0CRelationClasses'Classes#Coq@0TL;0RUfw10.i bYN Z)Decidable%Logic#Coq@0ND걸풬/Oߠ'Decimal$Init#Coq@0C涳N*ua*Equalities*Structures#Coq@0όe얟)H.Ƞ+Equivalence'Classes#Coq@07;ꮹ-GenericMinMax*Structures#Coq@0måj$"Gt%Arith#Coq@0䙛#c:D $Init'Classes#Coq@0](p{yOh."Le%Arith#Coq@0d}Omq+$List%Lists#Coq@0>I%Logic$Init#Coq@0\͉!Ig*Logic_Type$Init#Coq@0 1jc6"Lt%Arith#Coq@0KZ-eJkP܏%Minus%Arith#Coq@0LFtR")Morphisms'Classes#Coq@0Imӽ%\$PD.Morphisms_Prop'Classes#Coq@0% :B'.>u%$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI%NBits(Abstract'Natural'Numbers#Coq@0qteo_hɅ $NDiv(Abstract'Natural'Numbers#Coq@0bz$?[p(5$NGcd(Abstract'Natural'Numbers#Coq@08E-S ;j_Ҡ$NLcm(Abstract'Natural'Numbers#Coq@0 ~xZ9L{:$NLog(Abstract'Natural'Numbers#Coq@0K Aat/ j &NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf+NProperties(Abstract'Natural'Numbers#Coq@0unt"kwpYC%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ%NZAdd&NatInt'Numbers#Coq@00h`ZK4*NZAddOrder&NatInt'Numbers#Coq@0e~1>r砠(NZAxioms&NatInt'Numbers#Coq@0] ρ5r&NZBase&NatInt'Numbers#Coq@0^&8yUL&NZBits&NatInt'Numbers#Coq@0MlIpKt%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZMul&NatInt'Numbers#Coq@0ctR~6[Ƞ*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R'NZOrder&NatInt'Numbers#Coq@0 q;Ve7R W,(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x&NZSqrt&NatInt'Numbers#Coq@0` .%m#Nat$Init#Coq@0eʤģPSR蠠)Notations$Init#Coq@0&v!D]hwnv *NumPrelude'Numbers#Coq@05WUVŦ]xVXԠ4Operators_Properties)Relations#Coq@0U3y#h&&Orders*Structures#Coq@0$Znl0\͗+OrdersFacts*Structures#Coq@05Mܿ獐ζΖLB)OrdersTac*Structures#Coq@05'4Ԗ+9%%Peano$Init#Coq@0 jha|ؠ(PeanoNat%Arith#Coq@0O~2$k[#lZ$Plus%Arith#Coq@04tmG'Prelude$Init#Coq@0JqTttֱ/RelationClasses'Classes#Coq@0Gz rA6ՠ@0]4Ѐd{n^2Relation_Operators)Relations#Coq@0%s鯰s)Relations#Coq@0*SetoidList%Lists#Coq@0k窪ܸqS-SetoidTactics'Classes#Coq@0S_`nOU$&Sorted'Sorting#Coq@0bb1z٠&Specif$Init#Coq@0;RWMi\N'Tactics$Init#Coq@0/9m+ a'Tactics'Program#Coq@03"_7'`oA'Classes#Coq@@4relation_conjunctionl@*type_scope/signature_scope@@@@"_8'`oA@4relation_equivalences@@@"_9'`oA(@+subrelation0s@"!#@@#_10'`oA7@)ReflexiveW@10@@#_11'`oAD@+IrreflexiveHt}@>=@@#_12'`oAQ@)SymmetricFgq@KJ@@#_13'`oA^@*Transitive++-@XW@@#_14'`oAl@#PER"@@fe@@#_15'`oAz@+Equivalence~@@ts@@#_16'`oA@+StrictOrder.[@@@@ >2 Q@@@@#_18 M@ I.L@A@@@@@@@@#_192M접FCB@#_20'`o@D*type_scope@.function_scope@@@ A@#_21.,F@ v@AA n@AA@@@@@@@#_22X@3typeclass_instancesH@@#_23@^^@^A@^@A^A@&_ @@ _@^ @A!x"@@!y@@@@@A@@# @@@A@@BA@@@@#_24%c?@/signature_scope%@@@ {@@@SA A@@ B A@@;4@@@@K @&x @@ y#_25@^^@@^@@@%_ @@1@^  @@ 򠐐#@@1@@@A@$ @@1@@@#_26%c?@/signature_scope @i@@@ED@@A@@  @@@@@@@@@@@@@6 F@%R @@1#_27@^^@@^@H@%_ @@2@^  @@  9#@@2@@@A@$ @@2@@@#_28%c?@/signature_scope L@@@@@@@@ W @@@@@@@@@@@@@6 @%R @@2 N$@@B@  @ @@@@@@#_29 @A@@@@@MAQ@#_30'`o@@CIKG@@@A@#_31'`o@%@AC]_[@@@A@#_32 @8C@ @AA @AA@@@@#_33L4x  A@@#_34/@ 렠@@@@ ö@B  ᔑ o@ 󔑠 m@@@@@@ >2 Q@@J@#_35 @ I %;u@#_362M접 @#_37'`o@B@@@@#_38 B@ )@AA !@AA@@@#_3946@T@@@#_40X@ J@@@ M@(META1020(META1021 M  @@@@@e } r@>Coq.Classes.RelationPairs#<>#1 @ -2 Q@@r@#_41 @ 7,*栠1@#_422M접 @#_43'`o@B.0@@@@#_44 B@ @AA @AA@@@#_4546@q@#_46X@' @@@ @(META1024(META1025 Z  ?@@pc }O @>Coq.Classes.RelationPairs#<>#2 @ L2 Q@@@@#_47 @ W0V@#_482M접 A#_49'`o@D@@@@@  @#_50(|F@ @AA @AA@@@@@@@#_51X@A@@#_52@hhAh@@h@BhA@%_ * _@h @B%_ * _!x!*!y@@@@@AA@" *@A@@B@@@@@#_53%c?@/signature_scope@@@@@@@SA {A@@ B tA@@֠@@@@%_ * _ @%x * y w2 Q@@J@#_64 @ S@A@@@@@ @AA @@@@@#_652M접 @ Sِ#_66'`o@ @ SFac@`@@@@@ A  @#_67 @ SAD@ @@ @C@ @AA@@@@@@$_100X@k B@(META1028 J(META1029(META1030(META1031@ S@@ #@>Coq.Classes.RelationPairs#<>#3 @#_6846@@DW@ ՠ2 Q@@J@#_70<@ 5Dd4@A@@@@@:@1@@@@@#_712M접Q@ 5Dd4#_72'`o@[@ 5Dd4F@@@@@@GA  @#_73|@ 5Dd4@F@y@ڠp@ݠ@[@AA@@@@@@@@$_101X@ 1B@(META1040 (META1041(META1042(META1043@ ]5Dd4@@N ]-@>Coq.Classes.RelationPairs#<>#4 @#_7446@@Fgq@ Y2 Q@@J@#_76@ dM@A@@@@@@6@9@@@@#_772M접@ yM#_78'`o@@ MF@@@@@@⠐A/ @#_79@ M@H@@u @x@@AA@@@@@@@@@@$_102X@ B@(META1052 (META1053(META1054(META1055V@ M@@렐 \@>Coq.Classes.RelationPairs#<>#5 @#_8046@9@U++-'@ ߠ2 Q@@J@#_82t@ .!ɠ@A@@@@@r@Ӡi@֠@@@@#_832M접@ .!ɠ#_84'`o@@ .!ɠF35@2@@@@@A̠ @#_85@ *.!ɠ@E@@@@@AA@@@@@@@$_103X@> :B@(META1064(META1065(META1066(META1067@ f.!ɠ@@ fd@>Coq.Classes.RelationPairs#<>#6 !@#_8646@@ Ht}@ b2 Q@@@#_88 @ l)@ @k@n@@@@#_892M접!@ )@#_90'`o@)@ )Fɠˠ@Ƞ@@@@@Ab @#_91J@ )֐C@G@>@@)@AA@@@@@$_104X@Ғ @B@(META1076(META1077(META1078(META1079@ )@@ @>Coq.Classes.RelationPairs#<>#7 "@#_9246@i@i~@W@ 2 Q@@@#_94@ ?z<~/@@@@@@@#_952M접@ ?z<~@#_96'`o@@ ?z<~F_a@^@@@@@A @#_97@ ?z<~lC@@>@A@@AA@@@@@$_105X@h @B@(META1088H(META1089(META1090(META1091@?z<~@@ !@>Coq.Classes.RelationPairs#<>#8 #@#_9846@@.[@@ 2 Q@@J@$_119:@ z@A@@@@@8@/@@@@@@$_1202M접P@z$_121'`o@Z@zF@@@@@@@EH.1@$_176X@蒠;B@@(META1100(META1101'  (META1102(META1103@Xz@@7X@>Coq.Classes.RelationPairs#<>#9 $@$_12246@p@12 Q@@J@$_124@<\@A@@@@@@@@@@@@$_1252M접@R\Ր$_126'`o@@\\F}@@@@@@@Ƞˠ@$_177X@kB@$@(META1112(META1113  (META1114(META1115%@\@@+@?Coq.Classes.RelationPairs#<>#10'J @$_12746@l@2 Q@@J@$_129@@8@A@@@@@>@5@@@@@@$_1302M접V@8󩐐$_131'`o@`@8F@@@@@@@KN@$_178X@B@@(META1124(META1125-  (META1126(META1127@8@@=@?Coq.Classes.RelationPairs#<>#11'J @$_13246@Rv@2 Q@@@$_134@4@@ @#@@@@@$_1352M접@4@$_136'`o@@ 4F@@@@@@@ʠ͠EH@$_179X@mR@B@'@(META1136(META1137  (META1138(META1139(@i4@@F.@?Coq.Classes.RelationPairs#<>#12'J @$_13746@@-2 Q@@A@$_139C@8Q6@A@@@@@A@8@@@@@$_1402M접X@MQ6$_141'`o@b@WQ6C  @@@@J@62 Q@@A@$_142{@A m@A@@@@@y@ڠp@ݠ@@@@$_1432M접@V mؐ$_144'`o@@` mC : <@@@@@P2 Q@@J@$_145@[ k1d@A@@@@@@@@@@@@$_1462M접@q k1d$_147'`o@@{ k1dD s u@@@@@@$_180X@ Y@@@(META1148(META1149  (META1150(META1151P2@ $3-,/@ k1d@@Ġ5@?Coq.Classes.RelationPairs#<>#13'J @$_14846@@ d0s@Ӡ2 Q@@J@$_150M@%_n@A@@@@@K@B@@@@@@$_1512M접c@%_n搐$_152'`o@m@%_nD  @@@@@VY@$_181X@ 󒠠#@@@(META1156(META11572  (META1158(META1159@ !^-,@Z%_n@@^Z =@?Coq.Classes.RelationPairs#<>#14'J@$_15346@@Z2 Q@@J@$_155@e@A@@@@@@C@F@@@@@$_1562M접@{$_157'`o@@D  @@@@@@$_182X@ @@@(META1164@(META1165K@  @_@!(META1166)s@53(META1167A? @APN~@@@  @?Coq.Classes.RelationPairs#<>#15'J@$_15846@_@&ProperL Q@2 Q@@J@$_160@#@A@@@@@@@@@@@@$_1612M접@#$_162'`o@@ #D ^ `@@@@@@$_183X@ DM@@@@(META1172(META1173Y@(META1174(META1175!/.@j#@@ j #@?Coq.Classes.RelationPairs#<>#16'J@$_16346@ @`2 Q@@J@$_1658@k? @A@@@@@6@-@@@@@@$_1662M접N@? $_167'`o@X@? D  @@@@@AD@$_184X@ ޒ@@@@(META1180(META1181@1(META1182(META1183L/.@? @@ L +@?Coq.Classes.RelationPairs#<>#17'J@$_16846@9 @2 Q@@J@$_170@6:Ew@A@@@@@@ 1@ 4@@@@$_1712M접@6:Ew$_172'`o@@ 6:EwG  @ @@@@@@ޠA㠐栐@$_173@/6:EwDJ@@ t @ w@@4@AA3@AA@@@@@@@@@@$_185X@ A@@(META1188@@ @ (META1189(META1192(META1191&"-(META1193='(META1190&@6:Ew@@ # @?Coq.Classes.RelationPairs#<>#18'J@$_17446@ \@$_186X@$core yD@@@@ ? @?Coq.Classes.RelationPairs#<>#19'J D@@@@ K &@?Coq.Classes.RelationPairs#<>#20'J@$_187X@ B@@@@ aJ "./theories/Classes/RelationPairs.vHHkpHHkp)Notations$Init#Coq@@%split$e@@?Coq.Classes.RelationPairs#<>#21'J@@#_54:}9 @@8!@9!@AB@@A$_106:}9 @@@#|@A#@AB@@@AB@CjNs]@Ň;2LW!]os@.u܂К*s@DFY&1A~:<!A8!U-RelationPairs'Classes#Coq@@@!B9!àV@@!R4Relation_Definitions)Relations@(relation'JjA!f@C!H.@'Measure" C@D"H0/RelationClasses:@)ReflexiveW!xF"H1E.-BC)@*RelCompFun.L(5caUSMK><:8.,@)SymmetricFgq)(&!yG(H.(#R"H2 @J\I07"H3@e oqs dTC6G}{ywmk@*Transitive++-hge?=!z<g[3?Cla=^J7CGe3L K@ Qo@LsMJ"H4!@@"H5@ @ &!$  Őgɐ8k͐rosCQշѷǩ@+IrreflexiveHt}µ穷@*complement qg̩ǐ%Logic$Init@%Falsee@CC-א2@#|]0@@*A#^7@@"RA(,"RB )Datatypes3@$prodt@ ?@#andЖw@A@#fst DD "4@#sndLL'%)BBB@@@@D!p [;/^[<R+gGjj=CWIe@'RelProd0<lf`^]_u:[j^Z6E[3@'and_ind14ۀЩWf1=1AP`\@mKc#7CGpen Bcr==MTjjy  DcxoS^{D]@M[Tg d]kp@bp/s ~&@+|uONթ3P ߩ@(symmetry0xjE@4RelCompFun_Symmetric5Dd4" M@+fst_measure %;'^Ґՠ,Z,./Cipސrs ffRhPC; -ԷЩЩ$&(̩ԩ Щ  EEwu]yvy{q@~+QyR5 ))@ 8S TB6`"H6@@!M!"ݐU#-$II"H7@@0 /'3'"  :Ɛ>?2:B;A7tLhJC?|ηTpWѶӶ@ԠVOWUW`X|@ Ӡ_XSQSiTO,@j(@ngMl(nxoK@@ y 7 |5U Wѐ6zא2|1ېKC_s طҷʵƩH"x0ϩ@͠@Ϸ@֛@$Truey@Ѷ@@@ ٷ A  @@ C@1pointwise_liftings׾,@#iffС)@%TlistР@BBAG"5%2@3@'?9C#@4relation_equivalencesX Z=B@E@@BMp>b8.X,fec@ bCPb'V4.@FS)@1IcV,[(73KPX.W --<>J[]3Tb\   _S4-E?#WdiiCOJE8h>'On^kmApC7?Et.ԩrH@wnhb`_a]5z_Yq~TЩRK:]IXTMewCZwXn@cGn|_Cx@+subrelation0s&hdjeW"  !Cv>i"y0o*/q*A5ké7m4o2 C)Morphisms@*respectful%WO?ĩgЩԩC@&ProperL@Ѷ@Զ@T&ː۷ӷԵ϶@ՠַ׷H@D ͰzJ|Ѱ~"x'ķ"y'ǷXBBB@@@@D@􀠩i k+sw*7<"Hx"Hy C &>Cu@f)hC&!~LpF@>=?rp l:@k8iheE=>-L@g (c)`p_!]"m[W@P2D3Az>R<:~C젩:8;5C@s~xn"Ri("RoA@r@yu@v qx sX[U~_UVak@%%#(4Ω^@0/-2 #f"@+3Щ.>M H .?24*;CYV!a\"a'ZCȷ`dC@@h2@k\7oַ`C->  Bz ʋmpH'MZg