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Fig. 1. Video doodles combine hand-drawn animations with video footage. Our interactive system eases the creation of this mixed media art by letting users
place planar canvases in the scene which are then tracked in 3D. In this example, the inserted rainbow bridge exhibits correct perspective and occlusions, and
the character’s face and arms follow the tram as it runs towards the camera.

We present an interactive system to ease the creation of so-called video
doodles – videos on which artists insert hand-drawn animations for enter-
tainment or educational purposes. Video doodles are challenging to create
because to be convincing, the inserted drawings must appear as if they were
part of the captured scene. In particular, the drawings should undergo track-
ing, perspective deformations and occlusions as they move with respect to
the camera and to other objects in the scene – visual effects that are difficult
to reproduce with existing 2D video editing software. Our system supports
these effects by relying on planar canvases that users position in a 3D scene
reconstructed from the video. Furthermore, we present a custom tracking
algorithm that allows users to anchor canvases to static or dynamic objects
in the scene, such that the canvases move and rotate to follow the position
and direction of these objects. When testing our system, novices could create
a variety of short animated clips in a dozen of minutes, while professionals
praised its speed and ease of use compared to existing tools.
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1 INTRODUCTION
Video doodles are an emerging mixed media art that combines
video content with hand-drawn animations to produce unique and
memorable video clips. Adding animated drawings and annotations
to videos is an effective way to emphasize actions and motions of
characters in the scene, to create visual explanatory material for
educational purposes, or simply to make mundane videos more fun,
personalized and attractive.

Artists typically create video doodles by drawing 2D animations
frame-by-frame, using the video as an underlay. The main difficulty
faced by artists following thismanual workflow is tomake the drawn
content interact convincingly with the video content. Let us consider
the example of adding a few animated “doodles” to a tramway video
(see Fig. 1). When drawing a face over the tram, the artist must make
sure that the eyes and mouth follow the tram as it moves across
the frame. However, simply translating the corresponding doodles
may not be enough, as their 2D scale, skew and orientation need to
change to reflect the deformations caused by perspective projection
as the tram comes closer to the camera and makes a turn. Even when
doodling a static background element, such as the rainbow bridge
across the rails, camera motion can yield non-trivial trajectories in
the image plane, which the doodles must follow to appear fixed to
the scene. Other difficulties arise in the presence of occlusions, which
greatly contribute to the perception of 3D layout. For example, the
tram should occlude part of the bridge to give the impression that it
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Fig. 2. At the core of our interactive system is a novel tracking algorithm that deduces the 3D position and orientation of a planar canvas over an RGBD video
given a few keyframes (green denotes a position keyframe, red denotes a position and orientation keyframe). Note how the canvas rotates to align with the
direction of the trajectory and gets occluded by the body and the poles. Users create scene-aware doodles by drawing over the canvas in a simple 2D interface.

passes below it. To summarize, effective video doodles require the
hand-drawn content to be scene-aware, meaning that they appear
as if they were embedded in and synchronized with the content of
the 3D scene captured in the video.
While computer vision methods can assist in tackling this chal-

lenge, existing solutions fall short in terms of accuracy, control, and
accessibility to novice users. Professional video editing software
offers a plethora of tracking algorithms to insert content that fol-
lows video motion [Adobe 2022; BorisFX 2022; Foundry 2022]. But
these algorithms come with numerous parameters to tweak, and
are prone to errors and drift in the presence of occlusion or in areas
that lack reliable image features. Furthermore, tracking algorithms
offer limited support for 3D motion estimation and are not suffi-
cient to simulate occlusions between the inserted drawings and
the video content. Artists reproduce such effects by decomposing
the video into several layers using keyframed binary masks and
rotoscoping. As an alternative to this 2D workflow, estimating the
camera poses and the geometry of the captured scene can serve to
insert virtual objects and re-render the video using 3D modeling
software [Blender 2022b; Kopf et al. 2021; Schönberger and Frahm
2016; Zhang et al. 2021], resulting in accurate perspective and oc-
clusions. But this 3D video editing workflow is still in its infancy as
3D UIs are cumbersome to use with 2D displays and input devices.
We propose a novel interactive system that combines the ease

of 2D drawing with the strength of 3D computer vision to enable
amateurs to create video doodles with a wide range of 3D effects.
Our system takes as input casually-captured videos, which we pre-
process with recent computer vision methods to obtain per-frame
cameras [Schönberger and Frahm 2016], optical flow [Teed and
Deng 2020], and dense depth maps [Kopf et al. 2021]. We lever-
age this geometric information to introduce planar 3D canvases on
which users draw their doodles (Fig. 2). By anchoring these can-
vases to 3D points in the scene, our system automatically renders
the doodles with convincing perspective and occlusion effects. We
further augment the canvases with a dedicated tracking algorithm,
such that the 3D position and orientation of the canvases follow
the arbitrary moving objects they are anchored to. Importantly, we
let users control this algorithm by keyframing the canvas position
and orientation in image-space, effectively hiding most of the com-
plexity of the underlying 3D representation. Our optimization then
solves for the canvas 3D trajectory and orientation that best follows
the scene motion while being constrained by the keyframes. Com-
bined together, our technical and user interface contributions enable

even novices to turn their videos into convincing video doodles for
a variety of applications, ranging from fun posts on social media to
engaging illustrative tutorials.

2 RELATED WORK
We first discuss professional software for video editing as well as
research work that aims at augmenting video editing by leveraging
3D geometry and motion estimation. We then discuss methods
for point tracking, along with the user control they offer, as such
tracking is at the core of our VideoDoodles system.

Professional video editing software. VFX artists and professional
motion designers can choose from a rich array of powerful tools
to insert animated virtual objects in captured scenes [Adobe 2022;
Blender 2022b; BorisFX 2022; Foundry 2022; Runway 2022]. In partic-
ular, 3D camera estimation [Adobe 2022; Blender 2022b] and object
tracking [Foundry 2022; KenTools 2022] are now mature technolo-
gies that accommodate many special effects, although these pro-
fessional tools have a steep learning curve and sometimes require
planning the shot at the time of capture – e.g. by placing markers
for better tracking. Planar tracking [BorisFX 2022] is closest to our
goal but is limited to tracking planes present in the scene, while
our scene-aware canvases can move and orient differently from the
surface of objects they are anchored to.

Leveraging 3D geometry. Automatic 3D computer vision methods
hold the potential of bringing advanced editing tools to casual users,
including re-rendering photos and videos with different camera
properties [Klose et al. 2015; Liu et al. 2022a], stabilizing complex
camera trajectories [Kopf et al. 2014], creating 2.5D parallax effects
[Kopf et al. 2020]. Closer to our target application are systems that
leverage 3D pose and geometry estimation for stylizing moving
objects [Snavely et al. 2006] or for drawing over their surface [Kasten
et al. 2021; Rav-Acha et al. 2008]. But these systems do not allow
drawing away from existing surfaces, which is important to produce
a variety of effects, as in Fig. 1 where the bridge is drawn above the
ground, and the arms are drawn around the tram.
A large body of multi-view 3D reconstruction algorithms, in-

cluding Structure-From-Motion [Schönberger and Frahm 2016] and
SLAM [Mur-Artal et al. 2015], can be used to find reliable sparse 3D
scene points and camera poses, but these methods are designed only
to reconstruct static components of videos. Furthermore, sparse
reconstruction methods could support some features of our ap-
proach, but occlusion requires per-pixel geometry, which these
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methods do not produce. Recent work has focused on estimating
a consistent dense depth representation from videos with dynamic
elements [Kopf et al. 2021; Luo et al. 2020; Zhang et al. 2021]. These
methods were applied to virtual object insertion, but their demos
were created by loading the 3D reconstruction in professional 3D
rendering and compositing software such as Blender or Nuke. Our
approach uses the video depth reconstructed by these methods to
track, orient and render drawing canvases in the scene, allowing
users to insert scene-aware doodles with a simple 2D user interface.
Inserting virtual objects into captured scenes is also key to aug-

mented reality applications [Apple 2022; Du et al. 2020; Valentin
et al. 2018]. In such applications, users typically place virtual objects
in the scene through in-situ direct interactions [Leiva et al. 2020], by
placing tracking targets on objects [Liao et al. 2022], or by selecting
pre-defined targets – e.g. detected planar surfaces [Apple 2022]. Our
system is designed to be used as a post-processing video editing tool
rather than as an in-situ augmented reality tool. This positioning
allows us to offer more precise and expressive, keyframe-controlled
trajectories for the inserted doodles.

Leveraging scene motion. Our approach draws inspiration from
prior work that leverages motion tracking to augment videos with
hand-drawn annotations and with direct navigation along motion
trajectories [Dragicevic et al. 2008; Goldman et al. 2006, 2008; Nguyen
et al. 2013]. Subsequent work by Suzuki et al. [2020] allows the in-
sertion of responsive sketches that follow or react to tracked motion.
We extend this family of work by enabling more direct user con-
trol over the tracking results through keyframing of both position
and orientation of drawing canvases, and by accounting for the 3D
geometry of the scene over which the doodles are drawn.
In human-computer interaction, many approaches leverage hu-

man pose estimation and tracking [Cao et al. 2019] to offer dedicated
visual effects and visualizations [Mayer et al. 2021; Saquib et al. 2019;
Zhang et al. 2018]. PoseTween [Liu et al. 2020] is a system for ani-
mating drawings over human action videos which relies on human
pose for 2D interpolation of user-provided keyframes. In contrast to
these domain-specific solutions, our approach tracks 3D trajectories
of arbitrary objects and supports 3D effects, including perspective
transformations and occlusions of the inserted doodles.

Tracking arbitrary points in videos. While tracking bounding
boxes [Henriques et al. 2014], segmentation masks [Oh et al. 2018],
planar regions [Liang et al. 2018], or semantic keypoints for objects
of a known class [Xiang et al. 2018] has been studied thoroughly,
the more general problem of tracking arbitrary surface points across
a video has received surprisingly little attention, as stressed by the
recent TAP-Vid benchmark for long-range point tracking [Doersch
et al. 2022]. Aiming at helping novices to create cartoon animations,
Live Sketch [Su et al. 2018] guides a point tracker using keyframing
to extract motion from a video clip and transfer that motion to a
drawing. Their algorithm follows prior work that casts user-guided
point tracking as an optimization where the point trajectory corre-
sponds to the shortest path in a directed graph formed by the video
pixels [Amberg and Vetter 2011; Buchanan and Fitzgibbon 2006].
This formulation was also used by Doersch et al. [2022] to annotate
ground-truth trajectories for the TAP-Vid benchmark. We extend
this formulation to the case of 3D point tracking by accounting for

the depth and camera pose at each frame. Furthermore, we leverage
the resulting trajectory to also orient the 3D canvas according to the
direction of the moving object. Finally, rotoscoping algorithms track
curves along contours in a video, guided by user-provided keyframes
[Agarwala et al. 2004; Li et al. 2016]. These algorithms rely heavily
on the smoothness and contrast of image contours, while we focus
on tracking points that may lie in feature-less regions.

3 CHALLENGES IN VIDEO DOODLES AUTHORING
We investigated current video doodling practice by surveying 20 on-
line tutorials (T1-20, see complete list in supplemental materials) and
by discussing the most common techniques with two professional
motion designers (P1 and P2) having 17 and 15 years of experience
with 2D motion graphics tools (Adobe After Effects, Adobe Character
Animator), and animating with code (Processing, CSS).

2D animation workflow. The majority of tutorials we found [T1-
13] describe a process akin to traditional 2D animation. The artist
imports the video in an animation software and proceeds to draw
on one or multiple overlaid layers, for every frame of the video. To
streamline this workflow, artists can copy and transform the draw-
ings from one frame to the next, or can rely on smooth interpolation
of the drawn strokes between sparse keyframes [T11,12]. This is a
difficult process that requires significant manual tweaking: “ [It’d
be] probably a lot of changing stuff on a per frame basis to make sure
it catches up properly, you’d need to just be like, on this frame, you’re
here, and change the drawing. ” (P2)

Dealing with occlusions requires either erasing occluded parts of
the doodles [T2], or creating binary masks that follow the occluding
shape across the video [T12,13]. Another major challenge resides in
synchronizing the drawings with events in the video. Artists achieve
such synchronization by keeping the video visible as an underlay
to provide visual context, and by taking notes on the precise timing
of key events to plan the animation [T1].

Motion and camera tracking. Artists rely on experience and in-
tuition to draw doodles such that they appear to have the correct
motion and perspective in the scene, which can be challenging even
for simple camera motions: “ Honestly that’s a trial and error process.
It’s me saying OK, let me try this position keyframe and see if [this]
looks interesting like this and if not, I’ll just keep on doing it until I
get something that I feel looks right. ” (P1)
To ease this task, artists are faced with diverse tracking tools to

pick from.One-point tracking [T14,20] is easy to set up but does
not take orientation or perspective changes into account, whereas
3D camera tracking [T16] is well suited to place static elements
in the scene but cannot track moving objects. When using these
algorithms, artists often correct the inferred trajectories by deleting
erroneous parts and replacing them with interpolated keyframes
[T15], by providing corrective keyframes to the algorithm [T17-20],
or by tuning tracking parameters [T17-19]. “ If at a certain point I
move too fast or something happens, it’s blurry and the tracking goes
off and then it’s all over the place, this little tracker. So then I have to
do some manual edits and put it back and just make sure it works OK.
And yeah, it’s just a little bit cumbersome. ” (P1)
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Step 1. Position the canvas in 1 frame
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Fig. 3. Main features of our user interface. The user can place a static (top) and dynamic (bottom) canvases in the scene by dragging their centers (green cross).
Canvases can be moved closer or further away from the camera, and can be oriented using a gauge figure. Dynamic canvases are placed in one or more
keyframes, from which our system deduces a 3D trajectory (time is color-coded with a jet ramp). The user can then draw doodles in a dedicated panel where
the canvas is rectified to be fronto-parallel, alleviating the need to draw in perspective.

Due to these challenges, both professional designers we inter-
viewed judged that it would take them several hours to create a
video doodle of a few seconds using the tools they are familiar with.

Design goals. Based on the above observations, we define the
following design goals for our interactive VideoDoodles system:

G1. Scene-aware doodling:Maintain a 2D animation workflow,
yet streamline the creation of perspective and occlusion effects.

G2. Flexible motion tracking: Support the tracking of both the
moving camera and moving objects in the scene.

G3. User control: Offer control on the motion and timing of the
doodles using the established interaction paradigm of keyframing.

4 USER WORKFLOW
Our system follows the principles of mixed-initiative user interfaces
[Horvitz 1999] as it leverages 3D computer vision to offer signifi-
cant value-added automation, combined with simple 2D interaction
mechanisms to enable amateurs to efficiently guide and refine the
end result. We first describe a typical interactive session with this
system, illustrated in Fig. 3. We provide a recording of this session
in the accompanying video, along with additional animated results.
We detail the algorithms behind our system in Section 5.

Input. Our system takes as input a video clip representing a single
camera shot. In a preprocess, we augment this input with per-frame
camera pose, depth map and optical flow (Section 5.1).

Planar canvases. We fulfill our first design goal (G1) by embedding
the doodles into planar 3D canvases that are placed in the scene
via 3D rigid transformations. On the one hand, users can easily
draw strokes on planar canvases using a 2D interface. On the other
hand, we can render these canvases with correct perspective and

occlusions in all video frames thanks to the estimated camera poses
and depth maps. While this simple mental model cannot represent
non-planar curves, advanced animation effects can be achieved
by animating the strokes within the canvas, as in traditional 2D
animation. Many sketch-based modeling systems rely on similar
canvases to lift 2D strokes to 3D [Bae et al. 2008; Blender 2022a;
Canvas 2022; Dorsey et al. 2007; Leiva et al. 2020; Li et al. 2017].

Placing a canvas. Our interface allows users to place static or
dynamic canvases in the video. Static canvases have a fixed position
and orientation in the scene, and as such only react to camera
motion (G2). Users place static canvases by dragging and rotating
them over one of the video frames, and by optionally adjusting their
scale relative to the scene. Our system automatically sets the center
of the canvas such that it lies at the same depth as the underlying
surface. Users can over-write this default depth using a slider.
Dynamic canvases follow moving objects in the scene (G2). To

obtain such tracking, users position and orient the canvas in at
least one keyframe. Our system then infers a 3D trajectory that
follows the scene point under the center of the canvas across the
video, and it orients the canvas relatively to the direction of that
trajectory. If needed, users can refine the result by adjusting the
position and orientation of the canvas in additional keyframes (G3).
By default, users only need to specify the 2D position of the canvas in
each keyframe, and our algorithm takes care of deducing the depth
that yields the best tracking in 3D. As with static canvases, users
can over-write the inferred depth using a depth slider. Since our
system embeds the canvas in 3D, the canvas automatically appears
bigger or smaller as it moves in depth, without requiring an explicit
keyframing of scale by the user.
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Drawing on a canvas. Canvases can undergo significant foreshort-
ening depending on their 3D orientation, and prior studies have
shown that even experienced artists struggle to draw accurately over
slanted surfaces [Schmidt et al. 2009]. Our interface avoids drawing
in perspective by providing a secondary drawing panel, where the
canvas is displayed under an orthographic, fronto-parallel view (G1).
However, drawing on a blank canvas would make it difficult for
users to align and synchronize their doodles with the video content.
Our interface provides the necessary contextual cues by rectifying
the portion of the video covered by the canvas and by displaying it
as an underlay in the drawing panel. We help users find a suitable
frame to draw onto by reporting the amount of foreshortening of the
canvas for each frame of the trajectory, less foreshortened canvases
yielding less distortion of the video after rectification. Furthermore,
our interface directly shows occlusion effects as strokes are drawn
to help users assess the 3D insertion of their doodles. Finally, we pro-
vide a basic frame-by-frame 2D animation tool within the drawing
panel, which allows users to create simple loops that are repeated
along the video. This tool also includes a simple onion skinning
feature – displaying previous and next frames as semi-transparent
overlays – to facilitate drawing animated sequences.

5 ALGORITHMIC COMPONENTS
At the core of our system is a tracking algorithm that leverages
camera and scene motion, depth estimation, and user-provided
keyframes to find the 3D trajectory of a scene-aware canvas.

5.1 Pre-computing depth and motion
Our method is built upon 3D video reconstruction; given a set of in-
put frames, per-frame camera poses and world-aligned depth maps
are computed. We use our own re-implementation of Robust Consis-
tent Video Depth Estimation [Kopf et al. 2021]. This approach first
estimates camera pose and a projection matrix for every frame using
COLMAP [Schönberger and Frahm 2016]. It then uses a deep single-
image depth predictor to compute scale and shift invariant depth
maps, and solves for a geometric optimization that aligns these
depth maps into consistent world coordinates, yielding a dense,
temporally consistent geometric reconstruction. This approach in-
ternally uses optical flow [Teed and Deng 2020] computed between
consecutive frames, which we also save for later use.

Equipped with the camera matrix and depth map for each frame
𝑡 , we compute for every pixel 𝑝𝑡

𝑖
its 3D position 𝑃𝑡

𝑖
by unprojection.

Similarly, we lift the optical flow vectors 𝑣𝑡
𝑖
to 3D to obtain scene

flow vectors 𝑉 𝑡
𝑖
.

5.2 Keyframe-based tracking
Given one or more user-specified canvas keyframes (consisting of a
position and orientation), our goal is to recover a trajectory that
— Makes the canvas follow the scene point it is attached to, such

that users do not have to reproduce that 3D motion by hand.
— Interpolates between keyframes, such that users have full control

and can (optionally) deviate from motion tracking if desired.
We cast this problem as a series of optimizations, where the variables
are the 3D positions and orientations of the canvas in each frame,
the keyframes are expressed as hard constraints, and the motion

tracking is expressed as soft objectives to allow for correction by
the user. We first detail how our approach tracks 3D positions, and
then explain how we extend it to additionally track 3D orientation.

Tracking 3D positions. Our method builds upon related keyframe-
based 2D tracking algorithms that search for trajectories with co-
herent appearance and motion within the space-time video volume
(Fig. 4a) [Amberg and Vetter 2011; Buchanan and Fitzgibbon 2006;
Doersch et al. 2022; Su et al. 2018]. These methods build a directed
graph that connects each pixel in frame 𝑡 to every pixel in frame 𝑡+1,
and assigns each edge a weight that is proportional to the difference
in appearance and position between the two pixels [Amberg and
Vetter 2011; Su et al. 2018], or to the agreement with pre-computed
optical flow motion vectors [Doersch et al. 2022]. Frames with a
keyframe have only one node in this graph, corresponding to the
pixel specified by the user to be the center of the canvas, which
forces the trajectory to adhere exactly to the constraints. All nodes
at the first frame and last frame are connected to a super-source
and sink node respectively, and the trajectory is computed as the
shortest path from source to sink.
We extend this family of algorithms to leverage the 3D infor-

mation we extracted during preprocessing, and to generate a 3D
trajectory. Specifically, we encourage the scene-space trajectory to
align with the scene flow by expressing the edge weight between
pixels in consecutive frames as

𝑤

(
𝑝𝑡𝑖 → 𝑝𝑡+1

𝑗

)
=




(𝑃𝑡+1
𝑗 − 𝑃𝑡𝑖

)
−𝑉 𝑡𝑖




2
. (1)

Computing this weight as a 3D distance prevents the trajectory to
jump between objects that lie close together in image space yet are
far apart in depth. We improve the robustness of this formulation
by removing nodes (pixels) that are too close to motion or depth
discontinuities, as detected by computing the agreement between
forwards and backwards optical flow for the former, and by com-
puting the gradient of the depth map for the latter. This safeguard
further reduces the risk of crossing object boundaries.
Building the graph over the entire video volume would be pro-

hibitive. We drastically reduce complexity in two ways. First, we
trim a large part of the graph by augmenting each pixel with an
appearance vector 𝑎𝑡

𝑖
– which we compute as a set of deep visual

features [Jabri et al. 2020] – and by only retaining, for every frame,
the 10% pixels most similar to the keyframes in appearance. This
trimming also helps the tracking algorithm to focus on the region
of interest. Second, we reduce the size of the graph by working
at the resolution of the deep visual feature maps, where one pixel
corresponds to a patch of 10 × 10 pixels in the original video. With
these settings, building the graph and finding a shortest path with
Dijkstra’s algorithm for 80 frames of a 1200×674 video takes around
3 seconds on a 2.4GHz Intel i5 MacBook Pro with 16GB of memory.

Recovering stable, high-resolution trajectories. Prior methods di-
rectly output the nodes of the shortest path as the tracking trajectory
[Amberg and Vetter 2011; Buchanan and Fitzgibbon 2006; Doersch
et al. 2022; Su et al. 2018]. However, this initial discrete trajectory
often suffers from jitter and drift over featureless surfaces or in the
presence of occlusions, which are exacerbated when working with a
low-resolution graph (see Fig. 5). We correct for such instability by
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t
(a) Shortest path in video volume (b) Raw trajectory (c) Poisson integration

Fig. 4. Schematic illustration of our tracking algorithm. We extract an initial trajectory as the least-cost path in the directed graph connecting each keyframed
pixel to similar pixels in consecutive frames (a). This trajectory often jitters over the object to track due to occlusions, lack of visual features, and our use of a
low-resolution graph (b). We recover a stable trajectory by integrating the scene flow sampled along the initial trajectory at full resolution (c, red arrows).

(a) 1 keyframe at clip start (b) Trajectory after occluder

Initial trajectory
Stable trajectory

Fig. 5. Effect of Poisson integration. Given a single keyframe as input (a),
the shortest-path algorithm yields an initial trajectory that drifts over the
bicycle as its gets occluded by the foreground plant (b, red). Since the entire
bicycle undergoes the same translation, integrating the scene flow vectors
sampled along the initial trajectory removes the drift, resulting in a stable
trajectory that runs behind the occluder (b, light blue).

observing that large portions of objects often move coherently, such
that neighboring pixels have similar motion vectors. Following this
intuition, we sample the scene flow along the initial trajectory to get
an estimate of the trajectory’s derivatives {𝑉 1, . . . , 𝑉𝑇 }. We then
reconstruct a stable, high resolution trajectory by solving for the
continuous 3D positions P = {𝑃1, . . . , 𝑃𝑇 } ∈ R3×𝑇 of the canvas
that satisfy these derivatives, which corresponds to a Poisson prob-
lem where the user-provided keyframed pixels {𝑝𝑘 } act as boundary
constraints (Fig. 4b,c). We formulate these constraints via the cam-
era projection operator Π𝑘 , such that the trajectory passes through
3D points 𝑃𝑘 that reproject exactly on keyframed pixels. We further
regularize the problem by encouraging the trajectory to run close
to the unprojected keyframed pixels {𝑃𝑘 }, yielding:

min
P

∑︁
𝑡




(𝑃𝑡+1 − 𝑃𝑡
)
−𝑉 𝑡




2
+ 𝜆depth

∑︁
𝑘




𝑃𝑘 − 𝑃𝑘



2

,

such that 𝑝𝑘 = Π𝑘 (𝑃𝑘 ) .
(2)

In cases where the user also specifies the depth of a keyframe via the
depth slider, we directly enforce that the trajectory passes through
the resulting 3D point by setting the constraint to 𝑃𝑘 = 𝑃𝑘 . Such
constraints are particularly useful in scenarios where the user wants
to anchor a canvas to the hidden side of an object, yet wants the
canvas to follow the overall motion of that object (e.g. the left arm
of the flamingo in Fig. 12). Our Poisson formulation reconciles the
initial trajectory, which by definition of the graph nodes only passes
through visible points of the object, with the user-specified depth
values.

Tracking 3D orientations. Users can also control the orientation of
a dynamic canvas along its trajectory by specifying a rotation matrix
in one or more keyframes {𝑅̃𝑘 } ∈ 𝑆𝑂 (3)𝐾 , from which our system
deduces a sequence of rotation matrices {𝑅1, . . . , 𝑅𝑇 } ∈ 𝑆𝑂 (3)𝑇 ,
one for each frame of the trajectory.

Following our second design goal (G2), we want the orientation
of the canvas to follow the orientation of the moving object it is
tracking, as illustrated in Fig. 6. Let us first consider the restricted
case where the user orients the canvas perpendicularly to the trajec-
tory of the object. Let us further assume that the canvas normal is
given by the first axis of the orthogonal frame encoded by the canvas
rotation matrix, denoted as 𝑅𝑡 |𝑋 . Given the normalized scene flow
vector 𝑉 𝑡 at each frame 𝑡 , we can encourage the canvas’ normal to
align with the trajectory by minimizing | |𝑅𝑡 |𝑋 −𝑉 𝑡 | |2.

𝑉 𝑡

𝑅𝑡 |𝑋
𝑅★

However, we also want to give users the
freedom to choose the relative orientation of
the canvas with respect to the moving ob-
ject, for instance to make the doodle parallel
rather than perpendicular to the trajectory.
We achieve this behavior by introducing an
(unknown) rotation matrix 𝑅★ that transforms the canvas relatively
to the motion trajectory, yielding:

min
{𝑅𝑡 ,𝑅★}

∑︁
𝑡

| | (𝑅𝑡𝑅★) |𝑋 −𝑉 𝑡 | |2 + 𝜆smooth
∑︁
𝑡

| |𝑅𝑡+1 − 𝑅𝑡 | |2 ,

such that 𝑅𝑘 = 𝑅̃𝑘 .

(3)

The first term encourages the canvas to align with the tangent of
the trajectory, up to the relative orientation 𝑅★. The second term
prevents the canvas to twist unnecessarily as it travels along the
trajectory [Stanko et al. 2017]. Finally, the constraint ensures that
the canvas perfectly respects the keyframed orientations.

While the smoothness term brings robustness to noise in the scene
flow, it tends to damp the rotation of the canvas around sharp turns
of the trajectory. We address this issue by splitting the trajectory
in the presence of abrupt turns (which we detect as local minima
in velocity, i.e., when |𝑉 𝑡 | < 0.2 × max( |𝑉 𝑡 |)) and by assigning a
different matrix 𝑅★ to each segment. A sudden change of direction
in the trajectory is then captured by an instantaneous change of 𝑅★
rather than by progressive changes of 𝑅𝑡 .

Our formulation bears resemblance with algorithms for interpo-
lating orthogonal frames along 3D curves [Boumal 2013; Stanko
et al. 2017], although such methods do not include the additional
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(a) 1 keyframe (b) Constant (c) Optimized

Fig. 6. In this example, the user orients the canvas to be perpendicular to
the motion trajectory in one keyframe (a). Keeping this orientation constant
in scene space produces an implausible result as the trajectory turns to
follow the tracks (b). Our optimization rotates the canvas to preserve its
orientation relative to the trajectory (c).

rotation matrix 𝑅★, which is key to offer users control on canvas
orientation in our context. Similarly to these prior methods, we
solve our optimization over the manifold 𝑆𝑂 (3)𝑇 of rotation ma-
trices using the Riemannian Trust Region algorithm implemented
in the Pymanopt library [Townsend et al. 2016], with parameters
described by Boumal [2013]. Following their recommendations, we
initialize orientations with a spherical linear interpolation of the
keyframe quaternions. While solving the small linear system in
Equation 2 is very fast, finding a local minimum of Equation 3 can
take up to a dozen of seconds, depending on the number of frames
and segments (e.g., 1.5” for 1 segment of 80 frames in Fig. 6, vs. 9”
for 3 segments and 143 frames in Fig. 3).

Parameter setting. We used a fixed set of parameters for all our
results. A weak regularization on canvas depth 𝜆depth = 0.01 mainly
serves when the user does not provide depth keyframes. In con-
trast, a high regularization on orientation smoothness 𝜆smooth = 10
prevents the canvas to align with every little turn in the trajectory.

6 RESULTS AND EVALUATION
Fig. 12 showcases a variety of video doodles we created with our
system based on clips from the DAVIS datasets [Perazzi et al. 2016;
Pont-Tuset et al. 2017], or captured by us. These results cover various
application scenarios, ranging from humorous augmentations of
casual videos (Flamingo cocktail party, BMX), to informative or
instructive (Climbing, Tennis), and other forms of annotations and
highlights (Travel vlog, Swinging). Importantly, these results exhibit
numerous occlusions between real and drawn content (text in the
Travel vlog, legs of the flamingo, frame of the swing), as well as
complex trajectories, both in terms of position (Climbing, Comics
parkour) and orientation (Swinging). We strongly encourage readers
to look at the corresponding videos in supplemental materials.

We first evaluate our tracking algorithm quantitatively on a recent
benchmark. We then evaluate our interface qualitatively by asking
novice and professional users to create video doodles.

6.1 Tracking accuracy
In the absence of a benchmark for 3D point tracking, we evaluate
the accuracy of our algorithm on the recent TAP-Vid benchmark
[Doersch et al. 2022], which provides a set of ground truth 2D
trajectories (called tracks) and occlusion flags for the task of tracking
arbitrary points in videos. Since our primary contribution is the

design of an interactive system for video doodling, the goal of this
evaluation is not to claim improvement over fundamental tracking
algorithms, but rather to demonstrate that the tailored algorithm
we designed to support our user interface is on par with recent
algorithms developed for a similar – albeit not identical – task.
Our approach requires a 3D reconstruction, but current algo-

rithms for camera calibration from a single monocular video can
fail when there is not enough camera motion, or too many dy-
namic objects. We therefore restrict our evaluation to a subset of the
TAP-Vid-DAVIS dataset consisting only of those videos whose 3D
reconstruction succeeded, yielding 24 (out of 30) annotated videos
for a total of 575 tracks of 62 frames on average.

Single keyframe. First, we evaluate the performance of our algo-
rithm in the case where only one keyframe is specified. Following
the strided setting of TAP-Vid, we sampled each track every 5 frames
to obtain a set of query keyframes, then ran our algorithm for each
of these queries to obtain multiple predictions. The final metric is
computed as an average over all queries for all tracks and all videos.
Since our algorithm outputs a 3D trajectory, we project each point
to 2D using the cameras and test for occlusion by checking if the
point lies outside the image frame, or if the 3D point lies behind
the depth map. Table 1 summarizes the outcome of this evaluation
using the metrics recommended by Doersch et al. [2022] – average
Jaccard, average position accuracy of visible points, and binary oc-
clusion accuracy (higher is better). Our method outperforms the
state-of-the-art TAP-Net method proposed by Doersch et al. [2022]
on the two first metrics, and it achieves comparable accuracy on oc-
clusion. We also include the scores of the initial trajectory produced
by the shortest-path algorithm (Ours w/o Poisson), highlighting
the benefit of including the Poisson integration step in our method.
Finally, we provide the scores obtained by our method when fixing
the keyframe to be the first visible ground-truth 2D position of each
track (Ours 1kf, first), as this setting is closer to the way users would
interact with our system. As noted by Doersch et al. [2022], this
keyframe selection strategy yields lower performance.

Multiple keyframes. Since we designed our algorithm with inter-
active control in mind (G3), we now evaluate how adding keyframes
improves the resulting trajectory. The last row of Table 1 (Ours 2kf)
reveals that positioning one keyframe at the start of the visible tra-
jectory, and another keyframe at the end, suffices to improve the
quality of the track significantly. We additionally ran an experiment
where we progressively increased the number of keyframes for
each of the 25 tracks of one representative video (50 frames total),

Keyframes

Av
g 

Ja
cc

ar
d

0

0.4

0.6

0.8

0.2

1

1 2 3 4 5 6 7 8 9 10

adding each new keyframe as the mid-
point of the two most distant existing
keyframes. The inset shows that the track-
ing accuracy quickly increases with addi-
tional keyframes, and eventually saturates
as keyframes get close together.

Qualitative comparison. Fig. 7 provides a visual comparison be-
tween a few of our tracks and the ones predicted by TAP-Net, along
with the corresponding ground truth. We include additional video
comparisons as supplemental materials. Overall, the tracks produced
by our method exhibit less jitter than the ones predicted by TAP-Net
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Unprojected GT
[O] Ours
[T] TAP-Net

2 keyframes

[O] AJ = 47%

[O] AJ = 53%

[O] AJ = 22%

[O] AJ = 42%

[O] AJ = 47%

[T] AJ = 13%

[T] AJ = 40%

[T] AJ = 35% [T] AJ = 39%

missed subtle wheel motion

jitter
jitter

lost track due
to occlusion

Fig. 7. Visual comparison of our tracking trajectories against TAP-Net [Doersch et al. 2022]. For visualization purposes, we compensate for camera motion by
rendering 3D trajectories projected onto the first frame of the video clip. Since the ground truth and TAP-Net trajectories are provided as 2D image-space
points, we unproject them to 3D using the same cameras and depth maps as used by our method. Our method produces 3D trajectories that are more precise
(higher Average Jaccard, AJ) and smoother than TAP-Net (top row). While our method can lose track of a point due to occlusion (bottom left), adding a
keyframe often suffices to resolve such issues (inset). Both our method and TAP-Net struggle to recover subtle composed motions, such as the rotation of the
car’s wheel (bottom, right).

Table 1. Evaluation of our tracking algorithm on 24 videos of the TAP-Vid
DAVIS benchmark with a single keyframe (1kf). Adding an extra keyframe
(2kf) yields a significant improvement in all metrics (higher is better). We
report the results of TAP-Net [Doersch et al. 2022] computed on the 24-
videos subset for which we obtained a successful 3D reconstruction.

Method Avg Jaccard (↑) < 𝛿𝑥𝑎𝑣𝑔 (↑) Occlusion (↑)

TAP-Net (1kf, strided) 37.2% 52.7% 80.2%
Ours (1kf, strided) 40.8% 59.2% 80.6%
Ours (1kf, strided, 18.3% 31.6% 75.1%
w/o Poisson)
Ours (1kf, first) 31.6% 50.9% 75.2%
Ours (2kf) 45.5% 67.3% 78.3%

– a property that is essential to achieve convincing video doodles.
We also stress that TAP-Net only supports a single query point per
track, while our method allows users to correct tracking failures
due to occlusion or drift by adding keyframes. Moreover, while
TAP-Net predicts occlusion at a single 2D pixel, our 3D trajectories
enable depth testing against a predicted dense depth map to render
occlusions over the entire planar canvas.

6.2 User study
We conducted a study with 7 users, 5 being novices while the other
2 being the professional motion graphics designers we interviewed
during our formative study (Section 3). The five novices participated
in-person by drawing on a Wacom Cintiq 16 tablet, whereas the two
professionals participated remotely using only a mouse or trackpad.

Participants were first introduced to our system via a short video
tutorial, and were then given two tasks:
Task 1 - Goal-directed (10 minutes).

Participants are shown an example
video doodle that they have to repro-
duce, shown in inset. The result should
be made of a static doodle (bridge) and
a dynamic doodle (cloud of steam coming out of the locomotive).
This task was designed so that users could experience all the main
features of our system, and was inspired by the goals of online
tutorials (see T3 in supplemental materials).

Task 2 - Open-ended (30 minutes). Participants are asked to create
two novel video doodles by choosing among 15 short video clips (3”
duration on average).

Finally, participants answered a questionnaire about the different
features of our system. While we conducted this study with a small
group of participants, the collected material represents 4.5 hours of
interaction with our system, corresponding to a total of 49 canvases.
In the following section, we detail important insights we gained
from this data, including typical usage of the system’s features,
unexpected user behavior, and suggestions for improvement. We
provide all 21 video doodles as supplemental materials to illustrate
the type of effects that users of our system could create after only a
few minutes of practice.

Everyone can create video doodles with our system – fast. Fig. 11
provides a gallery of results created by the participants during the
open-ended task, along with their completion time. Creating the
moderately complex video doodle of Task 1 only took 10’30” on av-
erage (sd = 03’07”). Creating a video doodle from scratch – including
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P5 - Task 1 (12’30’’)

P7 - Task 2: motorized swan (18’03’’)

P4 - Task 2: car race (09’38’’)

P2 - Task 1 (10’16’’) Keyframing Drawing Playback/Idle

Fig. 8. Timelines of performed operations. In this visualization, different
hues (green, red, blue) depict different canvases, and brightness differen-
tiates keyframing a canvas (dark colors) from drawing on a canvas (light
colors). Participants roughly spent as much time keyframing as drawing,
and sometimes alternate between the two operations (P4).

time to brainstorm and experiment ideas – took an average of 14’00”
(sd = 07’05’). Both of the professional participants emphasized the
speed with which they could create video doodles with our system:
“ I feel like we just raced through all those different things because it
was so easy and quick to use. If I’m working in After Effects, I have to
spend a lot more time worrying about the tracking, or about whether
the canvas is going behind this thing or this other thing. Here it just
happened automatically and it worked how I thought it should.” (P1)

Furthermore, all participants were highly satisfied with the video
doodles they created (score of 4.7 on a 5-point Likert scale). Many
participants were enthusiastic at the idea of using our prototype
with videos that they would capture themselves.

Automating tracking and 3D rendering frees up time for doodling.
By analyzing usage logs, we find that participants spend around
half of their time doodling and creating compelling frame-by-frame
animations (see Fig. 8 for a temporal breakdown of typical sessions).
On average, 49% of a session was dedicated to drawing (sd = 17%,
min/max = 24/89%, measured as the time spent with the drawing
panel open). Even novices picked up quickly the concept of frame-by-
frame animation, and all succeeded in creating such animation clips.
On average, participants drew 3.3 (sd = 1.8) frames per canvas, with
6.0 (sd = 9.2) strokes per frame. We also observe that participants
sometimes alternate phases of drawing with keyframing to adjust
the trajectory of a canvas after drawing on it, which happened in
19 out of the 49 canvases created over all video doodles.

These observations suggest that we achieved our design goals G1
and G2 – by decoupling 2D drawing from 3D in-scene embedding
and tracking, users are able to focus on the creative task of doodling:
“ What I found myself spending more time on was redoing the drawings
to make them laser or like add more stuff. Since the "hard part" – the
tracking – is being taken care of, I could focus on drawing the shapes
that I want. ” (P2)
Nevertheless, some participants would have liked to be able to

draw directly over the video in complement to the rectified drawing
panel, or have the option to vary the brush shape and texture, two
features that we did not implement in our prototype.

Combining tracking with keyframing keeps users in control. All
participants quickly grasped the concept of keyframing to control
the position and orientation of the canvases. They used an average
of 3.3 (sd = 3.0) position keyframes and 2.5 (sd = 1.8) orientation

(a) Desired orientation (b) With 1 keyframe (c) Adding keyframes

Fig. 9. Limitation. The dancer rotates on herself as she jumps. Given a
single keyframe, our tracking algorithm follows the upward motion of the
body, but not its rotation (a-b). The user can achieve the desired effect by
keyframing the canvas rotation (c).

keyframes per dynamic canvas. Making the canvas track a partic-
ular object required 1 or 2 position keyframes in the majority of
cases. Out of the 26 dynamic canvases, only 6 canvases required 5
keyframes or more. This extra work was needed when the tracked
object gets occluded along its trajectory (P1 - swing, P2 - dancer’s
hand), or when the desired trajectory does not strictly follows a
single point of a moving object (e.g., P5 - lama where the backpack
first follows the lama’s flank, then its rear).

The effort that participants put into perfecting their results with
more keyframes shows that the interface gave them a sense of
agency in the tracking task, in accordance with our design goal G3:
“ Overall I felt like I was in control, and that it was making smart
automatic decisions for me. ” (P1) “ Adjusting the plane with the
keyframes was super simple, and it’s great that you can adjust things
to make them perfect. You get the [automatic] trajectory and that does
most of the work for you, but then you can tweak it. ” (P2)
Still, expert users value the more advanced features available in

professional software: “With After Effects tracking tool, there are so
many more options that you have, so I feel like I have more control over
the tracking at a pixel level, since I can zoom in and make it perfect.”
(P1) One of the experts also reported having difficulty positioning
the canvas in depth at first, which suggests possible improvement
in visualizing or controlling depth.

Working around limitations. Our choice of embedding strokes in
planar canvases prevents the creation of non-planar doodles. Several
participants found creative solutions to work around this limitation,
such as placing two orthogonal canvases to depict sections of the
cloud of steam (Fig. 11, P6 - train), or drawing different doodles to
depict the side and back views of a backpack on the lama, taking
care of switching between these doodles to match the viewpoint in
the video (Fig. 11, P5 - lama).

6.3 Limitations.
Our system is limited to planar canvases and as such cannot produce
3D freeform strokes, for instance to draw a swirling ribbon around
an object. Future work could explore the definition of non-planar
canvases based on parametric shapes [Ikeda and Fujishiro 2021]
or height fields [Arora et al. 2018]. Furthermore, our tracking al-
gorithm assumes that the object to track is oriented towards its
dominant motion trajectory. Fig 9(a,b) illustrates a case where this
assumption does not hold, as the dancer rotates on herself as she
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(b) Erroneous occlusions(a) Drawing context foreshortening

Fronto-parallel drawing panel

In video perspective

Fig. 10. Limitations. When the canvas is highly foreshortened, the video
context appears with strong distortions in the fronto-parallel drawing panel
(a). We rely on existing video depth estimationmethods to handle occlusions.
While most of the silhouette of this dancer is well captured, erroneous depth
yield wrong occlusions in small regions around her arms (b).

moves across the scene. While our algorithm does not capture this
in-plane rotation, the user can reproduce it by adding keyframes
(Fig 9c). Orientation tracking might be improved by extending our
user-guided point tracking approach to track multiple nearby points
simultaneously. Our algorithm also tends to lose track of objects
when they are too thin, or when they become too occluded. Prior
methods proposed to use skip edges to deal with occlusions as part of
the shortest path optimization [Su et al. 2018], but this mechanism
increases the complexity of the graph significantly. In our experi-
ence, most issues caused by occlusion can be resolved by adding
a few keyframes. Better tracking of thin objects could be achieved
by increasing the resolution of the graph, potentially relying on
a multi-scale strategy to keep the problem tractable, as has been
suggested by Bian et al. [2022]. While we focused on general point
tracking for maximum flexibility, integrating domain-specific algo-
rithms (e.g. body pose tracking [Güler et al. 2018], or hand trajectory
prediction [Liu et al. 2022b]) within our keyframe-based interface
could improve robustness for specific use cases.

While we provide context in the drawing panel by rectifying the
underlying video with a homography, strong distortion appears
when the canvas is too foreshortened (Fig. 10a). Future work could
explore the use of more advanced novel-view-synthesis techniques,
possibly by leveraging the depth maps and multiple views of the
scene we have access to.
Finally, our system relies on the depth map provided by Robust

Consistent Video Depth Estimation to render occlusions automatically.
While this solution often suffices for doodles made of sparse strokes,
errors around the silhouette of the occluder can appear on densely
painted doodles (Fig. 10b). Users can fall-back to existing masking
tools to handle such cases, although a more integrated solution
would consist in providing sparse user corrections to the depth
estimation algorithm to refine its result.

7 CONCLUSION
Recent progress in computer vision and recording devices makes
3D reconstruction readily available from casually-captured videos,

a trend that is likely to grow with the democratization of depth
sensors and on-camera SLAM systems. In this paper, we showed
how depth and motion information can be leveraged to ease the
creation of video doodles, a popular media that mixes videos with
hand-drawn animations. Depth and estimated cameras allow us
to embed hand-drawn doodles in 3D with correct perspective and
occlusion effects, while our novel controllable tracking method
allows us to make the doodles move along with objects in the scene.
A user study and resulting artifacts demonstrate the effectiveness of
our interface and our keyframe-based tracking algorithm to create
a wide-range of 3D effects. We believe that additional interactions
between real and hand-drawn content could be investigated in the
future, for instance to enrich the doodles with secondary motion
[Willett et al. 2017] or particle effects [Kazi et al. 2014] triggered by
the objects they track.
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P1 - hike P2 - dancer

P3 - angel & devil child P4 - car race

P5 - lama P5 - squirrel friend

P6 - train (Task 1) P6 - unicorn jump

P7 - motorbike race P7 - motorized swan

Fig. 11. Video doodles created with our system by participants of our user study. Participants created static doodles (text in P1 - hike, finishing line in P7 -
motorbike race) as well as dynamic doodles (P3 - angel & devil child, P5 - squirrel friend). Several of these doodles get occluded by real objects (poles in P4 -
car race, face on the tree in P5 - squirrel friend), and are synchronized with specific video events (yellow sparkles when P2’s dancer touches the ground, water
splash when P6’s horse ends its jump.

Climbing tutorial Tennis match augmentation

Travel vlog Flamingo cocktail party

Comics parkour Climbing jump highlights

BMX run highlights Swinging highlights

Fig. 12. Additional video doodles created with our system, including sport instructions (Climbing, Tennis), annotations and highlights (Travel vlog, Climbing
jump), and fun cartoons (Flamingo, Comics parkour). Please see supplemental materials for the corresponding videos.
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