"`Є' Eݰ+Compare_dec%Arith#Coq@()Notations$Init#Coq@%Logic$Init#Coq@*Logic_Type$Init#Coq@)Datatypes$Init#Coq@&Specif$Init#Coq@%Peano$Init#Coq@"Wf$Init#Coq@'Tactics$Init#Coq@%Tauto$Init#Coq@'Prelude$Init#Coq@ )Notations$Init#Coq@0&v!D]hwnv %Logic$Init#Coq@0\͉!Ig)Datatypes$Init#Coq@0.i bYN Z*Logic_Type$Init#Coq@0 1jc6&Specif$Init#Coq@0;RWMi\N'Decimal$Init#Coq@0C涳N*ua#Nat$Init#Coq@0eʤģPSR蠠%Peano$Init#Coq@0 jha|ؠ"Wf$Init#Coq@0q+W,J+'Tactics$Init#Coq@0/9m+ a%Tauto$Init#Coq@0̂"&/rk0JqTttֱ$Bool#Coq@0j 2cZ`FW&Basics'Program#Coq@0!bs߯? :VU$Init'Classes#Coq@0](p{yOh.'Tactics'Program#Coq@03u%+Equivalence'Classes#Coq@07;ꮹ-SetoidTactics'Classes#Coq@0S_`nOU$&Setoid'Setoids#Coq@0D9AsWE!>*Equalities*Structures#Coq@0όe얟)H.Ƞ2Relation_Operators)Relations#Coq@0%s鯰s4Operators_Properties)Relations#Coq@0U3y#h&)Relations#Coq@0r砠*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ&NZSqrt&NatInt'Numbers#Coq@0` .%m%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|&NZBits&NatInt'Numbers#Coq@0MlIpKt'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$&NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ)NMulOrder(Abstract'Natural'Numbers#Coq@04> Aat/ j $NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ'NMaxMin(Abstract'Natural'Numbers#Coq@0]v|Qg̟ʠ'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NLog(Abstract'Natural'Numbers#Coq@0K7 9L7"9'6''+kL7!L 77"7%' aTĠspϐؠ접A@ࠐ֠@@AAADt@@@@@AA@@A@,lt_eq_lt_dec @!m@'nat_recOз @%sumor$|@ܠB򠩜Aܰ2' ש -ީڰ䩚@'gt_Sn_O3p&C<:#IHn>I>2B@@.D*K!##OB?'C/;\1.36  CCpeȐ!siW?'EPq)GCI+rBAAAA@@@@@D|jREwdyW{u]>F9q;d=j!HBAAAA@@@@@D;uLN}^Gjln!l "Lef@&le_n_S8C!e%##@+f_equal_nat!-&@QOFN"Lt@*le_lt_n_SmWCx[CU@ꛠrvk@$|@rNBAnBAZAB D+k() + + +Z7#'()=m R'> = CR'>= R_'> 97"99'> +97799''> 97" 9 97"9''7 9L7"9''9' +k997!9977"997!7!7%' +k997!9977"997!7!7%'+k9 7! 977" 97!7!7%'= R'>7 9L7"99'6''+kG 7! L77" L7!7!7%'+7T' 7! 77" 7!7!7%'@D(\t4 Р!XAABAAJ䠒˰`AABAAI AB@$䠑808~P@pP/$,(xX|DnADu@@@@@n,gt_eq_gt_dec @a_k`y@y*&\@j򀶐w@"gt UxABBABA <+k() 7%'2h@@@@@)le_lt_dec @зz@"le UxT@v {O@&le_0_l?e{uynhnp@'lt_le_S0?nynCtCmCtѩ@+sumbool_rec=_1khtƠkȠ7`ة!a k 2oCàqCs!b"@<_n_S`C'C"@ g@k UxT@BAoAB +k() + + +7#'()=/ R'> +4 +B +N7!7!7# '7 9L7" 9L7"9''7"997"9'7"97"9'997!997!7%'+k9 7! 97!7%'7 9'+7T' 7! 7!7%'4ĐLPP 6Xdt ݰf,<E44pBlAHh@@@@@l+le_le_S_dec @_]i^@ X@fs򀩛瀠]BAcBAB'h@@@@@)le_ge_dec @1Bm@"ge Uwi  z] E@*lt_le_inclVCQ@:>3BA@& UwBA (+k() 7! + +!+!7!7!7#'7"9'9'7!7!7%'t,.ɐEh@@@@@)le_gt_dec @@{tꀠBABA|h@@@@@*,le_lt_eq_dec @'v &ĩ*ש2٩ : @)False_recu唀h@)le_not_lt _!@Nր[ڀ@BBAր VЀ Z h+k() 7!= R.'>'> 7 77"7!7!7%'' +k77"7!7%' >H̠TAHP/h<䠑~,mTؠf4@@@@@&le_dec @/5@ 堀.93v@#notШu  !gk^@)gt_not_le nVtc@G̛K@BA;@#notШÀBA  +k() 7!= R'>9'> 7"9'' +k7!7 7!7%'ࠒ,>ࠐSADPWhܐ N@@@@@<_dec @ @z+&@ hBALrBA D+k() 97%'(p@@@@@G>_dec @:8D9@C+.@AɀǸ€ӀBA݀BA <+k() 7%''h@@@@@}&ge_dec @pnzom`@s􀠩BAŀBA2h@@@@@&dec_le @@@)-)Decidable%Logic#Coq@@)decidable rBA@@@@@Ԡ&dec_lt @@AǛOԛS&$BA@@@@@&dec_gt @@B㛠koBuBA@@@@@ &dec_ge @@C ^GBA@@@@@(¬_eq @@+D(@SBA@"or @+/@@@@@U¬_le @@XEHЀUԀ@@BAဠP@@@@@v¬_gt @@yFi񀶐v@BAg$q@@@@@¬_ge @@G@€ӀBAE@@@@@¬_lt @@H37@【 BAf@@@@@٠.nat_compare_lt @@I̛TٛX>@#iffС),BAL)Datatypes$Init#Coq@@*comparison;f@(PeanoNat%Arith#Coq@#Nat@'comparel#Nat$Init#Coq@@ 3RЀBA@*comparison;f@B@@@@@*.nat_compare_gt @@-J*QBANABA-C@@@@@S.nat_compare_le @@VKF΀SҀz=BAǀ{nBAZC@@@@@.nat_compare_ge @@LsBABAB@@@@@.nat_compare_eq @@M(,@ȩBAA!^@@@@@Ѡ1nat_compare_Lt_lt @@NěLћP@8쩚߀BAB+ϐ@@@@@1nat_compare_Gt_gt @@O蛠pt@\BAC@@@@@/nat_compare_alt @   !x@&;f@~ d BVAlC@(5#@ 8+k() 7!= %R2'>= R'>H'>G''>I''+k6'+k6'ADPڐhAA4,@@@@@_1nat_compare_equiv @@bPRڀ_ހŀylBAr@bBA@@@@@,leb_iff_conv @@Qz퀰@$boolZ'@@#leb.=@ 􀠐AB@$boolZ'@BBA@@@@@+leb_correct @@R59@BA':4h.A@@@@@ޠ,leb_complete @@SڛY՛]@EXRBANAҀܐ@@@@@0leb_correct_conv @@ T}@OBAo|vB@@@@@&1leb_complete_conv @@ )U" @ABB$@@@@@J+leb_compare @@ MV =ŀJɀqǩBAAŀylBAXC@@@@@~@@@ ӳ2@ ӳ2[)Datatypes$Init#Coq@@A@ Գq@ Գq\ @A@AB@@@"O@(PeanoNat%Arith#Coq@#Nat@&of_int"O#Nat$Init#Coq@@ 6@A@As2@@&shiftls2 @vY@A@Bs8@@&shiftrs8@vY@A@ѓ@!@&squareѓ@y@A@@'@&to_intϑ@@A@AB/@,@)log2_iter/#@wd@A@l@2@)sqrt_iterl)@!$:@A@ACD c@7@'testbit c.@!ć@A@^Ҷ@?@'to_uint^Ҷ6@#m@A@A,@D@'bitwise,;@/v@A@l@J@'comparelA@3R@A@ABs8@O@+of_uint_accs8F@5+@A@.@W@!t.N@ ;@A@A.먩@\@#add.먩S@ `@A@B.U@a@#div.UX@ @A@.B@h@#eqb.B_@ @A@A. @m@#gcd. d@ @A@.=@s@#leb.=j@ @A@ABCDE. @x@#lor. o@ @A@.Z@@#ltb.Zz@ @A@A.p@@#max.p@ '@A@B.@@#min.@ @A@.@@#mul.@ @A@AC.g@@#odd.g@ @A@.&@@#one.&@ @A@A.뾴@@#pow.뾴@ k@A@.L@@#sub.L@ @A@.@@#two.@ @A@ABCD.,a@@$div2.,a@ @A@.Xz@@$even.Xz@ ?1@A@A.@@$iter.ؑ@ @A@B. @@$land. @ @A@. @@$log2. @ @A@ACE.@@$lxor.@ R@A@.y@@$pred.y@ `<@A@A.Ʉ@@$sqrt.Ʉ@ ;@A@.@@$succ.@ @A@.t @@$zero.t @ Z@A@AB/@@.to_little_uint/@ @A@CD/@@%ldiff/@ H@A@3@@(tail_add3@^q@A@A3@@(tail_mul3@^@A@B6w~@ @'of_uint6w~@^5@A@@@&divmod> @C@A@>@@&double>@NĴ@A@A?;@ @&modulo?;@"i@A@BDEFG@ &Basics'Program#Coq@0!bs߯? :VU$Bool#Coq@0j 2cZ`FW*CMorphisms'Classes#Coq@0qیZBeϠ0CRelationClasses'Classes#Coq@0TL;0RUfw1[ZY@0.i bYN Z)Decidable%Logic#Coq@0ND걸풬/Oߠ'Decimal$Init#Coq@0C涳N*ua*Equalities*Structures#Coq@0όe얟)H.Ƞ+Equivalence'Classes#Coq@07;ꮹ-GenericMinMax*Structures#Coq@0måj$"Gt%Arith#Coq@0䙛#c:D $Init'Classes#Coq@0](p{yOh."Le%Arith#Coq@0d}Omq+ |0\͉!Ig*Logic_Type$Init#Coq@0 1jc6"Lt%Arith#Coq@0KZ-eJkP܏)Morphisms'Classes#Coq@0Imӽ%\$PD.Morphisms_Prop'Classes#Coq@0% :B'.>u%$NAdd(Abstract'Natural'Numbers#Coq@05;ZW:㥜un$)NAddOrder(Abstract'Natural'Numbers#Coq@02'8zn7Hfɠ'NAxioms(Abstract'Natural'Numbers#Coq@0Zخb1Z3uuѠ%NBase(Abstract'Natural'Numbers#Coq@0 Y?V vI%NBits(Abstract'Natural'Numbers#Coq@0qteo_hɅ $NDiv(Abstract'Natural'Numbers#Coq@0bz$?[p(5$NGcd(Abstract'Natural'Numbers#Coq@08E-S ;j_Ҡ$NLcm(Abstract'Natural'Numbers#Coq@0 ~xZ9L{:$NLog(Abstract'Natural'Numbers#Coq@0K Aat/ j &NOrder(Abstract'Natural'Numbers#Coq@0]@7U#oY'NParity(Abstract'Natural'Numbers#Coq@0̗SKz*!&4h$NPow(Abstract'Natural'Numbers#Coq@0҆mulf+NProperties(Abstract'Natural'Numbers#Coq@0unt"kwpYC%NSqrt(Abstract'Natural'Numbers#Coq@0<ge$NSub(Abstract'Natural'Numbers#Coq@0:DfJᠠ%NZAdd&NatInt'Numbers#Coq@00h`ZK4*NZAddOrder&NatInt'Numbers#Coq@0e~1>r砠(NZAxioms&NatInt'Numbers#Coq@0] ρ5r&NZBase&NatInt'Numbers#Coq@0^&8yUL&NZBits&NatInt'Numbers#Coq@0MlIpKt%NZDiv&NatInt'Numbers#Coq@0$ |J?d (w%NZGcd&NatInt'Numbers#Coq@0KgT7|%NZLog&NatInt'Numbers#Coq@0ꔉ .uV%NZMul&NatInt'Numbers#Coq@0ctR~6[Ƞ*NZMulOrder&NatInt'Numbers#Coq@0}\^ !"k}@R'NZOrder&NatInt'Numbers#Coq@0 q;Ve7R W,(NZParity&NatInt'Numbers#Coq@0H>ca'^^%NZPow&NatInt'Numbers#Coq@0)6*9 B:vȻ,NZProperties&NatInt'Numbers#Coq@01D%E`|3x&NZSqrt&NatInt'Numbers#Coq@0` .%m#Nat$Init#Coq@0eʤģPSR蠠)Notations$Init#Coq@0&v!D]hwnv *NumPrelude'Numbers#Coq@05WUVŦ]xVXԠ4Operators_Properties)Relations#Coq@0U3y#h&&Orders*Structures#Coq@0$Znl0\͗+OrdersFacts*Structures#Coq@05Mܿ獐ζΖLB)OrdersTac*Structures#Coq@05'4Ԗ+9% K0 jha|ؠ 0O~2$k[#lZ$Plus%Arith#Coq@04tmG'Prelude$Init#Coq@0JqTttֱ/RelationClasses'Classes#Coq@0Gz rA6ՠ4Relation_Definitions)Relations#Coq@0]4Ѐd{n^2Relation_Operators)Relations#Coq@0%s鯰s)Relations#Coq@0-SetoidTactics'Classes#Coq@0S_`nOU$ 0;RWMi\N'Tactics$Init#Coq@0/9m+ a'Tactics'Program#Coq@03 2 Q@@@@#_11 @ @A@@@@@@@@#_122M접AA@A#_13'`o@A)nat_scope@ (@ 2 Q@@@@#_14 @ *&@A@@@@&@#_152M접 BAAA#_16'`o@B$&@ M P@ r2 Q@@@@#_17 @ }k@A@@@@N@#_182M접 BAAA#_19'`o@BLN@ u x@ Y2 Q@@@@#_20 @ d @A@@@@v@#_212M접 BAAA#_22'`o@Btv@  @ Ġ2 Q@@@@#_232@ 4_@A@@@@@#_242M접 BAAA#_25'`o@B@ Š @ 2 Q@@@@#_26Z@  @A@@@@@#_272M접 BAAA#_28'`o@BĠ@  @ 2 Q@@@@#_29@  @A@@@@@#_302M접 BAAA#_31'`o@B점@@ ~2 Q@@@@#_32@ "@A@@@@@#_332M접 CAAA#_34'`o@C@@>A @ 22 Q@@@@#_35@ =+@A@@@@B@#_362M접 BAAA#_37'`o@B@B@il@ 2 Q@@@@#_38@ +@A@@@@j@#_392M접 A#_40'`o@Bgi@@ ܠ2 Q@@@@#_41%@ *@A@@@@@#_422M접 A#_43'`o@B@@ ͠2 Q@@@@#_44L@ *0@A@@@@@#_452M접 BBAA#_46'`o@B@ߠ@ Ġ2 Q@@@@#_47t@ *c<@A@@@@@#_482M접 #_49'`o@Bߠ@ @ Ǡ2 Q@@@@#_50@ *c<@A@@@@ @#_512M접 #_52'`o@B @14@ Ԡ2 Q@@@@#_53@ *cM@A@@@@@$_1112M접 $_112'`o@C@@٠ܠ@ I2 Q@@A@$_113q@ T @A@@@@@$_1142M접 $_115'`o@Cܠޠ@@ @ R2 Q@@A@$_116@ ]]@A@@@@ @$_1172M접 $_118'`o@B  @25@@"_7HƠ!y="_8HƠ "_9HƠ #_10HƠ@jXF 8i\@\$,u..i@t:5K+Gi@C} ٵȨwG q A \!n)Datatypes$Init#Coq@@#nat@!m(PeanoNat%Arith#Nat@,le_decidableIBA%#$@,lt_decidableIP /- . 53&4$:8+9Ȑ!H?=0>Р%Logic>@#andЖw@BBB@@@@D@@@#notШ@"eq @bDC%@"or @%Peanoj@"lt UxcCW Y@^M)$ b@Dx@+lt_gt_cases!;q@>@@0?:"xFz&db@T@R>@"le UxT@9@4\ ?@-@&nle_gt -@@@Hj<*ŷȷ@}@{V)[@+k@/P@&nlt_ge @@@`ŶpM+) X/RelationClasses'Classes@(symmetry0xjA@#iffС)@-iff_Symmetric!x@*comparison;f@@'comparel@3RЀB@.compare_lt_iff8e  +)*6,*%Ұ !C@"gt Ux'@.compare_gt_iff7р B@3AMCA<5@.compare_le_iff8G!.PNAO[QOJG@"ge Uw<I@.compare_ge_iff7ҀBdbUc*geXf(@@_Y`A@e_@ᩚe@.compare_eq_iff7WS^@@@%smdv쐑zO}M@?@&@7 v@t@@@.>}| g!x!yi@[@7@2S<@*y@@@?Z5  Ȑ!s+Compare_dec@,lt_eq_lt_dec*&&Specif@%sumor$|@ @'sumbool7̂K@baBAAAA@@@@@D'ktjK$n]kҠ5BAAAA@@@@@D>(E|~䠷!l 귐!e 젷O&Q ۷ ٷ@@@F!&$%@@@ -+,(/0@@@679C߰-'{@/nat_compare_alt$6DGE%lemmaH񰛠M@$boolZ'@C@#leb.=?@ +B )Morphismsk@=trans_co_eq_inv_impl_morphism&ni$igt@.iff_Transitive*z#T  @/eq_proper_proxy)fzk@'leb_nle-yRSwM{K@=@4C=tEA@;JD%@?NH @&leb_le?<@@ rp@%@@&@)@q@wX@IU@Zjys@m@,leb_iff_conv)a@@ Ѷ:շط@@nY@@ I婷B@>trans_sym_co_inv_impl_morphism'\|@/Equivalence_PER/;@/iff_equivalenceZgQMߠcݢB|pe'1}