
Proceedings of the 2001 International Conference on Auditory Display, Espoo, Finland, July 29- August 1, 2001

A VERSATILE SOFTWARE ARCHITECTURE FOR VIRTUAL AUDIO SIMULATIONS

Nicolas Tsingos

Bell Laboratories
tsingos@research.bell-labs.com

ABSTRACT

Existing real-time audio rendering architectures provide rigid de-
velopment frameworks which are not adapted to a wide range of
applications. In particular, experimenting with new rendering tech-
niques is virtually impossible.

In this paper, we present a novel, platform-independent soft-
ware architecture that is well suited for experimenting with multi-
channel audio mixing, geometrical acoustics and 3D audio pro-
cessing in a single framework. Our architecture is divided into
two layers. A low level DSP layer is responsible for streaming and
processing audio buffers using a general filter-based formalism.
Built on top is an audio rendering layer responsible for general
geometry-based audio rendering and configuration of the render-
ing setup. In particular, we introduce sequence objects which we
use to define and control arbitrary sound propagation paths in a
geometrical 3D virtual environment. We discuss implementation
details and present a variety of prototype applications which can
be efficiently designed within the proposed framework.

1. INTRODUCTION

Virtual acoustics simulations are essential applications of today’s
audio processing techniques, especially in the context of interac-
tive virtual environments (gaming, simulators), acoustics simula-
tions (concert hall design, environmental noise studies) and realis-
tic multi-channel mixing.

Several digital signal processing hardware and software archi-
tectures have been proposed to achieve real-time auralization in
virtual acoustic environments. However, most of them are tar-
geted towards very specific applications, e.g. 3D positional audio
and reverberation effects for video games. As a result, they tend
to provide control at a very high level which greatly impacts their
flexibility and extensibility. Moreover, they cannot be used to au-
ralize sound in arbitrary environments based on geometrical sound
propagation paths (see Figure 1).

In this paper, we propose a new, platform-independent, soft-
ware architecture and Application Programmer Interface (API),
well suited to a wide variety of applications. Our audio rendering
pipeline offers to the programmer several entry points resulting in
improved flexibility. As a result, our software architecture allows
for incorporating multi-channel audio mixing, geometrical acous-
tics, 3D positional audio rendering and lower level DSP operations
into the same framework.

We propose a two-layer architecture. A low level layer is
responsible for common DSP operation on multi-channel sound
buffers through the definition of filters which can be used to per-
form any kind of operation on a source buffer. Our prototype im-
plementation supports a multi-processing kernel for the filters.

Figure 1: A real-time geometrical acoustics simulation based on
beam tracing which computes early diffracted and reflected paths
in large, densely occluded, virtual environments (2000 polygons in
the case of the pictured building floor). Currently available audio
rendering APIs do not offer enough flexibility to achieve interac-
tive rendering of computed sound propagation paths.

Built on top is an audio rendering layer responsible for gen-
eral geometry-based rendering, including 3D positional audio pro-
cessing, and rendering configuration control. Unlike previous ap-
proaches, our entry point to the geometrical acoustics rendering
pipeline is based on individual sound propagation paths. Control
of the sound paths is achieved either by specifying the position and
attributes of equivalent virtual image-sources or simply by spec-
ifying sequences of corresponding scattering events (reflections,
diffractions, etc.) and associated geometrical primitives (surfaces,
edges, etc.). We separate the construction of the propagation paths
from the generation of the corresponding potential propagation se-
quences, the latter being left to the main application. It is thus
possible to use any geometrical technique (ray tracing, beam trac-
ing or image sources) to find the relevant propagation sequences.
Moreover, we propose adaptive techniques to tune the rendering
of each sound path individually, using less resources for perceptu-
ally less meaningful paths. Our architecture is designed to support
time-critical multiprocessing applications, where the geometrical
acoustics simulation is not necessarily carried out synchronously
with the actual audio processing. In this context, we discuss tools
for coherent update of the geometrical parameters over time, re-
sulting in artifact-free sound generation.

Our paper is organized as follows: in Section 2, we discuss
prior related work. Then, we present an overview of our soft-
ware architecture in Section 3. In Sections 4 and 5 respectively,
we present the low level DSP layer and the higher level geometri-
cal acoustics/audio rendering layer. Finally, we give further detail
on our prototype implementation and present sample applications,
which were efficiently produced using our API, before concluding.

ICAD01-1



Proceedings of the 2001 International Conference on Auditory Display, Espoo, Finland, July 29- August 1, 2001

2. RELATED WORK

For the past 20 years, a tremendous effort has been devoted in the
audio community to the problem of simulating and auralizing vir-
tual sound sources [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. Although
most aspects of the involved signal processing operations have
been and are still subject to intense studies [13], no sufficiently
flexible audio rendering software architecture has been proposed
to date.

Several hardware solutions and associated software APIs have
been proposed in the past few years but they fail to provide the nec-
essary level of control for a variety of applications. First, most of
them are targeted towards very specific applications such as video
games and try to provide only high level controls to the game pro-
grammer: they are dedicated to 3D positional audio with additional
reverberation modeling and do not allow for more accurate audio
rendering relative to the geometry of the considered virtual envi-
ronment [14, 15, 16, 17, 18, 19]. While this is not a major concern
for video games or audio production applications, it might become
a severe limitation for accurate simulation systems.

Some systems implement geometry-based rendering techniques
[20, 21] but are limited by an inefficient simulation technique (re-
cursive image-sources generation) and a high level interface (set-
ting the position of sources, listener and surfaces) which prevents
the use of alternate methods to generate the sound propagation
paths. As a result, only a very small number of paths can be
computed, updated and rendered. Moreover, geometry-based ren-
dering in a complex, fully dynamic, environment is still difficult
to achieve without artifacts (sound paths popping in and out due
to occlusions, need for diffraction modeling, need for resampling
to accommodate delay variation along moving paths and Doppler
shifting effects, etc.).

Other hardware systems such as convolution engines [20, 22]
provide efficient tools to perform large convolutions which are
well suited to late reverberation effects. However, they can hardly
be used to auralize the output of a typical interactive geometry-
based simulation which usually consists of a moderate number
of direct, early reflected and possibly diffracted sound paths (e.g.,
1 to 50 per sound source).

No existing hardware-supported system provides a satisfying
solution to efficient rendering of independent sound paths mostly
because they fail to provide an interface to the rendering pipeline
at the sound-path level.

Recently, several efforts have been made in order to bridge
geometry-based and perceptual-based techniques. Savioja et al
[23] presented the description of a software system for audio ren-
dering in virtual environments. However, here again, although
many details of the signal processing are explored, it is not clear
whether the described system can easily accommodate a wide range
of applications. In particular, the presented signal processing ar-
chitecture is fixed and no API is described for development needs.
The same comment applies to MPEG4 [24, 25] spatial audio ex-
tensions which allow for describing a 3D audio scene with both
geometry-based and perceptual-based information.

Recent work on the VAS toolkit [12] is probably the closest
in spirit to ours. The authors aim at introducing a general soft-
ware toolkit for creating virtual sonic environments. In particu-
lar, they introduce very interesting tools to deal with procedurally
generated sound sources and perceptually-based scheduling and
processing of sound generation. However, the toolkit seems to be
mostly dedicated to spatializing direct sound from the sources and

its interface seems to be lacking low level tools for audio buffer
handling and DSP operations, which might impact its portability
and openness.

In contrast to the previous systems, whose frameworks tend to
be fixed, low level development systems such as IRCAM’s MAX [26]
have been presented in the context of musical applications and en-
countered a wide success in the computer music community. They
provide a variety of signal processing tools which can be com-
bined together to create a more complex application. Although,
extensions of the MAX system to virtual acoustics applications (IR-
CAM’s Spat [4]) have been proposed, they are still lacking proper
higher level tools to accommodate efficient geometry-based acous-
tic rendering in complex dynamic virtual environments.

In the remainder of this paper, we describe a software architec-
ture which intends to balance simplicity of use and desire for con-
trol and openness by allowing a programmer to perform low level
DSP operations over the audio data while providing higher level
entry points well suited to geometry-based virtual audio applica-
tions. We also discuss new tools for more flexible and efficient
integration of geometry-based audio rendering in a wide range of
virtual acoustics applications.

3. OVERVIEW OF PROPOSED ARCHITECTURE

Our architecture is decomposed into two main layers both accessi-
ble from the application level (see Figure 2).

call stack

DSP 
threads

Signal processing layer

Geometry based layer

Application layer

System layer

Figure 2: Overview of the proposed architecture which combines a
high level geometry-based interface with low level signal process-
ing calls. All necessary calculations are handled by a parallel DSP
kernel (if multiple processors are available on the host computer).

The lower level layer is a DSP layer that manages sample
buffers which are the key objects for sound manipulation. In ad-
dition to providing multi-channel audio I/O and buffer manage-
ment capabilities, this layer provides the definition of filter objects
which can be used to process the audio data. We further describe
the DSP layer and filter objects in Section 4.

On top of the DSP layer, we introduce a higher level audio ren-
dering layer which uses geometrical information about the envi-
ronment. In our case, geometrical properties, such as sound source
position, are not attached to a particular sound buffer as in [14]. In
the same way, we do not attach environmental reverberation effects
to a buffer or to a particular sound source or listener as in [14, 12].
We introduce a new class of general sequence objects which are
used to represent a 3D propagation path derived from geometrical

ICAD01-2



Proceedings of the 2001 International Conference on Auditory Display, Espoo, Finland, July 29- August 1, 2001

information. Such objects are rendered to a destination buffer us-
ing a specific audio processing filter (see Section 6.1). The virtual
audio scene can include any number of such paths which are used
to represent direct or indirect contributions of multiple sources to
one or several listeners. Full control of the number of paths per
sound source and how they are generated is thus left to the main
application. We also describe a mechanism to update the geomet-
rical information asynchronously from the actual audio rendering
stage. We further detail these points in Section 5.

Since the application can access both geometry-based routines
and lower level DSP calls, the environment is fully open. In par-
ticular, it is easy to combine geometry-based rendering with statis-
tical late reverberation usually implemented with IIR filters. This
can be achieved directly by introducing new late reverberation fil-
ters objects in the DSP layer.

4. THE DSP LAYER

The basic object provided by our architecture is a (multi-channel)
audio buffer. The DSP layer provides an interface to creating, han-
dling and processing audio buffers.

4.1. Audio buffers and buffer handling

We use a classic technique to represent multi-channel audio data
as an array of interleaved integer or floating point values. Audio
buffers are characterized by several properties such as their number
of channels, sampling rate of the audio data and quantization. They
are also given a chunk size which is the atomic number of audio
frames to be processed by calls to filter objects or to be streamed in
or out. In our current implementation, the chunk size is specified
when creating the buffer and may be different for every buffer.
However, once fixed it cannot be changed. We did not found this
to be a limitation but, if necessary, a variable processing size could
easily be used. The typical chunk size we used for audio rendering
is 1024 samples (about 1/50th of a second at CD quality). The
total length of an audio buffer can then be defined either as a fixed
number of such chunks or by a total number of audio frames.

Our buffer objects do not carry higher level properties (such
as source location, etc.) as DirectSound 3D buffers. Instead, they
act mainly as storage space for audio data. Buffers can contain
any number of channels or tracks. These channels can be used
in the usual multi-channel “surround” sense but can also be used
as completely independent tracks. In particular, multiple channels
could be used to store a frequency band decomposition of a single
mono signal and perform operations on these different bands.

Finally, our buffers are all circular buffers, i.e. data access
outside the buffer range is looped over the beginning or the end.
Creating buffers “longer than needed” is necessary to apply IIR
(need for past samples) or FIR (need for feed forward access) fil-
ters. Current processing or streaming point is defined by a current
chunk index which needs to be shifted over time.

4.2. Buffer I/Os

A convenient way to design a platform-independent audio buffer
I/O and streaming both from disk (audio file loading), audio hard-
ware (audio playback) or network, is through a stream object. Our
architecture supports I/O stream objects which are used to direct
buffer data to a specific output (file, audio hardware, network, etc.)

or to load a buffer with data from equivalent inputs. In our cur-
rent implementation, no data conversion is performed at this stage,
so the I/O object configuration (channels, sample rate, etc.) must
match the configuration of the sound buffer. A particularity of the
I/O streaming objects is that they can be used either directly or
through an attached callback responsible for handling the buffer
data. This allows for using polling capabilities already existing at
the operating system level on certain platforms (e.g., SGI Irix) 1.

4.3. DSP operations on buffers

DSP operations on sound buffers are defined through filter objects
which provide a basic command to process a source buffer. A filter
here is not limited to finite or infinite impulse response filtering but
is simply a procedure applying any kind of processing to an audio
buffer. Each filter may possess its own user defined parameters and
derived methods in order to provide control at the required level
(for instance, a late reverberation filter might have a reverberation
time control). Filters can be used inside other filters which makes
it easy to extend an existing set of operations. Filter objects can
be applied directly to buffer objects or called via a multi-threaded
processing kernel for parallel execution. The processing kernel is
currently implemented as a stack of processing commands which
can be accessed by a configurable number of processing threads.
Scheduling controls are available to select the desired processing
order for each filter call. The DSP kernel together with the I/O
stream object described in the previous section are the only system
dependent components in our architecture.

Our current implementation supports three basic filters on au-
dio buffers: mix, convolve and resample. All operations take a se-
lected source track in a source buffer, apply the operation (which
can take a few additional parameters) and copy or add the resulting
data to the selected destination track of the destination buffer. The
mix operation allows for copying a chunk (as defined by the buffer
chunk size) of data from a source buffer to a destination buffer. It
also supports a constant integer delay and a linear ramp between
two specified gains which can be applied while the data is copied.
The convolve operation applies a IIR or FIR filter to the current
chunk of the source buffer and copies the resulting data to the cur-
rent chunk of the destination buffer. If recursive IIR filtering is
used, samples inside the previous active chunk will be accessed.
If FIR feed forward filtering is used, samples inside future active
chunks will be accessed. Our circular shifting mechanism allows
to accommodate both. Our final operation, resample differs from
the previous ones, since it allows for accessing audio data at any
(non-integer) time index [27, 28]. It is similar to the mix operation
but allows to access a chunk of audio data with floating point de-
lay. Two delays can be specified which are linearly interpolated as
the chunk of source data is copied to the destination buffer. Several
schemes can be used for the waveform interpolation depending on
the desired quality and computing resources (for example, see Sec-
tion 6.2).

5. THE GEOMETRICAL ACOUSTICS AND AUDIO
RENDERING LAYER

Our second, higher level layer, implements interface to geometry-
based audio rendering and 3D positional audio. We introduce

1the system will automatically call the audio callback to fill the buffer
as often as required to guarantee continuous audio output, possibly slowing
down other processes.

ICAD01-3



Proceedings of the 2001 International Conference on Auditory Display, Espoo, Finland, July 29- August 1, 2001

novel sequence objects carrying geometrical information which
are used to render a source buffer to a destination buffer. These
objects correspond to individual sound propagation paths and are
the entry point to our geometrical acoustics rendering pipeline.

A sequence object, corresponding to a unique sound propaga-
tion path, is introduced to store a list of pointers to geometrical ob-
jects including two endpoints (source, listener) and possibly sev-
eral surfaces or edges (for reflection and diffraction). Accordingly,
basic classes are provided to handle geometrical primitives such
as points, polygonal surfaces and wedges. These basic primitives
can be used by the main application to derive source, listener and
surface objects including acoustic properties such as directivity or
filtering functions.

Sequence objects are typically obtained as the output of a ge-
ometrical acoustics simulation (see Figure 3). We do not assume
any a priori method to generate the propagation sequences, such
as brute-force recursive enumeration (e.g., image-sources), since
far better techniques have been recently introduced [29, 30, 31].

conservative generation
of reverberation tree

path generation
rendering parameters update

auralization

geometry update

~50/100 Hz

~44100 Hz

~10 Hz

~30 Hzavatars positions
surface positions

potential visible
set of virtual 
sources

visible paths
lengths and
properties

resampling
filtering
mixing

visibility 
checks

Figure 3: Typical organigram of a geometry-based virtual acous-
tics application. Every stage may executed concurrently and asyn-
chronously. We indicate for each stage of the process the corre-
sponding operations and typical refresh rates.

In a typical application, sound path creation/update and audio
rendering will be executed concurrently. The main application will
be responsible for running a geometrical simulation to generate a
list of potential propagation sequences, while our API will be used
to compute associated path attributes and validity. In the case of
dynamic environments, the paths attributes (length, hit points on
surfaces, visibility, etc.) must be updated continuously over time.

A sequence object supports two update modes. First, an au-
tomatic mode in which the main application only updates the ge-
ometrical objects properties (e.g., location of source, listener and
surfaces) while all attributes of the corresponding path are updated
automatically including length, hit points, incident and outgoing
direction on surfaces. This is quite easy since each path is the
shortest path from the source to the listener stabbing a given se-
quence of surfaces and (possibly) edges [32]. 2 This limits our
current implementation to specular reflections, transmission and
edge diffraction. Indeed, a sequence of such events can be repre-
sented, under the assumptions of geometrical acoustics, by a sin-
gle propagation path or, in an equivalent manner, a virtual point
source.

A second possibility to update a sequence is to let the main ap-
plication directly provide the location of the corresponding virtual
source, which might be more convenient or efficient in some cases.

2an application of the generalized Fermat principle.

The same applies to other geometrical properties of the paths, such
as hit points and incident/outgoing directions on surfaces. This
gives complete control on path generation to the main application
but still provides a possible entry point to our framework for sub-
sequent processing.

Visibility updates must be provided by the main application,
since we do not provide any access to the global spatial data struc-
ture in our architecture. However, validity checks along the path
are provided and can be enabled on a per surface (or edge) ba-
sis. This is useful if the paths are generated using the image-
sources technique or conservative beam-tracing [30] (path inter-
section with portals must be verified) but is useless if ray-tracing
with an extended spherical listener is used [33]. Visibility prob-
lems in the case of sound waves are also closely linked to the
treatment of diffraction by obstacles. The main application is also
responsible for providing visibility checks and possible diffraction
treatment (for instance by introducing new diffracted propagation
paths from edges) [1, 32].

In the context of dynamic environments, we recently intro-
duced original techniques allowing the main application to update
sequences and path attributes asynchronously from the subsequent
audio rendering [34]. Accordingly, our sequence objects also in-
clude a prediction mechanism which can be used to extrapolate
necessary geometrical attributes (path length, incident direction on
listener, etc.). When continuous changes occur in the environment,
continuously varying attributes for every sound path can be com-
puted by our sequence object. Artifact-free sound generation can
then be maintained, even if the main application provides slow
or discontinuous updates of the possible propagation sequences
when sources and listeners are moving through the virtual envi-
ronment. Moreover, when a significant number of sequences are
considered, the cost of constructing the corresponding propagation
paths might also impact the update rate significantly (especially
when edge diffraction is present). Such a way of uncoupling geo-
metrical calculation from signal processing is thus mandatory.

6. PROTOTYPE SOUND PATH RENDERER

In this section we discuss different aspects of an extension to our
framework which implements a prototype sound path renderer.
This extension defines additional objects to perform all signal pro-
cessing operations involved in the auralization of a sequence ob-
ject: a geometrical rendering filter and a mapping filter.

6.1. Geometrical rendering filter

To render a given sequence of geometrical events (i.e. reflections,
transmissions, diffractions) we introduce a specific filter object as
defined in Section 4.3. Given a pointer to a propagation sequence,
the filter uses the current attributes of the corresponding propaga-
tion path to process a given source buffer and write the resulting
data to a destination buffer. This usually involves resampling of
the source audio data, filtering and possibly panning for various
configurations of speakers [13, 12, 23]. Our current implemen-
tation of such a filter models frequency-dependence as a simple
re-equalization over a set of predefined frequency bands but more
complex models could be used [23]. All signal processing is im-
plemented using basic filters from our lower level API.

ICAD01-4



Proceedings of the 2001 International Conference on Auditory Display, Espoo, Finland, July 29- August 1, 2001

6.2. Adaptive rendering of sound paths

The originality of our geometrical rendering filter is to provide
adaptive rendering of individual sequence objects. First, since we
offer direct manipulation of propagation sequences, the main ap-
plication is totally free to generate any number of sequences per
sound source or to select the sequences to render based on per-
ceptual factors [12]. Moreover, the complexity of the DSP oper-
ations involved in rendering a sequence can be tuned to provide
more processing power and resolution to most significant sound
paths. In particular, we propose to perform adaptive resampling
when computing variable delay effects (Doppler shifts). Depend-
ing on the amplitude for the path contribution and the compres-
sion/expansion ratio of the signal, it is possible to choose between
nearest neighbor, linear or higher level interpolation to achieve the
resampling of the audio data. More complex oracles involving
predicted signal-to-noise ratios could also be derived. The same
adaptive processing can be applied to the filtering stage, when ren-
dering a sound path: the number of frequency bands or the type of
filters to use, can be selected depending on the attenuation spec-
trum along the path. Finally, the resolution level can be set glob-
ally which allows for rapid switching from a high quality/slower
implementation to a low quality/faster implementation.

6.3. Audio rendering configuration for sound paths

Virtual audio simulations are likely to be used with a variety of
audio output formats depending on the application (stereophony,
quadriphony, 5.1 and more discrete channels, matrixed formats,
stereo, stereo binaural/transaural, etc.). Completely retargeting an
application to a particular format, though probably more efficient
in terms of signal processing cost, might be a hassle. Since our se-
quence objects keep track of all the geometrical information up to
the actual rendering stage it is easy to accommodate a large variety
of rendering options without any modification to the main appli-
cation code. It also makes it possible to perform the geometrical
simulation once and render the audio simultaneously for different
listeners over different setups.

Several mapping filters can be defined to render a single sound
propagation path from a point source to a point listener to a given
number of output channels. They can implement a variety of tech-
niques such as virtual microphone setups simulating various record-
ing devices, direction based amplitude panning, binaural process-
ing, etc. The mapping filter is called to produce the desired output,
given a source buffer, a sequence object and a compatible des-
tination buffer (i.e., with the proper number of channels). Such
mappings allow a single sound path to be spatialized over multiple
channels. If several sound paths must be computed for a single se-
quence (e.g., one for each ear) multiple sequence objects with dif-
ferent listening locations must be created and independently ren-
dered to the proper channels. The combinations of our geometrical
rendering and mapping filters is close in spirit to the localizer ob-
ject introduced in [12]. However, separating the ”spatialization”
phase allows for improved flexibility and minimizes the changes
to the application when experimenting with a new 3D audio ren-
dering technique or setup.

7. APPLICATIONS

Our API is object oriented and implemented in C++, which makes
it easy to derive and create new processing objects or controls.

Our current implementation runs on SGI and PC Windows sys-
tems. It provides classes for multi-channel sound buffer handling
and streaming, DSP operations, geometrical sound paths render-
ing, and networking/distributed processing capabilities. The cur-
rent implementation supports a multi-threaded DSP kernel for use
on multi-processor machines. We used our software architecture
to design several applications including: a basic sound file play-
back/acquisition from or to disk, a client/server application for au-
dio streaming and rendering, a real-time multi-channel mixing and
panning application and a geometry based auralization application
for fully-dynamic virtual environments including real-time simula-
tion of sound reflection and diffraction. In the first two cases, only
the low level part of the API was necessary. For the multi-channel
panning application, we used our sequence objects to model direct
sound paths from several sources. Different mapping filters were
used to render the sequences over various speaker setups but no
complex geometrical simulation was involved. In the final case,
our API was used to directly construct and render the propagation
paths from potential propagation sequences generated by the main
application. A ray-tracing process was used to generate the se-
quences corresponding to every source-listener channel [23, 34].
We also derived several late reverberation filters which were di-
rectly used to complement our geometry-based rendering. An ar-
bitrary number of such filters can be used in a single scene (as far
as enough computing power is available) and thus reverberations
depending on every source-listener channel can be introduced.

Our API can be used together with standard graphics rendering
APIs such as OpenGL/GLUT or OpenInventor [35, 36]. In partic-
ular, we used them as visualization/interface tools for our panning
and virtual environment applications.

8. CONCLUSION

In this paper, we presented a new software architecture to achieve
real-time audio rendering for a broad variety of applications. Con-
trary to prior spatial audio systems, we provide a low level con-
trol over audio data. Hence, the system is fully extensible since
new DSP operations can be directly implemented. However, we
maintain a higher level interface for geometry-based audio ren-
dering and 3D positional audio. This high level interface is built
on top of the lower layer and thus both can coexist inside the
same application. Our interface to geometrical acoustics is pro-
vided at the sound path level which allows for using any exist-
ing geometrical simulation technique to generate the sound paths.
In that context we described new tools to achieve asynchronous
and artifact-free sound generation and automatic tuning of the re-
quired DSP workload on a per path basis. We implemented a
prototype object-oriented API following the described architecture
which runs on SGI Irix and PC Windows platforms. Our first ex-
periments demonstrated that it is a very efficient and versatile tool
to build a variety of applications involving audio DSP and aural-
ization in virtual environments. We are planning to release a �-
version of our API for research purposes.3

3please, check at: http://www.multimedia.bell-
labs.com/Research/VirtualAcoustics/ for updates.

ICAD01-5



Proceedings of the 2001 International Conference on Auditory Display, Espoo, Finland, July 29- August 1, 2001

9. REFERENCES

[1] Nicolas Tsingos and Jean-Dominique Gascuel, “Soundtracks
for computer animation: sound rendering in dynamic envi-
ronments with occlusions,” Proceedings of Graphics Inter-
face’97, pp. 9–16, May 1997.

[2] F.R. Moore, “A general model for spatial processing of
sounds,” Computer Music Journal, vol. 7, no. 3, pp. 6–15,
Fall 1983.

[3] J.M. Jot, “An analysis/synthesis approach to real-time artifi-
cial reverberation,” Proc. of ICASSP, 1992.

[4] Jean-Marc Jot, “Real-time spatial processing of sounds for
music, multimedia and interactive human-computer inter-
faces,” Multimedia Systems, vol. 7, no. 1, pp. 55–69, 1999.

[5] Henrik Møller, “Interfacing room simulation programs and
auralisation systems,” Applied Acoustics, vol. 38, pp. 333–
347, 1992.

[6] J. Hahn, H. Fouad, L. Gritz, and J. Wong Lee, “Integrating
sounds and motions in virtual environments,” Sound for An-
imation and Virtual Reality, Siggraph’95 Course #10 Notes,
Aug. 1995.

[7] M.R. Schröder, “Digital simulation of sound transmission in
reverberant spaces,” J. of the Acoustical Society of America,
vol. 47, no. 2 (part 1), pp. 424–431, 1970.

[8] Stephen Travis Pope and Lennart E. Fahlén, “The use of 3D
audio in a synthetic environment: An aural renderer for a
distributed virtual reality,” ICMC Proceedings, pp. 146–149,
1993.

[9] Irwin Zucker, “Reproducing architectural acoustical effects
using digital soundfield processing,” Proc. AES 7th Interna-
tional Conference, pp. 227–232, 1989.

[10] M.R. Schroeder, “Natural sounding artificial reverberation,”
J. of the Audio Engineering Society, vol. 10, no. 3, pp. 219–
223, 1962.

[11] Holger Strauss and Jens Blauert, “Virtual auditory environ-
ments,” Proc. FIVE Conference’95, pp. 123–131, 1995.

[12] H. Fouad, J.A. Ballas, and D. Brock, “An extensible toolkit
for creating virtual sonic environments,” ICAD’2000, may
2000.

[13] E.M. Wenzel, J.D. Miller, and J.S. Abel, “A software-based
system for interactive spatial sound synthesis,” ICAD’2000,
may 2000.

[14] B. Bargen and P. Donelly, Inside Direct X, Microsoft Press,
1998.

[15] “Intel c Realistic Sound Experience (3D RSX),” 1998,
http://developer.intel.com/ial/rsx/index.htm.

[16] “Environmental audio extensions: EAX 2.0 Creative c,”
1999, http://www.soundblaster.com/eaudio.

[17] “ZoomFX, MacroFX, Sensaura c,” 1999,
http://www.sensaura.co.uk.

[18] “OpenAL: an open source 3D sound library,” 2000,
http://www.openal.org.

[19] W.F. Dale, “A machine-independent 3D positional sound
application programmer interface to spatial audio engines,”
Proceedings of the AES 16th international conference, Spa-
tial sound reproduction, Rovaniemi, Finland, pp. 160–171,
april 1999.

[20] S.H. Foster, E.M. Wenzel, and R.M. Taylor, “Real-time syn-
thesis of complex environments,” Proc. of the ASSP (IEEE)
Workshop on Application of Signal Processing to Audio and
Acoustics, 1991.

[21] “A3D 2.0 software development kit, user’s guide Aureal c,”
1999.

[22] A. Reilly and D. McGrath, “Convolution processing for re-
alistic reverberation,” Proc. 98th Audio Engineering Society
Convention, Feb. 1995.

[23] L. Savioja, J. Huopaniemi, T. Lokki, and R. Väänänen, “Cre-
ating interactive virtual acoustic environments,” J. of the Au-
dio Engineering Society, vol. 47, no. 9, pp. 675–705, Sept.
1999.

[24] J. Huopaniemi and R. Väänänen, “Advanced audio rendering
capabilities for MPEG4 v.2 BIFS,” 1998.

[25] J.M. Jot, L. Ray, and L. Dahl, “Extension of audio BIFS:
Interfaces and models integrating geometrical and percep-
tual paradygms for the environmental spatialization of au-
dio,” 1998.

[26] M. Puckette, “Combining event and signal processing in the
max graphical programming environment.,” Computer Mu-
sic Journal, vol. 15, no. 1, 1991.

[27] Holger Strauss, “Implementing doppler shifts for virtual au-
ditory environments,” Proc. 104th Audio Engineering Soci-
ety Convention, May 1998.

[28] Udo Zölzer and Thomas Bolze, “Interpolation algorithms:
theory and applications,” Proc. 97th Audio Engineering So-
ciety Convention, preprint 3898, Nov. 1994.

[29] M. Monks, B.M. Oh, and J. Dorsey, “Acoustic simulation
and visualisation using a new unified beam tracing and image
source approach,” Proc. Audio Engineering Society Conven-
tion, 1996.

[30] T. Funkhouser, I. Carlbom, G. Elko, G. Pingali, M. Sondhi,
and J. West, “A beam tracing approach to acoustic mod-
eling for interactive virtual environments,” ACM Com-
puter Graphics, SIGGRAPH’98 Proceedings, pp. 21–32,
July 1998.

[31] T. Funkhouser, P. Min, and I. Carlbom, “Real-time acoustic
modeling for distributed virtual environments,” ACM Com-
puter Graphics, SIGGRAPH’99 Proceedings, pp. 365–374,
Aug. 1999.

[32] Nicolas Tsingos, Thomas Funkhouser, Addy Ngan, and In-
grid Carlbom, “Modeling acoustics in virtual environments
using the uniform theory of diffraction,” to appear in ACM
Computer Graphics, SIGGRAPH 2001 proceedings, Los An-
geles,, Aug. 2001.

[33] H. Lehnert, “Systematic errors of the ray-tracing algorithm,”
Applied Acoustics, vol. 38, 1993.

[34] N. Tsingos, “Artifact-free asynchronous geometry-based au-
dio rendering,” ICASSP’2001, Salt Lake City, USA, may
2001.

[35] Josie Wernecke, The Inventor Mentor, Addison Wesley,
1994.

[36] J. Neider, T. Davis, and W. Mason, OpenGL Programming
Guide, Addison-Wesley, 1993.

ICAD01-6


