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Abstract: CFD simulations on Clusters and GRIDS having mixed processor speeds

present several challenges to achieve efficient load balancing. If both the fast and slow

processors are given the same amount of work, the faster processors will finish their compu-

tations first and wait for the slower processors to finish. To achieve load balancing more work

must be given to the faster processors so that all the processors finish their computations

at the same time (work is proportional to the processor mesh size). Another complication

is that for current Clusters and GRIDS in the near future, the user does (will) not know in

advance the mixture of fast and slow processors that will be assigned to their computation,

thus the user cannot partition the mesh in advance of the CFD run! This difficulty is dou-

bly complicated as the mesh partitioning step is usually performed on a desktop computer

using one processor. For mesh partitioners executing on parallel computers, the complica-

tion arises in that the mesh partitioning code and the CFD code are separate MPI codes

designed to be run independently of each other. As a result the two codes cannot simply be
∗ INRIA, 2004 Route des Lucioles, BP. 93, 06902 Sophia-Antipolis, France



2 Wornom

run back-to-back as each code may be assigned different mixtures of fast and slow processors

resulting in a partitioned mesh not optimal for the CFD run.

In this study, in order to overcome the problems related to computing with arbitrary

mixtures of fast and slow processors, the mesh generator has been integrated into the CFD

code. Thus optimal size partitions are automatically created for different mixtures of fast

and slow processors. The efficiency of this approach is demonstrated for Clusters and GRIDs

having both fast and slow processors.

Key-words: Computational fluid dynamics, GRID Computing, MecaGRID, GRID5000,

F90, MPI, dynamic mesh creation and partitioning
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Equilibrage de charge sur Clusters et GRILLES de

calcul avec différents vitesse de processeurs

Résumé : On s’intéresse à l’équilibrage de charge des simulations numériques

en Mécanique des Fluides Numérique sur Clusters et Grilles de calcul com-

portant des processeurs de vitesses différentes. Pour réaliser cet équilibrage,

il est nécessaire d’attibuer entre deux synchronisations/communications plus

de calculs aux processeurs plus rapides qu’aux processeurs les plus lents, de

manière à ne pas perdre de temps en attentes. Une difficulté supplémentaire

réside dans l’impossibilité en pratique de savoir quel nombre de chaque type

de processeur sera attibué à la tâche au moment de son démarrage, inform-

ation dépendant de la charge instantanée du système. L’utilisateur est dans

ce cas dans l’impossibilité de préparer une partition adéquate avant le lance-

ment du calcul. Or en général les logiciels disponibles pour les deux étapes,

partitionnement, simulation proprement dite, sont distincts et à lancer sur le

système séparément. Dans ce cas ils ne tournent pas sur le même assortiment

de processeurs. Dans cette étude, générateur de maillage et partitionneurs

sont ı́ntégrés au solveur et seront donc lancés en une seule requète soumise

au Cluster. Un partitionnement adapté au jeu de processeurs attibué peut

donc être réalisé juste au moment du calcul. L’efficacité de cettte approche

est démontrée pour différentes configurations de grilles de calcul et de Clusters

fortement hétérogènes.

Mots-clés : Mécanique des fluides numérique, Grille de calcul, F90, MecaG-

RID, GRID5000



4 Wornom

1 Introduction

CFD simulations on Clusters and GRIDS assigned processors with different

speeds present several major challenges in order to achieve efficient load bal-

ancing. We use the term cluster to denote a computer comprised of a collection

of homoegeneous processors and Cluster to refer to a computer comprised of

several clusters at the same institution administered by the same system ad-

ministrator. For example, the INRIA Cluster in Sophia Antipolis is comprised

of three separate on-site clusters nina, pf, and nef. The term GRID refers

to a Computational Grid composed of clusters belonging to different institu-

tions, each having a different administator. An example is the MecaGRID1 is

comprised of clusters belonging to INRIA in Sophia Antipolis, the IUSTI2 in

Marseille and the CEMEF3 in Sophia Antipolis. The GRID50004 is comprised

of clusters at INRIA in Sophia Antipolis, Toulouse, Orsay, Rennes, Bordeaux,

Grenoble, Lyon and Lille. The clusters forming a GRID are usually separated

by large physical distances thus communication times between the different

clusters of the GRID may be larger than those for Clusters.

The challenges that arise when simulations are assigned different types of

processors relate to the different processor hardware characteristics (speeds,

RAMs, and caches, ...etc). For example some processors may have 2 Ghz

speed5 with 1 GB of RAM and 512K cache while others have 1 Ghz with 1/2

GB of RAM with 256K cach with 256K cache. To achieve load balancing twice

1Province-Alpes-Côte d’Azur Project Funded by the French Ministry of Research
2Institut Universitaire des Systèmes Thermiques et Industriels
3l’Ecole des Mines de Paris à Sophia-Antipolis
4National ACI-GRID Project funded by the French Ministry of Research, CNRS and INRIA
52 Ghz is an approximation to the actual value of 2.2 Ghz.

INRIA



Load balancing on Clusters and GRIDS with mixed processor speeds 5

as much work must be given to the faster processors so that both the fast and

slow processors finish their computations in approximately the same time. If

both the fast and slower processors are given the same amount of work, the

faster processors will finish their computations first and wait for the slower

processors to finish.

The goal of this study is to achieve efficient simulations using the MPI CFD

software, AERO3D, developed through a collaboration between the University

of Colorado at Boulder, the University of Montpellier, and INRIA Sophia

Antipolis - see Fezoui et al [4], Farhat and Lanteri [3], and Lanteri [6]. The

AERO3D software is intensively used, in particular by the universities of Mont-

pellier, Pisa and Pau in several CFD research studies (see for example Camarri

et al [1], El Omari et al [2], and Koobus and Farhat [5]).

The parallelization strategy in AERO3D uses mesh partitioning to subdi-

vide a global mesh into smaller partitions6; each partition being computed by a

different processor, for example 32 partitions solved using 32 processors. The

message-passing programming model of Fezoui et al [4], Farhat and Lanteri

[3], and Lanteri[6] using the Message Passing Interface (MPI) communication

library ensures software portability from one parallel system to another. The

mesh partitioning algorithms and the generation of the corresponding commu-

nication data structures are computed in a PREPROCESSING step.

Mesh partitioners are often non-parallel codes executed on desktop comput-

ers. For the AERO3D code, the preferred mesh partitioners are METIS7 and

6Sometimes called subdomains or blocks
7http://www-users.cs.umn.edu/k̃arypis/metis/

RR n° 0123456789



6 Wornom

TopDomDec8, both non-parallel codes. Other mesh partitioners that execute

on parallel machines using MPI will be discuss later. The usual procedure is

to run the mesh partitioner first (PREPROCESSING) to create the partitions

to be used by the CFD run. This is followed by the execution of the CFD

software.

In general, when running on a Cluster (or future GRIDS), the user will not

know in advance the mixture of processors that will be assigned to the compu-

tation. This is currently true for the INRIA nina-pf cluster which has both 2

Ghz and 1 Ghz processors; the user requests the total number or processors to

be used and the job manager assigns the processors according to availability.

Thus, if a user requests 32 processors on the INRIA Cluster9, 32-nina and 0-pf,

24-nina and 8-pf, 8-nina and 24-pf, 0-nina and 32-pf ... etc are various possible

allocations the user could receive. Note that for runs on the INRIA Cluster,

all the requested processors must be available before any processor is assigned

to the job. This is very efficient and the INRIA Cluster is an excellent example

of how the future generation of GRIDs will function.

As of the date of this report, this is not true neither for the MecaGRID or

the GRID500010 where the user specifies which clusters of the GRID are to be

used and the number of processors on each cluster. In contrast to the INRIA

Cluster, both the MecaGRID and the GRID5000 assign processors on the

individual clusters as soon as they become available. Thus if the user requests

128 processors and 120 are immediately available, the 120 are assigned to the

simulation and will start execution. However, the job will wait at the first

8University of Colorado at Boulder
9The INRIA Cluster as of Janurary 13, 2006 has 64 processors, 32-nina and 32-pf

10Both first generation GRIDS

INRIA



Load balancing on Clusters and GRIDS with mixed processor speeds 7

MPI barrier until the remaining eight processors are assigned and reach the

same barrier. This may be hours or days away effectively blocking the 120

processors that remain assigned but inactive from being used by other users.

This is extremely inefficient as the cluster(s) on which the processors were

requested may be totally saturated while other clusters on the GRID have

immediate processors available. Future GRIDS will function like the INRIA

nina-pf Cluster, that is, the user requests the total number of processors and

the GRID job manager will assign the processors according to availability on

all the clusters of the GRID. Achieving this goal is one of political decision

rather than technology.

What are the consequences of not knowing, in advance, the mixture of

fast and slow processors that will be assigned to a computation? The major

consequence is that the user cannot partition a mesh as a PREPROCESSING

step.

If we assume that the mesh partitioner is also an MPI code, this difficulty

is doubly complicated as the mesh partitioner code and the CFD code are

separate MPI codes designed to be run independently of each other.

In this study, to overcome the difficulties related to simulations involving

fast and slow processors, the mesh generator has been integrated into the

CFD software. This approach assures that the mesh partitions will be optimal

for different combinations of fast and slow processors assigned to the CFD

execution.

RR n° 0123456789
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2 Dynamic memory allocation

In order to achieve load balancing on Clusters and GRIDS with mixed proces-

sor speeds, two conditions must be met. First, the CFD software must have

dynamic memory allocation. To achieve this, an F90 version of the AERO3D

software was created - see Wornom [8], the original code was programmed in

F77. As a consequence the size of the F77 executable is determined at compile

time based on the mesh data of the largest partition and the same executable is

used on all the processors. This leads to situations where the RAM for slower

processors is too small to run the executable. F90 permits dynamic memory

allocation thus the executable size for each processor is proportional to the

local processor mesh size.

The second condition is dynamic mesh partitioning. This is achieved by

integrating the mesh generator into the CFD software.

3 Mesh generators and mesh partitioners

3.1 Standard procedure

In the standard procedure there are three independent software involved in a

CFD simulation, a mesh generator, a mesh partitioner, and the CFD software.

The first step is to create or generate a mesh for the simulation. There are

several commercial software available. An example is GSH3D developed at

INRIA in collaboration with SIMULOG11. In this study we prefer free open

source software MeshCanale developed at the University of Pisa. Mesh gener-

11available at INRIA

INRIA



Load balancing on Clusters and GRIDS with mixed processor speeds 9

ators may be non-parallel codes or parallel codes. GSH3D12 and MeshCanale

are both non parallel codes executed on desktop workstations.

The second step is to partition the mesh created by the mesh generator. If

none exists, the user must write an interface so that the mesh file created by the

mesh generator can be read by the mesh partitioner. For the mesh partitioners

used with AERO3D, the mesh file is named fluid.sinus - see Appendix A for

details. This interface already existed MeshCanale and was written for GSH3D

by the author. The user specifies the number of partitions and the mesh

partitioner partitions the mesh specified in the fluid.sinus file.

Next, if none exists, the AERO3D user must write an interface so that the

partitioned data created by the mesh partitioner is written in a format readable

by the AERO3D software. These files are named flu-00001, flu-00002, where

1 and 2 refer to partitions 1 and 2, ..., and the flu.glob file that contains the

mesh global parameters - see Appendix B for additional details. Writing this

interface is not a trivial step and is a major reason why the PARmetis13 mesh

partitioner is not presently used at INRIA to partition meshes for the AERO3D

software. The other reason is that the interface to read the fluid.sinus file has

not been written. At the present time, the partitions created with the mesh

partitioners developed at the CEMEF14, TopDomDec15, METIS16, and Mesh-

CanaleMP (see section 3.2) are directly readable by the AERO3D software.

The CEMEF, PARmetis and MeshCanaleMP are mesh partitioning codes that

12The 1999 sequential version of GSH3D is installed at INRIA Sophia Antipolis.
13http://www-users.cs.umn.edu/k̃arypis/metis/
14Centre de mise en forme des matériaux de l’Ecole des Mines de Paris-Sophia Antipolis
15University of Colorado at Boulder
16AERO3D interface written by Professor Farhat, University of Stanford, Palo Alto, CA

RR n° 0123456789



10 Wornom

execute on parallel computers. The third step is the execution of the CFD soft-

ware that reads the partition data created by the mesh partitioner.

In summary, the standard procedure consists of executing three independent

codes, the mesh generator, the mesh partitioner andthe CFD software.

3.2 Integrated parallel procedure

The meshes used in the MecaGRID study of Wornom [9] were generated using

the F77 non-parallel mesh generator MeshCanale run on a workstation. For

this reason and the availability of the source code, MeshCanale was selected

as the first mesh generator to be integrated into the AERO3D software.

We started by creating an F90 version of the MeshCanale code in order to

have dynamic memory allocation. Next the adaptation to running in parallel

using MPI was accomplished. The major effort was in writing subroutines to

identify the different processors assigned to the simulation and a load balancing

algorithm to define the partitions.

In MeshCanaleMP the mesh is generated simultaneously for all partitions.

Therefore the notion of partitioning a global mesh created by a mesh generation

code is no longer valid. Generating the mesh directly on each partition has

several advantages over the standard approach17, in particular for large meshes

(> 2 million vertices). Executing the mesh partitioner separately requires

additional memory to store the global mesh file (fluid.sinus). This additional

memory is in addition to the memory needed to create the partitions. By

integrating the mesh generator into the CFD software, this additional memory

17Generating the global mesh with a grid generator and partitioning the global mesh using a mesh parti-

tioning code

INRIA
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Figure 1: MeshCanale English-Flag design

is avoided (there is no global mesh file to read). The memory saved permits

much larger mesh partitions to be created than would be otherwise possible.

This effectively allows us to create partitions for very large meshes not possible

when using the standard approach. The MeshCanaleMP software is available,

thus the details of the F90 MPI implementation of the mesh generator (mesh

partitioning) will not be discussed.

4 Mesh generator - MeshCanale

MeshCanale was developed at the University of Pisa by Dr. Camarri and

is composed of three parts. First, MeshCanale creates a structured hexa-

hedra mesh and then divides each hexahedra into six tetrahedra using the

English-Flag design shown in Figure 1 for a plane. The third part writes

the fluid.sinus file containing the number of vertices, tetrahedra, and external

faces, the Cartesian coordinates, the tetrahedra connectivity, and the connec-

tivity for the external faces and the type of boundary conditions to be applied.

RR n° 0123456789
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Figure 2: Partitioning by slicing

4.1 Partitioning options

The MeshCanaleMP code was developed to study blast waves interacting with

a high density fluid of spherical shape in a rectangular channel - see Figure 3

(from Wornom et al [7]) shows the solution after the blast wave has passed

through the bubble. The blast wave is moving from the lower left to the upper

right of the figure. For this example a simple rectangular mesh with Imax,

Jmax, and Kmax equal to 51, 51, 97 (51x51x97) was used.

Two obvious partitioning options exists: 1) Slicing and 2) Dicing. Figure 2

illustrates slicing using 8 processors, 4-nina and 4-pf; the 4-nina partitions are

two times larger than the 4-pf partitions reflecting the faster speed of the nina

processors. Message passing occurs between the partition interfaces. Note the

only messages passed between the fast cluster (nina) and the slow cluster (pf)

occur between processor 4 of nina and processor 1 of pf.

INRIA
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Figure 3: Blast wave pressure contours after 720 time steps

Using the slicing option, one can easily show that the minimum message

passing occurs if the mesh is sliced in the counter direction opposite to the

min(Imax× Jmax, Imax×Kmax, Jmax×Kmax). (1)

For this example the mesh is a simple rectangular mesh with Imax, Jmax,

and Kmax equal to 51, 51, 97 (51x51x97). Therefore the mesh was sliced in

the k-direction.

The partitions created by slicing should be optimal for VPN (Virtual Pri-

vate Network) GRIDS like the MecaGRID. For VPN GRIDS the processors

have private IPAs and only one processor is used to exchange information be-

tween processors on different clusters of the GRID using tunneling between

RR n° 0123456789
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Figure 4: Partitioning by dicing

the frontend machines of the clusters comprising the GRID. Using the slicing

method, only one nina processor exchanges information with one pf processor.

If many processors are trying to pass data at the same time as will occur if

100 or more processors are involved, the VPN will experience greater trans-

fer slowdowns when non-slicing partitioning methods are used. For GRIDS

with public IPAs, such as GRID5000, the partitioning method will be less

important.

A alternative to slicing would be ”dicing” where the mesh is divided into

blocks. Figure 4 illustrates dicing with 8 processors, 4-nina and 4-pf. As can

be seen, the message passing between the different processors is more compli-

cated than that shown in Figure 2 where the slicing option is used. With 8

processors one can see that each nina CPU exchanges messages with a pf pro-

INRIA
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cessor in addition to its nina neighbors. Thus there are four messages passed

between the nina cluster and the pf cluster, likewise for the pf processors. The

complexity increases as the total number of processors increases.

5 Heterogeneous partitioning

Consider the blast wave problem with a rectangular global mesh of 51x51x97

(Imax, Jmax, Kmax) with Imin = Jmin = Kmin = 1. Application of equation

1 shows that the minimum message passing occurs when the slicing method is

applied in the k-direction.

The mesh is generated (partitioned) in two steps. First, we determine how

many tetrahedra will be computed on the fast cluster and how many on the

slow cluster. Suppose we have two clusters with different processors speeds,

one with 2.2 Ghz and the other with 0.999 Ghz. For illustration purposes we

take the ratio of the fast processors to the slow processors equal to 2. For

the heterogeneous partitioning we want the fast cluster to compute twice as

many tetrahedra as the slower cluster. To accomplish this we give 2/3 of the

total tetrahedra to the fast cluster and 1/3 to the slower cluster. The general

expressions to be used when defining the hexagonal input (i,j,k values for each

partition) to the MeshCanaleMP code are given by

∆kfast =
Kmax− 1

1 + Nslow

2×Nfast

(2)

∆kslow = (Kmax− 1)−∆kfast (3)

RR n° 0123456789



16 Wornom

Equations 2-3 returns an integer value only for equal number of fast and

processors or only nina or pf processors are used - see Table 1 which shows an

example for 32 total processors for Kmax = 97 with different mixtures of fast

and slow processors.

Mixture Theoretical Code

N fast N slow ∆kfast ∆kfast ∆kfast ∆kfast

32 0 96.000 0.000 96 0

28 4 74.667 21.333 75 21

24 8 57.600 38.400 58 38

20 12 43.636 52.364 44 52

16 16 32.000 64.000 32 64

12 20 22.154 73.846 23 73

8 24 13.714 82.286 14 82

4 28 6.400 89.600 7 89

0 32 0.000 96.000 0 96

Table 1: Computation of intervals

When the number of fast processors is not an integer, and extra k-plane is

given to the faster cluster (column Code).

The next step is defining the size of the partitions. These are given by the

relation

δkfast = ∆kfast/N fast (4)

δkslow = ∆kslow/N slow (5)

INRIA
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For most mixtures, δkfast and δkslow will not be integers and adjustments

are made similar to that for ∆kfast and ∆kslow.

5.1 Executing MeshCanaleMP separately of AERO3D

In this section we discuss features related to running MeshCanaleMP as a stand

alone program. MeshCanaleMP reads its data from the file CanaleMP.data.

Table 2 shows the differents entries in the file CanaleMP.data

read (myunit,*) LargeMesh

read (myunit,*) nWRTsinus, nWRTflu

read (myunit,*) Imax,Jmax,Kmax

read (myunit,*) xmin,xmax

read (myunit,*) ymin,ymax

read (myunit,*) zmin,zmax

read (myunit,*) bcImax, bcImin

read (myunit,*) bcJmax, bcJmin

read (myunit,*) bcKmax, bcKmin

Table 2: CanaleMP.data file

The LargeMesh flag was added for cases where very large meshes are used (>

2 million vertices). The LargeMesh flag is independent of the MeshCanaleMP

option - see section 5.3.

The flags nWRTflu and nWRTsinus control writing of the flu-00001, flu-

00002, ..., flu.glob files and the fluid.sinus file. The flags are set to 1 to activate.

The number of mesh points in i, j, k are given by Imax, Jmax, and Kmax.

The max/min values of x are given by xmax/xmin, similar for the y and z

RR n° 0123456789
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Mesh CPUs vertices fluid.sinus flu-xxxx Total WRTsinus WRTflu

51x51x97 16 252K 30 MB 3 MB 3.7 sec 1.4 sec 2 sec

101x101x193 48 2M 233 MB 9 MB 28.8 sec 10 sec 19 sec

201x201x395 48 16M 1860 MB 69 MB 233 sec 90 sec 142 sec

401x401x729 48 117M (1.49 GB) - 45 sec - -

401x401x729 64 117M (1.49 GB) 4 MB 7 sec - -

Table 3: MeshCanaleMP examples

coordinates. The boundary condition types are set by the bcImax, bcImin,

bcJmax, bcJmin, bcKmax, and bcKmin.

Table 3 gives examples of different runs using MeshCanaleMP for meshes

up to 117 million vertices and 64 processors on the INRIA nef cluster18. The

first four runs show the total time, the time to write the fluid.sinus file19, and

and the partition files flu-00001, flu-00002, ... etc and the flu.glob file. Note

that the majority of the time is in writing these files. For a mesh with 16

million mesh vertices the fluid.sinus file is 1.68 GB and the 48-processor flu-

xxxxx files 69 MB, these files were written unformatted. The formatted files

are approximately four times larger. It is obvious that for large simultations

one must avoid writing these files.

18The nef cluster has 64 processors at 2.2 Ghz speed and was used for the development of the Mesh-

CanaleMP code.
19fluid.sinus file is input to the mesh partitioner. It is also needed for graphics.

INRIA
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5.2 Executing MeshCanaleMP from within AERO3D

The basic parameters and control flags for the AERO3D software are found

in the flu.data file. These include the number of time steps, whether the run

uses the explicit or implicit algorithm, whether the time scheme is 1st or 2nd

order, ... etc.

To execute the MeshCanaleMP mesh partitioner within the AERO3D exe-

cution, four additional flags have been added; these flags are given for seven

different examples in Table 4 (1=activate).

Run LargeMesh nMeshCanaleMP nWRTflu nWRTsinus

1 0 0 0 0

2 0 0 0 1

3 0 1 1 1

4 0 1 0 1

5 0 1 0 0

6 1 1 0 0

7 1 0 0 0

Table 4: Flags related to accessing MeshCanaleMP within AERO3D software

After the processors have been allocated for the AERO3D run, the Mesh-

CanaleMP program is executed, if the parameter nMeshCanaleMP = 1 to

create the mesh and the partitions.

If nMeshCanaleMP = 0, the MeshCanaleMP is not used and the files with

the data for each partition must already exist. Run 1 corresponds to the case

RR n° 0123456789



20 Wornom

where the user has existing partition data files20, flu-00001, flu-00002, ... etc

and the flu.glob file. This is the standard procedure for the AERO3D code.

Several subroutines that have been written for the MeshCanaleMP are use-

ful for runs where the MeshCanaleMP is not used. For example, the graphical

program needs the fluid.sinus file containing the global mesh data in addition

to the solution files. Normally the fluid.sinus is the input to the mesh parti-

tioner and is available. Should it not be available, as sometimes occurs, the

AERO3D code will write the fluid.sinus file if nWRTsinus = 1. Run 2 asks

AERO3D to write the fluid.sinus file for the existing flu-00001, flu-00002, ...

etc and the flu.glob file used.

Run 3 runs the MeshCanaleMP from within the AERO3D code and writes

the flu-00001, flu-00002, ... etc and the flu.glob file and the fluid.sinus file.

Runs 4-5 are for very large meshes (> 2 million vertices). For large meshes

writing the flu-00001, flu-00002, ... etc and the fluid.sinus file should be

avoided as these files can be extremely disk space consuming21. Since the

flu-00001, flu-00002, ... etc files are created doing the run there is no real

reason to save them. Run 5 does not save the fluid.sinus thus assumes that

the graphical files have been created within the AERO3D run.

5.3 LargeMesh = 1

For meshes on the order of 16 million vertices and larger, the fluid.sinus and

the files containing the solutions at different time steps are too large to be

20See APPENDIX B for description
21The sysops is very appreciative when these extremely large files are not written

INRIA
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viewed with ParaView22 on a workstation with 4 GB of RAM. The solution

files are named solf.000100.data where 000100 is the solution at the 100th time

step.

When LargeMesh = 1, the fluid.sinus and the solution file solf.000100.data

are written separately for each processor. The files are written as fluid.sinus-

00001, fluid.sinus-00002, .. etc and solf-00001.000100.data, solf-00002.000100.data,

... etc. These smaller files are much smaller files than if all the processor solu-

tions were written on a single file. As a consequence, they can be viewed using

ParaView run sequentually or the MPI version of ParaView23.

Runs 6 and 7 show examples where the LargeMesh option is used with and

without the MeshCanaleMP code.

6 Subroutines added to the AERO3D software

During this study six useful subroutines were added to the AERO3D code.

6.1 Subroutines used by MeshCanaleMP

The following subroutines have been added to the AERO3D software for the

MeshCanaleMP option.

CanaleMP.f

GetHostNames.f

MeshCanaleMP_F90.f

22http://www.kitware.com
23Work in progress.
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6.2 Useful subroutines with/without the MeshCanaleMP option

WRTflu.f

WRTsinus.f

WRTsinusPart.f

WRTsolPart.f

7 Results

In this section, the benefit of using heterogeneous partitioning on Clusters and

GRIDS with mixed fast and slow processors is illustrated. The nina-pf Cluster,

the MecaGRID, and the GRID5000 were chosen for these tests. Table 5 shows

the processor speeds for the different clusters used.

cluster(Location) Processor speed (Ghz)

Cluster/GRID Fast cluster Slow cluster Fast cluster Slow cluster

INRIA Cluster nina (Sophia) pf (Sophia) 2.2 1.0

MecaGRID iusti (Marseilles) pf (Sophia) 2.0 1.0

GRID5000 sophia (Sophia) icluster2 (Grenoble) 2.2 0.9

Table 5: Processor speed for tests

The test case computed flow in a nozzle. Two meshes were studied; the first

mesh contains 252K vertices with 1.44 million tetrahedra and the second 502K

vertices with 2.88 million tetrahedra. The efficiency of using homogeneous and

heterogeneous partitions was studied.
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wall time

Cluster/GRID Mesh size CPUs homogeneous heterogeneous speedup

INRIA Cluster 252K 8-nina 8-pf 738 sec 477 sec 1.55

MecaGRID 252K 8-iusti 8-pf 776 sec 588 sec 1.32

GRID5000 252K 8-sophia 8-icluster2 - - -

INRIA Cluster 502K 16-nina 16-pf 843 sec 553 sec 1.52

INRIA Cluster 502K 24-nina 8-pf 738 sec 529 sec 1.39

GRID5000 502K 8-sophia 8-icluster2 - - -

Table 6: 252K vertices: homogeneous vs heterogenous partitioning for 16 processors

For the homogeneous mesh partitioning all the partitions were of equal size.

For the heterogeneous mesh partitioning the mesh was partitioned so that the

fast-cluster partitions were twice as large as the slow-cluster partitions.

Table 6 shows the wall times for a simulation of 150 time steps for different

size meshes and different mixtures of fast and slow processors for the different

mesh sizes. From these tables, an important reduction in simulation time is

noted using the heterogeneous partitioning for the case where there are equal

numbers of fast and slow processors; a speedup of 1.55 for the 252K vertices

mesh and 1.52 for the 502 vertices mesh (the theoretical speedup for these

cases is 1.5). For the case where 24 fast and 8 slow processors were used, the

reduction in simulation time was 1.39 (the theoretical value is 1.25)24. These

reductions in simulation times indicate that good load balancing is achieved

when heterogeneous partitions are used. Figure 5 shows the computational

times for 16 processors to compute the fluxes in AERO3D for both the homo-

24The theoretical value of 1.25 was based on a speed ratio of 2 whereas the hardware speed ratio is

approximately 2.2. This may explain why the real speedup was greater than the quoted theoretical value
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Figure 5: Optimal vs nonoptimal partitions

geneous and heterogeneous partitions. Note the approximaly equivalent times

for the heterogeneous partitions.

8 Conclusions

In this study, in order to overcome the problems related to computing with

arbitrary mixtures of fast and slow processors occuring on clusters and GRIDS

with different speed processors, the mesh generator and the mesh partitioner

have been integrated into the CFD code. Thus optimal load balancing parti-

tions are automatically created for different mixtures of fast and slow proces-

sors.
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Executing MeshCanaleMP from within the AERO3D code assures that the

mesh partitions will always be optimal for any mixture of fast and slow pro-

cessors assigned for the AERO3D simulation.

A test case on the INRIA nina-pf cluster produced a speedup of 1.45 rel-

ative to the same run using the homogeneous partitioning which compares

well with the theoretical speedup of 1.5, indicating good load balancing when

heterogeneous partitions are used.
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APPENDIX A

fluid.sinus Formats

Table 7 shows various formats for the fluid.sinus mesh file where ns, nt, nfac

are the number of vertices, tetrahedra, and external faces, coor, the Cartesian

coordinates, nu the tetrahedra connectivity, logfac the boundary conditions to

be applied at the external faces, and nsfac, the connectivity for the triangular

external faces.

write(myunit,*) ns, nt, nfac

write(myunit,*) (coor(1,i), coor(2,i), coor(3,i), i=1,ns)

write(myunit,*) (nu(1,i), nu(2,i), nu(3,i), nu(4,i), i=1,nt)

write(myunit,*) (logfac(i), i=1,nfac)

write(myunit,*) (nsfac(1,i), nsfac(2,i), nsfac(3,i), i=1,nfac)

write(myunit) ns, nt, nfac

write(myunit) (coor(1,i), coor(2,i), coor(3,i), i=1,ns)

write(myunit) (nu(1,i), nu(2,i), nu(3,i), nu(4,i), i=1,nt)

write(myunit) (logfac(i), i=1,nfac)

write(myunit) (nsfac(1,i), nsfac(2,i), nsfac(3,i), i=1,nfac)

Table 7: fluid.sinus formats: Top) formatted Bottom) unformatted
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APPENDIX B

Description of the flu-0000n files.

In the flu-0000n we find successively:

ipd = subdomain number (involved by this file flu-xxxxx)

ns, nt, nfac = local number of nodes, tetrahedra and boundary facets

(local means associated with the considered subdomain)

nghd = number of neighboring subdomains

For i=1,nghd we read:

ishd(i) = identification (number) of the ith neighboring subdomain

insghd(ishd(i)) = number of nodes located on the common interface between

the considered subdomain and its ith neighboring subdomain

For ii=1,insghd(ishd(i)) we read:

isghd(ii,ishd(i)) = local number of these common nodes

EndFor ii

EndFor i

For is=1,ns we read:

coor(1,is), coor(2,is), coor(3,is) = x-,y- and z-coordinate of node is
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EndFor is

For jt=1,nt we read:

nu(1,jt), nu(2,jt), nu(3,jt), nu(4,jt) = local number of the 4 vertices

of tetrahedron jt

EndFor jt

For ifac=1,nfac we read

logfac(ifac) = boundary identification for each boundary facet ifac

nsfac(1,ifac), nsfac(2,ifac), nsfac(3,ifac) = local number of the 3 vertices

of boundary facet ifac

EndFor ifac

For is=1,ns

irefd(is) = 1 if node ”is” is an internal node for the considered subdomain,

0 else

(by internal node, we mean a node which does not belong to the common

interfaces shared with neighboring subdomains)

EndFor is

For is=1,ns

igrefd(is) = global number (i.e. number in the global mesh) of node is

EndFor is

INRIA



Load balancing on Clusters and GRIDS with mixed processor speeds 31

REMARK = all the previous variables are integer except coor(,) which is

real.
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