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Interface tracking computations are crucial when we talk about multi-phase flow problems: 
this way, one can observe how the different phases evolve one from another all along the 
simulation. In the Navier-Stokes equations – used for incompressible Newtonian flows – the 
interface movement is not explicit; therefore, the need of coupling these equations with some 
other model appears. Very different numerical methods – like Volume of Fluid, Level-Set or 
Marker and Cell – have been used for years to keep track of interfaces. In this paper, we focus 
on a combination of Level-Set and a stabilized scalar advection equation. 

This is a complex problem, and it requires big computational resources in order to have 
accurate results: the model we build does not have to include mesh adaptation 1 (which is 
almost essential for interface capture with a discontinuous model 2,3,5) if the domain of 
calculation is meshed finely enough. That is why our application is parallelized and can be 
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executed on a PC cluster and a computational grid. 
The different parts of this paper develop each one of the following aspects: the flow and 

the transport equations with their finite element formulations; a coupling model of the two 
problems; the parallel environment used; and finally, some application examples of our 
coupled problem. 

 

�� ,1&2035(66,%/(�1$9,(5�672.(6�(48$7,216�

���� )RUPXODWLRQ�
The following Navier-Stokes equations are used to compute the incompressible Newtonian 

flows in a cavity Ω ;�Y represents the velocity field and S the pressure: 
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���� 9DULDWLRQDO�IRUPXODWLRQ�
The following function spaces are required for the variational formulation of the Navier-

Stokes equations: 
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���� )LQLWH�(OHPHQW�IRUPXODWLRQ�
We build finite dimensioned vector spaces �9  and �3  such that 99 �� =

→0
lim  and 

33�� =
→0

lim . The domain Ω  is then decomposed in tetrahedra N: �� N=Ω  so that we can 

Ωin 
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apply a mixed finite element method using the so called MINI element (P1+/P1) with a 
continuous interpolation 3� for the velocity and the pressure, plus a velocity bubble at the 
center of elements, as shows the figure 1: 

 
 
 
 
 

Figure 1: Mini element P1+/P1 

The solution ( )SY,  is then approached by the solution ( ) ( )���� 39SY ,, ∈  of the following 

problem where ( ) ( )���� 39TZ ,, ∈ : 
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���� 6WDELOL]DWLRQ�
The MINI element is stable in the sense of the Brezzi Babuska conditions. It is close to the 

stabilized mixed method, the stabilization operator being obtained by a static condensation of 
a bubble term inside each element. A very important advantage of this approach is the 
possibility to use an iterative solver for linear system solution. It is based on a MINRES 
method (Generalized Minimal Residual method) and it shows to be extremely efficient in any 
case. 

Bubbles can play a direct role in stabilizing the Navier-Stokes equations by means of a 
multiscale7 approach. Thus, the UHVROYDEOH scales ( �Y ) are distinguished from the XQUHVROYDEOH�
scales ( �E ) that are, in fact, represented as bubbles. However, the mass conservation requires 

controlling the bubble L2 norm in contrast to the classical Stokes stabilization, due to the 
orthogonal properties of the bubble. 

��� EYY += � (5) 

When we consider only the Stokes bubble, we have:  
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The problem with this last formulation is that it assumes ( )�Y⋅∇  and ( )�E⋅∇−  equals. 
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But, in the case of high Reynolds numbers (big density and small viscosity), ( )�E⋅∇−  does 

not vanish, and therefore, neither does ( )�Y⋅∇ . Consequently, the mass conservation equation 

( )0=⋅∇ �Y  is not verified, and we need to modify the stabilization as following:  
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This way, we observe that the mass is much better conserved then with the previous 
stabilization. 

 

�� 75$163257�(48$7,21�

���� 3XUH�DGYHFWLRQ�HTXDWLRQ�
For interface tracking purposes, we introduce a phase variable α  that demands to be 

transported along with the computed velocity. As a transport equation, we choose a pure 
advection scalar equation that is well suited to compute moving liquid when the complex 
interface shape varies quickly at very large amplitude: 

0. =∇+
∂
∂= YWGW

G ααα �
(8) 

We can use α  to approach the characteristic function of the phases, like in the framework 
of a Volume of Fluid technique. This way, α  represents the volume of fluid contained in each 
element, and thus, is discontinuous between elements. A finite element method of the type of 
discontinuous Galerkin 2 can be used to solve such a problem with a 3� interpolation. For 
years, this technique has been proved to be very effective, especially because of its robustness 
in terms of time steps and mass conservation. However, it causes a pretty important numerical 
diffusion, it often demands a mesh adaptation to keep track of an accurate interface 4,5, and its 
discontinuous interpolation is not very adequate for our coupling model. 

Otherwise, we can improve the order of approximation for the interface capture by using a 
continuous 3� space interpolation. It is then interesting to have a regular α , like a Level-Set 
function, that is initialized as a distance function to the interface: ( ) ( )Γ= ,[GLVW[α . Thus, the 

zero isosurface ( ) 0=[α  represents perfectly the interface. After having initialized the phase 

variable, we can transport α  and then conserve the interface ( ) 0=[α ; but the Level-Set 
function itself is not conserved. At this point, we can either use a full Level-Set method (and 
reinitialize the function a every time increments) or apply an upwind effect to the advection 
by using a method like SUPG. In this paper, we focus on this last point: an association of a 
Level-Set – like function and a SUPG – like stabilization method. 

Ωin 
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Furthermore, with a continuous interpolation 3�, we solve for one scalar per node in the 
mesh, whereas, with a discontinuous interpolation 3�, we solve for one scalar per element that 
are much more numerous than the nodes (about 2 times more in 2D and 5 or 6 times more in 
3D). That makes the resolution much faster: a continuous resolution takes 14 seconds while a 
discontinuous resolution takes 63 seconds. A last, but not least, the memory needed in the 
linear system is much larger in the discontinuous case. Then, we are more interested in a 
continuous interpolation 3�. 

���� 9DULDWLRQDO�DQG�ILQLWH�HOHPHQW�IRUPXODWLRQV�
The variational problem consists in finding ( )Ω∈ 1+α  with ( )Ω∈ 1

0+φ  such that:�
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With the same discretization as for the Navier-Stokes equations, α  is approached by the 
solution �α  of this problem: 
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���� 6WDELOL]DWLRQ�
While finite element methods (and the classical Galerkin formulation naturally associated 

with them) are well suited for solving incompressible fluid flows, they are somehow 
inappropriate for purely convective problems. The reason is that the central differencing 
property of the standard Galerkin method causes spurious oscillations in the solution when the 
problem is not dominated by diffusion, but by advection. 

Firstly, we observe that a standard Galerkin method gives much better results (and less 
oscillations in the solution) when the function α  to be transported is initialized as a Level-Set 
function; i.e. a distance function to the fluid interface. 

Secondly, we can apply stabilization by keeping the bubble and multiscale philosophy 8, as 
for the Navier-Stokes equations. This way, the method like the Residual-Free Bubbles 6,8,9 
provides us the wanted stabilization for the advection problem: 
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�Y  is the average velocity norm in the element N, and 
�

�K  is the length of the longest 

segment parallel to 
	Y  and contained in N. 
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Note: in practice, we find that a semi-implicit model works better, especially in terms of 
mass conservation. Thus, we define the term ( )Y� .α∇  to be ( ) ( )YY� .21.21 −∇+∇ αα , where 

−α  represents the known solution of the previous time increment. 
 

�� 08/7,�3+$6(�02'(//,1*�

���� ,QWHUIDFH�FDSWXUH�
This paragraph shows a way to couple the Navier-Stokes equations with the scalar 

advection equation in order to simulate multi-phase flows. The issue here is to capture 
effectively the interfaces between phases. 

Since, as seen previously, it is better to transport a Level-Set – like function with our 
continuous (3� interpolation at the nodes) formulation, we initialize α  as a signed distance 
function to the interface: 





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=
<
>

interface at the    0

fluid second in the    0

fluidfirst  in the    0

α
α
α

 

(12) 

As a matter of fact, this initialization technique provides an almost perfect initial interface 
definition: the isosurface of α  at zero shows perfect planes and curves (see figure 2). This 
way, we gain precision versus discontinuous methods that define phases inside elements 4,5. 

 

Figure 2: Level-Set initialization of α  in 2 dimensions 

Then, when this function is transported during the simulation, the isosurface zero of α  is 
kept to be the fluid interface. Moreover, thanks to the fact that α  is signed, the different 
fluids present in the flow can be located by using an appropriate mix law presented in the next 
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section. For sake of simplicity, this paper only considered bi-fluid flows, but the presented 
methods can easily be extended to a higher number of different fluids present in the flow. 

���� $�PL[�ODZ�IRU�PXOWL�SKDVH�PRGHOLQJ�
Since we have several phases and only one flow solver, we need to turn the different 

viscosities and densities into homogeneous parameters to use during resolution of the Navier-
Stokes system. Thus, based on a mix law, we make η  and ρ  depend on the characteristics of 

each fluid: for a simulation involving a first fluid with viscosity 1η  and density 1ρ , and a 

second fluid with viscosity 2η  and density 2ρ , we define the parameters η  and ρ  in the 
Navier-Stokes equations as following: 

( ) ( )( )
( ) ( )( )
( ) [ ]1,0

1

1

21

21

∈
−+=
−+=

α
αραρρ
αηαηη

I
II
II

 

(13) 

With such a definition, we have 1ηη =  and 1ρρ =  in the first fluid; 2ηη =  and 2ρρ =  in 
the second fluid; and intermediate values inside a given mix zone. We will see that this buffer 
zone where the two fluids coexist at the same time can be as small as the element size. This 
way, the diffusivity goes no larger then the mesh size all along the simulation. 

( )αI  can be straight or not, abrupt or gradual, etc...; and that determines the nature and the 
size of the buffer zone. A judicious choice is to set this buffer zone only inside some wanted 
elements. In fact, such a function decides the amount of all fluids present inside elements 
crossed by the interface; while other elements are all fully filled by one fluid or another. A big 
benefit would be that the zone where several fluids coexist is totally controlled, and cannot 
grow larger then the element size. By looking at the numerical diffusion brought naturally by 
pure advection equations, this last point is significant. 

The section 6 shows applications involving two phases with very different parameters 
(local Reynolds can reach about 10 000), and we can see that the propose mix law manage 
efficiently this difference. 

���� &RXSOHG�IRUPXODWLRQ�
The two models we seek to couple are both using continuous discretizations (3� 

interpolation), so we can solve (Y��S�α � simultaneously in a single system, without having to 
include another model like mesh adaptation. Consequently, the resulting strong coupled 
system contains five unknowns per node of the meshed cavity (in three dimensions). Thus, the 
final coupled formulation looks like: 
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The system (14) being defined globally in the whole domain Ω , the test functions Z, T and 
φ  of the corresponding weak formulation are required to vanish at the boundary of the 
domain, but not at the interface of the fluids:  
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�� 3$5$//(/�(19,5210(17�
The finite element solver described above has been implemented in parallel by using the 

Message Passing Interface (MPI). The local matrices and second members are injected in the 
PETSc libraries, which solve the linear system of five unknowns per node (in three 
dimensions) with a Generalized Minimal Residual method. 

First, we executed our parallel code on a PC cluster, and then, on a computational grid 
made of several linked clusters. Thus, we have the opportunity to run some large application 
cases that will be presented in the last section of this paper. 

���� 3&�FOXVWHU�
The PC cluster we use here contains 32 Pentium IV (2.8 GHz) bi-processors with 2 GB of 

RAM and a Myrinet network at 2 Gb/s. Our application has a very good parallel efficiency: a 
simulation that takes 1 day, 18 hours and 36 minutes on 1 processor, takes 1 hour and 19 
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minutes on 32 processors. That makes an acceleration of 32.4 on 32 processors (note that the 
cluster has a non-exclusive usage, which can introduce some random fluctuations in timings). 

Next, we were able to execute a case of multi-phase flow in a 3 dimensioned cavity 
meshed pretty finely with 2 148 355 nodes and 12 418 472 elements. During this simulation, 
600 time increments were necessary, and 6 billions and 450 millions unknowns were solved 
at each increment. The computations lasted for 5 days and 1 hour on 32 processors of our PC 
cluster. Note that, inside a single cluster, performances are supposed homogeneous, and then, 
a standard uniform partitioning is enough to make a good load balancing among the 
processors: in this case the amount of work is simply divided by the number of processors. 

���� &RPSXWDWLRQDO�JULG�
In the framework of the MecaGrid project, a computational grid has been built by 

connecting the PC clusters of several sites. This grid is dedicated to computations in 
heterogeneous fluid mechanics. The performances in terms of computational power and 
network speed are considerably heterogeneous throughout the grid: not only are the clusters 
themselves different, but also the internet links between them are very different and somehow 
less effective then the network connections inside each cluster. Therefore, we need to generate 
a partition that takes into account this kind of information, so that processors and networks 
that are less efficient do not slow down others too much. Our partitioning optimization tool 
divides the mesh in an effective way such that powerful processors have more work to do than 
others. In addition, the interfaces between partitioned mesh parts are minimized in function of 
the network speed. This way, the better a network between two processes is, the more 
communications there are, compared with other slower pairs of processors. 

Furthermore, other techniques can improve even more the grid usage: since we are 
penalized by bad communication between sites due to a basic internet connection (with some 
random fluctuations in speed), we prefer to give more computation work to the processors in 
order to lower the amount of communications. Thus, with the PETSc library, we apply 
different degrees k to the ILU(k) preconditioner, before the linear system is solved by an 
iterative method. For instance, compared with the ILU(0), ILU(1) allows more nonzero 
entries in the matrices, but needs less iterations to converge towards the solution of the linear 
system. As a result, processors have more computations to make, but communicate less with 
others using MPI messages. However, the memory needed by processes is significantly 
larger. With this technique, we are able to improve the simulation time of about 40%, which is 
not negligible. 

 

�� 9$/,'$7,216�$1'�$33/,&$7,216�
In this section, we validate the choices made during the formulation part of this paper 

(paragraphs 2 and 3), especially by looking at the spurious oscillations that appear in the 
solution of the transport equation, and the mass conservation offered by both pure advection 
and Navier-Stokes equations. After, the falling fluid column test case is presented in two and 
three dimensions. 
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���� 3XUH�DGYHFWLRQ��2VFLOODWLRQV�
The test case we use here is a fluid column falling under its own weight, with a small 2D 

mesh of 2 205 nodes and 4 408 elements. The association of the Navier-Stokes equations and 
a transport equation solved by different methods, allows us to make some comparisons in 
terms of oscillations caused by the pure advection equation. The table 1 shows the maximum 
oscillations appearing in the solution after 100 time increments caused by a discontinuous 
Galerkin, a continuous standard Galerkin, a Level-Set, a SUPG and a Residual Free Bubble 
(RFB) method (discussed in 3.2): 

 
Method Discontinuous Standard Galerkin LevelSet SUPG RFB 

Oscillations % 0 180 0.4 1 0.6 

Table 1: Transport equation: Oscillations in the solution 

A 0% oscillation means that a scalar [ ]1,1−∈α  that is transported stays between -1 and 1; 

and a 100% oscillation means that a scalar [ ]1,1−∈α  that is transported goes from -2 to 2 at 
the end of the simulation. 

Although a discontinuous method causes no oscillation, a Standard Galerkin provokes a lot 
of spurious oscillations. But, stabilization techniques like Level-Set, SUPG or RFB reduce 
significantly the unwanted noise in the solution. 

���� 3XUH�DGYHFWLRQ��0DVV�FRQVHUYDWLRQ�
At the beginning of the simulation, the fluid column has a total mass of 2; and the table 2 

shows the remaining mass of fluid after 100 time increments. A perfectly conservative 
method must show a mass of 2 all along the simulation. Here are compared several methods 
to solve the scalar advection equation: the discontinuous Galerkin and the standard Galerkin 
methods; and a standard Galerkin method with a semi-implicit time scheme (discussed in 
3.3): 

 
Method Discontinuous Standard Galerkin Semi-mplicit 

Mass remaining 1.986 1.853 1.964 
Pourcentage lost 1.4 14.7 3.6 

Table 2: Transport equation: Mass of fluid remaining after 100 time increments 

We can see that different finite element methods show various results: while a 
discontinuous Galerkin method is well conservative, the standard Galerkin does seem to 
conserve the mass effectively. However, using a semi-implicit time scheme helps a lot, and 
conserves the mass in a much better way. 

���� 1DYLHU�6WRNHV�HTXDWLRQV��0DVV�FRQVHUYDWLRQ�
Our discontinuous method to solve the pure advection scalar equation is known to 

conserve efficiently the mass and to have a good solution without any spurious oscillation. 
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Then, a decoupled model of the Navier-Stokes equations and this discontinuous transport can 
be used for comparison purposes about the Navier-Stokes stabilization. The table 3 contains 
the amount of fluid that remains after 100 time increments by using the stabilizations of 
equations 6 and 7: 

 
Stabilization Equation 6 Equation 7 

Mass remaining 1.767 1.986 
Pourcentage lost 23.3 1.4 

Table 3: Navier-Stokes stabilization: Mass of fluid remaining after 100 time increments 

We observe that the Navier-Stokes equations with a basic Stokes stabilization (equation 6) 
loses 23.3% of the mass after 100 increments, while our Navier-Stokes stabilization (equation 
7) is much more conservative and loses only 1.4% of mass after 100 time increments. 

���� 7KH�IDOOLQJ�IOXLG�FROXPQ�LQ��'�
This test case is often used to validate study of non stationary fluid flows with a moving 

free surface. A fluid column gets crushed under its own weight and surges from wall to wall. 
The air that surrounds the fluid in the cavity is considered to be an incompressible fluid with 
smaller viscosity and density. Thus, the behavior of the fluid approaches a free surface flow 
where local Reynolds can reach about 10 000. 

The figure 3 shows the presence of the fluid at six given moments during the simulation. 
The function α  was initialized as in the figure 2 (see paragraph 4.1), and transported with the 
flow velocity. The fluid (here in a red color) has a higher density and viscosity then the 
second fluid (in blue on the picture). The mixed zone (in green), where the two fluids coexist 
at the same time, is not larger than the elements crossed by the interface. 

In this example, the mesh contains 35 364 nodes and 70 762 elements, and 2 000 time 
increments were needed for a 5 seconds simulation time. It was executed on 16 processors of 
a PC cluster and lasted for about 2 hours. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Falling fluid column in 2D 
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���� 7KH�IDOOLQJ�IOXLG�FROXPQ�LQ��'�
This example is the same as the previous one, but in 3 dimensions. The 3D cavity is 

meshed with 2 148 355 nodes and 12 418 472 elements, and 600 time increments were 
needed for a 3 second simulation time. The computation lasted for 5 days on 32 processors. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Falling fluid column in 3D 
 

�� &21&/86,216�
We describe a general approach based on a stabilized finite element method that allows us 

to treat large scale problems involving moving interfaces. The stabilization has been 
performed mainly throughout the multiscale and residual free bubble methods for both the 
incompressible Navier-Stokes equations and the pure advection equation. 

An interface tracking of a fluid column falling under its own weight is proposed with a 
mesh of over 2 million nodes (and 12 million elements). 
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