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ABSTRACT. The problem of partitioning unstructured meshes on a homogeneous architecture is
largely studied. However, existing partitioning schemes fail when the target architecture intro-
duces heterogeneity in resource characteristics. With the advent of heterogeneous architecture
as the Grid, it becomes imperative to study the partitioning problem taking into account the
heterogeneous platforms. In this work, we present a new mesh partitioning scheme, that takes
into account the heterogeneity of CPU and networks. Our load balancing mesh partition strat-
egy improves the performance of parallel applications running in a heterogeneous environment.
The use of these techniques are applied to some model problems in CFD. Experimental results
confirm that these techniques can improve the performance of applications on a computational
Grid.

RESUME. La parallélisation des méthodes de volumes ou d’éléments finis repose sur des tech-
niques de décomposition de domaines qui imposent un partitionnement de maillage préalable
aux calculs. Ce probléme a été largement étudié pour des architectures homogénes ou tous les
CPU sont identiques et reliés par un réseau rapide. Avec I’émergence d’architectures hétéro-
geénes de type grilles de calcul constituées d’ une aglomération de clusters et de processeurs
géographiquement distribués et reliés par des réseaux hétérogenes, il est devenu primordial de
re-éxaminer ce probléme en prenant en compte les caractéristiques de ces plate-formes en terme
de CPU et de réseau. Dans ce travail, nous présentons un nouveau schéma de partitionnement
de maillages, prenant en compte I’ hétérogéneité des CPU et du réseau. Cette stratégie d’équili-
brage de partitions améliore les performances des applications tournant dans un environement
de type grille.
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1. Introduction

Computer simulations are becoming increasingly important as the only means for
the design and interpretation of many different process. The scope and accuracy of
these simulations are severely limited by available computational power, even using
to-day’s most powerful supercomputers. We can break through these limits by si-
multaneously harsening multiple networked supercomputers running single massively
parallel simulation to carry out more complex and high-fidelity simulations. This is the
basic idea that, since the mid 1990s, made developed the so-called computational grid.
Computational grid concept provides the means for coordinated resource sharing and
problem solving in dynamic, multi-institutional virtual organizations. The Grid con-
cept extends older concepts of distributed computing such as the cluster-computing,
but in contrast to older systems the Grid allows resources to be allocated to computing
needs on an ad hoc basis.

In the last years there was a wide-spread acceptance of Grid computing that bring
to growth of several projects. One of them is the MecaGRID! project between IN-
RIA Sophia Antipolis, CEMEF(Centre de mise en forme des materiaux de 1’Ecole
des Mines de Paris-Sophia Antipolis), and the IUSTI(Institut Universitaire des sys-
temes Thermiques et Indistriels) in Marseille. The aim of the project is to build a
computational grid devoted to fluid dynamics applications, using a set of clusters in-
terconnected by a wide area network. Mesh applications are a class of problems that
requires such high-end computational power since performance must be scalable into
hundreds of processors considering the current technology ([BAR 99]),([DJO 00]).
The successful deployment of compute-intensive applications in a grid environment
such as the Grid of the MECAGRID project, involves efficient partitioning on a truly
heterogeneous distributed architecture which makes no assumptions on the computing
resources. As more remote resources are added, the heterogeneity of the computing
platform also grows.

In this paper, we demonstrate how diversity in the architecture characteristics affects
the efficiency of mesh partitioning.

In the literature, they are several algorithms for solving the graph partitioning problem
for homogeneous architecture models. Partitioning schemes such as Metis ([KAR 98]),
Chaco ([HEN 94]), and Jostle([WAL 98]) employ multilevel strategies but fail to ad-
dress the limitations imposed by heterogeneity in the underling system. These parti-
tioning scheme assume the processing speed of the computing resources to be uniform
and the communication network connecting the resources to be of equal capacity.

We propose a heterogeneous partitioner, called MeshMigration that takes into account
the architecture characteristics. MeshMigration generates a high quality partition and
provides a load balance on each processor of the heterogeneous architecture. We
have tested MeshMigration with realistic meshes and results shown that our approach
provides an efficient partitioning on a grid platform and minimize the application ex-
ecution time.

This paper is organized as follows: In section 2, we describe the workload model, fol-

1. http://www-sop.inria.fr/smash/
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lowed by a model of distributed heterogeneous architectures in section 3. In section
4, we formally define the partitioning problem. Section 5 discusses Meshmigration,
the proposed local heterogeneous partitioner and its complexity analysis. In section 6,
we experimentally study the performance of MeshMigration for realistic workloads.
Finally in section 7, we will describe preliminary experimental results for a finite ele-
ment code executed on the Grid.

2. Workload model

Computational fluid dynamics (CFD) applications usually operate on a huge set

of application data associated to unstructured meshes. For this reason CFD problems
represent a significant part of high performance supercomputing applications. Finite
element and finite volume methods use unstructured meshes. However, depending on
the characteristics of the discretization method, the work flow graph representing the
application can be either the nodal graph (mesh nodes), dual graph(mesh element), the
combination of both, or some special purpose presentation. In this work based on the
previous work of ([BAS 00]), we consider the combined graph for modeling the FE
and FV application.
We represent the application as a weighted undirected graph W = (V(W), E(W)),
which we will call the workload graph . Each vertex v has a computational weight
w(v), which reflects the amount of the computation to be done at v. An edge between
vertices u and v, denoted {u, v}, has a computational weight w({u, v}), which reflects
the data dependency between them.

3. Heterogeneous architecture model

Partitioning applications onto heterogeneous architecture such as a Grid environ-
ment requires a special model architecture that reflects both heterogeneous resource
characteristics and also non-homogeneous communication network between these dif-
ferent resources.

The machine architecture can be represented as a weighted undirected graph A =
(V(A), E(A)), which we will call the architecture graph. It consists in a set of
vertices V(A) = {p1,p2,...,Pn}, denoting processors, and a set of edges E(A) =
{{pi,pj}pi,p; € P}, representing communication links between processors. Each
processor p has a processing weight s;,, modeling its processing power per unit of
computation. Each link has a link weight v,,,, that denotes the communication band-
width per unit of communication between processors p and q.

In this work, we will assume that the machine architecture can be represented by a
complete graph, that is we will assume that given any two processors p and g, there
always exist a path connecting them even if they are not directly connected by a phys-
ical link. In this case, the weight of the edge {p, ¢} will be evaluated as the minimum
of the link weights on the shortest path connecting p and q. The Matrix (1) gives for
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instance the communication weights matrix corresponding to the adjacent architecture
graph.
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4. Partitioning Problem

We consider a workload graph W (V (W), E(WW)) which represents the applica-
tion, and a architecture graph A(V'(A), E(A)) which represents the Grid. On a com-
putational grid, the machine architecture is heterogeneous both for network and pro-
cessors. So we consider the characteristics of architecture graph to define the par-
titions. A mapping of a workload graph onto a architecture graph can be formally
described by:

m : V(W) — V(5) (2

where m(v) = p, if the vertex v of W is assigned to processor p of A.

In order to evaluate the quality of a mapping, we define two cost models: one for
estimating the computational cost and the other one for the communication cost eval-
uation.

4.1. Computational cost

For each mapping of the workload graph onto the architecture graph we can esti-
mate the computational cost as follows: If a vertex v is assigned to a processor p, the
computational cost is given by t; = w(v)/sp, that is the ratio of the computational
weight of v per the processing weight of p. Computational cost estimates the time
units required by p to process v.
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4.2. Communication cost

The communication cost is introduced when we have a data communication trans-
fer between two different nodes in the target graph. Suppose {u,v} € E(W) and
u € V(W) is assigned to processor p and v € V(W) is assigned to processor q. The
data is transfered from the local memory of p to the local memory of ¢ via message
passing. In this case, the communication cost is given by c.* = w({u,v})/vpq, that
is the ratio of the communication weight of edge {u, v} per the link weight between
p and g. The communication cost represents the time units required for data transfer
between the vertices u and v.

4.3. Cost function

Letm : V(W) — V/(A) be a mapping of W (V') onto V(A), the weight of
subgraph assigned to a processor p in V(A), is just the sum of the weights of the
vertices in the subgraph: C(p,m) = >_,cy () m(w)=p @(v). Forall pin V(A), the

computational time is given by ¢, = @
p

is the processing weight.
Let {p.q} € E(A), we define the communication cost associated to the processors p
and q as:

, where C'(p, m) is defined above and s,,

c{p.atm)= > cw
m(u)=p
m(v)=q
{u,v}eE(W)

The total communication time associated to processor p is defined by:
C(p.m) = X icv(ayzp C({p, a}, m). To evaluate the quality of the mapping, we de-
fine a cost function as follows: ®(W, A, m) := T+C where T =1 (tl, . ,tca,.d(V(A)))
and C = *(C(1,m),...,C(card(V(A)),m)). The definition of the graph partition-
ing problem is to find a partition (mapping m) which minimizes the cost function
O(W, A,m). Clearly, the problem is extensible to the classical graph partitioning
and task assignment problem, and it is well known that this problem is NP-complete.
In the next section, we describe the iterative algorithm chosen to minimize this cost
function and find the efficient partitioning.

5. Heterogeneous local method of parallel repartitioning

MeshMigration is a graph/mesh repartitioning scheme developed for heteroge-
neous architectures such as the Grid. We employ a local method of parallel repar-
titioning developed during the DRAMA project ([BAS 00]).

The principal steps of this strategy are the followings:
- Form disjoint pair of processors that will present an important gain for the cost func-
tion (see section 5.2).
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- Optimization the mapping on each pair formed: This optimization is performed by
transferring vertices (elements and nodes) from one processor to another by using the
notion of strip migration (see section 5.1).

- The two previous steps are iterated as long as we are able to globally optimize
the partition.

5.1. Strip migration

Let (p, q) be two processors and let

Tpq = {{u,v} €e EW)/m(u) =p and m(v) = ¢} be the interface between the
processors p and ¢. For any w such that m(w) = p (resp. ¢) the topological distance
of w from the interface is defined as the shortest path between w and a vertex of the
interface in the mesh nodal graph (if w is a node of the mesh) or in the mesh dual
graph (if w is an element). We then define, a strip as the set of nodes and elements
that have the same topological distance from the interface. The optimization of the
partition is then performed by transferring strips from processor p to processor ¢ in
order of increasing topological distance and as long as this transfer improves the cost
function.

5.2. Formation of processor pairs

The goal of this algorithm is to perform a parallel and automatic clutch of pro-

cessors. It provides the maximum pairs of processors which consent to optimize the
partitions.
If we consider a pair of processors (p, ¢), the cost function of initial partition between
p and g is given by: Fylpq = max(ty,tq) + C({p,q},m) where C({p,q},m) =
C({q,p}, m). To improve the initial partition, we evaluate the cost function strip per
strip as long as we find the best strip associated to the minimum of the cost function
on p, denoted F2. ‘and on ¢, FZ. .
Then, we define a Friendship function between the processors p and ¢ which is given
by the maximal potential gain:

Friendship(p, 4) = maz ( Folu — Fiins Folpa — Frn) 3)

The first pair of processors formed is given by:

Friendship(p, ¢) = max(Friendship(i, j)) , for all ¢ and j in V' (A).

The migration between p and q is determined as follows:

if (Folpg — Fipin) > (Folpg — Foin) (tesp. (Folpg — Fpiy) < (Folpg — Fiiiy)), the
elements and nodes having a distance lower than the best strip distance associate to
FP. (resp. Fl. ) are migrated from p to ¢ (resp. from ¢ to p).
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5.3. Partitioning strategy

In order to provide an efficient partitioning in a grid environment, we introduce
a hierarchical view-point in this algorithm. We define two architecture levels in the
target graph: level one is the set of processors, and the second is the set of clusters.
Then, the partitioning is carried out in two stages:
1- We consider a grid composed by several clusters. We decompose the mesh in order
to assign one partition to each cluster taking into account the bandwidth of communi-
cations layers between these various clusters. The decomposition takes place via the
relationship defined in the previous paragraph. We denote N numbers of clusters and
G = {Cy,...,Cn_1} the set of clusters. Formally:
Let p and g two processors in the architecture graph, p € C; and g € C; :

it Ci#C
Friendship(p, 4) = maz ( Folu — Fiins Folpa — Frn) )

else Friendship(p,q) =0

2- We denote IT = {7, ..., my—_1}, the set of the sub-domains mapped on G. For
every partition ; assigned to the cluster C; = {p}, ..., p%_, }, where I the number of
processors of C';, we re-partitioned 7; on the set of processors of Cj:

For every p and ¢ two processors on the architecture graph, p € C; and g € C}:

if Ci=C;
Friendship(p, g) = maz (Folug — Flis Folpg — Fil ®)

else Friendship(p,q) =0
The strategy adopted reduces the complexity of the algorithm.

6. Performance results

In this section, we present practical results of the proposed heterogeneous par-
titioning method on a grid environment. For our experiments, we consider a jet in
cross-flow(JICF) mesh often used to simulate fluid dynamics phenomena (e.g. in-
jections for cooling systems, jets for V-STOL aircraft, exhaust of vehicles). This
mesh(3D) consists of 400 thousand nodes and 3.8 millions elements(tetrahedral). In
table 1, we show a set of results obtained from a set of architecture graph. We use two
clusters, pf machines(processor speed 1GHz, bandwidth intra-cluster 100Mb/s) and
nina machines (processor speed 2GHz, bandwidth intra-cluster 1Gb/s), the bandwidth
between two clusters is 100Mb/s. The number of processors varies from 2 to 32 pro-
cessors. The parameters used in this table are described as follows:

PT: the partitioning time is the total time (read input file + partitioning + write output
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files) needed by the MeshMigration partitioner.
®: cost function

Max(Min) elements: the maximum(minimum) number of elements for all partitions.

N\ = qu((ttp)): C(p,m)

the results, we consider C'(p, m) = nb_Elp, where nb_Elp is the number of elements
assigned to processor p. We have a balanced load when A ~ 1.

the load imbalance, where t,, = . To simplify the presentation of

Partitioner | Cost functions 1pf-1nina 2pf-2nina | 4pf-4nina | 8pf-8nina

16pf-16nina

® 1.37232e+06 | 699951 352804 266230 893602
PT(seconds) 589.562 639.762 856.102 967.167 1155.21
Max elements 1166697 585120 293254 148427 75106
Homog. Min(t,) 486123.75 243800 | 122189.16 | 61844.58 31294.16
Min elements 1166194 581132 288675 143497 75066
Max(t,) 1166194 581132 288675 143497 75066
A 2.39 2.38 2.36 2.32 2.39
® 805537 421440 217025 137211 59278.7
PT(seconds) 339.615 390.888 465.138 739.666 758.149
Max elements 1648787 847293 427327 221036 114330
Heterog. Max(t,) 686994.58 | 353038.5 | 178052.91 | 92098.33 47637.5
Min elements 684104 328452 166263 78630 40720
Min(t,) 684104 328452 166263 78630 40720
A 1.004 1.07 1.07 1.17 1.17

Table 1. Comparison between Homogeneous and Heterogeneous partitioning, for the
JICF test case partitioned in 2 to 32 processors

From the table 1, we can extract the following remarks:
- About cost function (®):
The homogeneous partition does not optimize the cost function, because the homo-
geneous partitioner does not takes into account the machine architecture. Otherwise,
while increasing the number of processors, the number of interfaces between parti-
tions increases, furthermore, the produced communication penalize the homogeneous
approach too much. However, the heterogeneous approach significantly decreases the
cost function that estimates the execution time. The figure[figure 1], clearly shows
the variation of the cost function in the two homogeneous and heterogeneous cases
according to the number of processors.
- About the time partitioning (PT) and load balancing:
The strip migration method used in the heterogeneous approach allows to accelerate
the partitioning time as it is shown in the table 1. It is also possible to see the efficiency
of our approach on the level of the load balancing, the parameter ) is nearly equal to
one for the heterogeneous partitions, but not balanced for the homogeneous partitions.

After the comparison of the heterogeneous and homogeneous methods, we study now,
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figure 1: Evaluation of the cost

. figure 2: Four different mesh sizes
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the scalability of our approach. We present test meshes with different size: a diesel_4K
mesh with 4 thousand nodes, a JICF_80K mesh with 80 thousand nodes, a JICF_200K
mesh with 200 thousand nodes and a JICF_400K mesh with 400 thousand nodes. We
compute the partitioning time (PT) needed to partitioning different meshes on a ar-
chitecture when the number of processors varies from 2 to 32 processors, then we
compute the ratio of the number of CPU cycles per the number of nodes for each
mesh.

In figure [2], we show the curves that represent the number of CPU cycles needed
to process one node according to the number of processors. It is seen that all curves
are linear and almost identical, that means that, independently of the type and size of
mesh, there is a linear behavior of the partitioner: the partitioning cost is linear ac-
cording to the number of partitions (number of processors) and also linear according
to the number of mesh nodes. This result, allows to predict the necessary time for
partitioning any other type of mesh and for any number of partitions.

In figure [3.1],[3.2] and [3.3], we present the JICF_400K mesh partitioned on 16 par-
titions, 8 partitions assigned to nina cluster and 8 partitions assigned to pf cluster. The
used architecture graph is composed of 8 nina machines and 8 pf machines.

In this figure, we observe that interfaces between the two sites is reduced at the inter-
section between the pipe and the rectangle, there is therefore a strong minimization of
the communications on a weak link (in relation to the intra-sites networks) moreover,

35
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figure 3.1: Heterogeneous partitioning, for the JICF test case partitioned in 16
processors(8 nina, 8 pf)
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figure 3.2: 8 Partitions in nina cluster figure 3.3: 8 Partitions in pf cluster

the load is balanced on each processor.

7. Experimentation of a finite element code on the grid

In order to validate this approach, we run a simple finite element code. This code
solves the Stokes equations in a domain €2 :

o

V. ©)

|
o

{ V.(2ne(v)) = Vp =
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with the boundary conditions :

p = po on Ty
p = 0 on TDyyu 7
v = 0 on I'—=Ty —Tou

These equations are solved using the mixed-element P1+/P1 (linear interpolation over
the elements for the velocity and the pressure with a bubble interpolation for the ve-
locity). The bubble unknown is condensed and lead to a global linear system with only
4 unknowns per node of the mesh representing the domain 2. The mesh is partitioned
using the partitioner previously detailed, this partition allows us to distribute the lin-
ear system over the processors. The resolution is then done in parallel with the PETSc
library using a conjugate residual resolution with a incomplete LU preconditioner.

The table 2 compares the results obtained on the JICF(400K) test case when using
32 processors ( 16 PF and 16 NINA ) with homogeneous and optimized partitions.

PF-NINA results PF-NINA results
Nb iter 927 Nb iter 850
Resolution (s) | 339.97 Resolution (s) 174.22
Assembling (s) | 9.40651 Assembling (s) | 6.61217
Solver (s) 349.37 Solver (s) 180.83
Total (s) 349.42 Total (s) 180.86
Homogeneous partition Optimized partition

Table 2. Influence of an optimized partition against an homogeneous one

This shows that we are able to reduce the calculation time of about 50% by con-
sidering the characteristics of the grid.

8. Conclusion

In this paper, we have presented a new graph/mesh partitioner, called MeshMi-
gration, for partitioning workloads graph onto heterogeneous architecture graph. This
mesh partitioner algorithm execute in parallel and we have shown that his execution
time is linear with respect to the number of processors and the size of the mesh. We
have also shown that optimized load balancing strategies improves the performance of
the applications executed on a heterogeneous environment.
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