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Figure 1: Equal-time comparisons (2 minutes). Our method reduces noise compared to Müller et al. [MGN17], by efficiently guiding paths
based on the product of the BSDF and incoming radiance at each path vertex. We show Mean Absolute Error (MAE).

Abstract
Path tracing is now the standard method used to generate realistic imagery in many domains, e.g., film, special effects, architec-
ture etc. Path guiding has recently emerged as a powerful strategy to counter the notoriously long computation times required to
render such images. We present a practical path guiding algorithm that performs product sampling, i.e., samples proportional
to the product of the bidirectional scattering distribution function (BSDF) and incoming radiance. We use a spatial-directional
subdivision to represent incoming radiance, and introduce the use of Linearly Transformed Cosines (LTCs) to represent the
BSDF during path guiding, thus enabling efficient product sampling. Despite the computational efficiency of LTCs, several op-
timizations are needed to make our method cost effective. In particular, we show how we can use vectorization, precomputation,
as well as strategies to optimize multiple importance sampling and Russian roulette to improve performance. We evaluate our
method on several scenes, demonstrating consistent improvement in efficiency compared to previous work, especially in scenes
with significant glossy inter-reflection.
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1. Introduction

Path tracing is now a standard tool in the film and visual effects
industry [KFF∗15]. Keller et al. note in their survey that, despite
the development of many efficient variants (e.g., [JM12, VG95a,
GKDS12,HPJ12]), “simple” path tracing is often still the method of
choice in many production settings. This is due to its reliability and
lack of parameters to be tweaked, beyond the number of samples

per pixel. In recent years, path guiding has emerged as a powerful
acceleration strategy that complements path tracing in challenging
scenarios, and it is also finding its way into production [VHH∗19].

Initial path guiding algorithms involved an expensive learn-
ing phase, and the relatively expensive evaluation reduced overall
gains [VKŠ∗14]. The practical path guiding technique of Müller et
al. [MGN17] provides a simple yet effective solution using adap-
tive spatial-directional subdivision to guide paths during rendering
based on an estimate of incoming radiance. Product path guiding
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additionally takes the BSDF into account during guiding [HEV∗16]
in a learning-based framework. Product-based sampling increases
sampling efficiency, but also involves expensive precomputation in-
hertited from the method it builds on [VKŠ∗14]. We present a new
approach that combines the computational benefits of practical path
guiding and the sampling efficiency of product importance sam-
pling.

Similar to Müller et al. [MGN17], our technique relies on a
spatial-directional tree (SD-tree), to represent a continuously up-
dated estimate of incoming radiance. In prior work, this data struc-
ture provided estimates of radiance integrals over spherical sets
that were required to drive a hierarchical sampling scheme. How-
ever, it remains unclear how such an approach could generalize to
the product case: direct tabulation of the product of BSDF and
incident radiance is clearly infeasible due to the prohibitive in-
crease in dimensionality from 5D (V ×S2) to 7D (V ×S2×S2),
where V represents positions and S2 directions. Hierarchical sam-
pling techniques that approximate the product at each level of the
data structure [CJAMJ05] seem more promising but require esti-
mates of BSDF integrals over spherical sets, which are not gen-
erally available in closed form. While these integrals could be es-
timated numerically, the resulting costs would likely diminish the
benefits of product guiding. Our technique addresses this problem
by providing an efficient approximation of the necessary integrals
using Linearly Transformed Cosines (LTCs). Our choice is moti-
vated by the observation that LTCs have been shown to be efficient
for similar integrals required in the context of shading for polygo-
nal lights [HDHN16].

Directly using LTCs for practical product sampling requires
many integral evaluations during the hierarchical sample warping
process, which unfortunately tends to negate the benefits of prod-
uct guiding. To overcome this problem we introduce two main opti-
mizations, one based on parallelisation and the other on precompu-
tation. In addition, we show how to further improve results by care-
fully using multiple importance sampling and Russian roulette. We
achieve on average 15-20% increase in computation speed for the
same quality compared to previous work for our set of test scenes,
both with practical guiding [MGN17] and learning-based product
sampling [HEV∗16].

2. Related Work

Importance sampling is a powerful and general technique for re-
ducing the variance of Monte Carlo estimators by drawing sam-
ples from a distribution that approximates the integrand. In ren-
dering, sampling typically targets the factors of the rendering equa-
tion [Kaj86], i.e., the incoming radiance Li, cosine-weighted BSDF
ρ cosθi or some combination of the two:

Lo(x,ωo) = Le(x,ωo)+
∫
Ω

Li(x,ωi)ρ(x,ωo,ωi) cosθi dωi, (1)

where Lo is outgoing radiance in direction ωo towards an observer,
and the integral is over the hemisphere of directions Ω around the
point x, and θi is the angle between the normal n at that point and
direction ωi. Different strategies have been developed to achieve

the goal of reducing variance when performing stochastic integra-
tion of Eq. 1; we review only the most relevant literature to our
method.

Multiple Importance Sampling. Veach and Guibas [VG95b] in-
troduced multiple importance sampling (MIS) to combine multiple
sampling techniques (e.g., strategies that approximate different fac-
tors of the integrand). Using the balance or power heuristic to com-
bine BSDF sampling with approximations of Li, such as emitter
sampling, is a common technique in rendering. However for some
parts of the integral neither emitter nor BSDF sampling strategies
are ideal, e.g., glossy surfaces with complex visibility, and in these
cases multiple importance sampling is not effective. Recent work
has proposed techniques to overcome this limitation, e.g., using
optimization [KVG∗19, GGSK19]. In our method we approximate
and sample the product of the cosine-weighted BSDF and incom-
ing radiance, in the context of a path guiding approach; we discuss
corresponding previous methods next.

Path Guiding. Although sampling based on the local cosine-
weighted BSDF ρ cosθi has been used since the conception of
Monte Carlo rendering, doing so proportionally to the incoming
radiance Li poses numerous challenges. Jensen [Jen95] populated
the scene with photons in a preprocessing stage and used den-
sity estimation to approximate incoming radiance. More recently,
Vorba et al.’s method [VKŠ∗14] iteratively learns directional dis-
tributions of incoming radiance represented by Gaussian Mixture
Models (GMMs) in a training step. These mixture models are used
to guide the next iteration of importon/photon tracing while training
and finally when rendering. However, the training step is computa-
tionally expensive and it can be hard to evaluate how much training
is required, i.e., whether the current distributions are sufficiently
converged. Reibold et al. [RHJD18] propose the use of an outlier
rejection algorithm to determine paths in a scene with high vari-
ance and apply guiding using GMMs only to those paths. In this
way they use expensive guiding only where necessary.

Another approach to overcome the computational expense was
proposed by Müller et al. [MGN17], who use an SD-tree to effi-
ciently approximate the incoming radiance field. The SD-tree con-
sists of a binary tree for the 3D spatial subdivision and a quadtree
for 2D directional variation, reminiscent of the 5D structure used
for variance reduction with control variates in early Monte Carlo
rendering [LW95]. In this method learning is achieved by repeat-
edly rendering the scene with exponentially more samples. It uses
a one sample model [VG95b] with selection probability α to com-
bine sampling based on the BSDF and the SD-tree, resulting in
significant quality improvements with low computation overhead.
This approach was extended by Müller [Mül19] in several ways:
First, an optimization step to choose between BSDF and SD-tree
sampling. Second, instead of discarding the previous iteration’s im-
ages, they are weighted based on an approximated variance and
combined in the final image. Finally, both in the spatial and direc-
tional domain the recording was improved from nearest neighbor
to splatting. We build on the SD-tree approach for our solution,
and also use these enhancements. Dahm and Keller [DK17] used
a similar data-structure but with a different update policy based on
Q-learning. Path guiding has also been expressed in the primary
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a) 3D space b) 2D directional space c) Global sphere 
of directions

d) Local sphere 
of directions

e) Local cosine distribution
sphere of directions

Figure 2: Given an intersection point p we find the voxel in the a) spatial subdivision that includes it and the corresponding b) directional
quadtree. This node spans a region of directions in the c) global sphere of directions with surface normal n. Using the transformation T T we
transform this spherical polygon to the d) local sphere of directions with normal the axis z. Finally the LTC linear transformation M−1 takes
the polygon to the e) local cosine distribution sphere of directions.

sample space [GBBE18]. Recent methods [MMR∗19, ZZ19] em-
ploy deep neural networks to learn the scene dependent product
distribution; however, the overhead of training these networks is
still too high to make these solutions competitive in most cases.

Importance sampling based on the product of incoming ra-
diance and the BSDF was originally used for direct illumina-
tion [CAM08, CJAMJ05]. The product was also used to select co-
sine lobes used to represent the incident radiance field for indirect
illumination computation [BRDC12], or with spherical harmonics
to importance sample environment maps [JCJ09]. The GMM ap-
proach of Vorba et al. [VKŠ∗14] was extended to compute prod-
uct GMM importance sampling [HEV∗16]. The method also rep-
resents irradiance with a GMM to compute the product.

We build our approach on both the computational efficiency of
practical path guiding [MGN17] that uses an SD-tree to represent
incoming radiance, and the sampling efficiency of product path
guiding [HEV∗16]. The key challenge we address lies in striking
the right balance between computational efficiency and sampling
quality to improve overall performance. We do this by comple-
menting the SD-tree structure with a LTC-based BSDF represen-
tation [HDHN16]. We furthermore introduce several important op-
timizations to make this approach powerful and effective.

3. Practical Product Path Guiding

We use the SD-tree structure of practical path guiding [MGN17]
for our efficient product guiding. This 5D spatial-directional tree is
partitioned as shown in Fig. 2. Each node of the spatial subdivision
tree (a) contains a quadtree which is stored in 2D directional space
(b), parameterized by cosθ and φ. Each node of the quadtree can
be thought of as a spherical polygon in the global sphere of direc-
tions with surface normal n. In the original method [MGN17] these
nodes record the total incident radiance Li(x,ωi) at each iteration of
the guiding process. This incident radiance is then used to sample
directions in the next iteration. Sampling relies on a hierarchical
warping scheme that requires recursive estimation of probabilities
while descending in the quadtree of directions [MH97].

The main challenge when sampling the product

Li(x,ωi)ρ(x,ωo,ωi) cosθi, taking into account both the cosine-
weighted BSDF and discretization of Li, is that the BSDF varies
with respect to position and outgoing direction ωo. This implies
that the sampling distribution must be re-generated at every shad-
ing point. Tabulation and normalization of the product distribution
further require costly evaluation of the product at the finest level of
the SD-tree.

We introduce a separability approximation to make this process
more practical. In particular, we assume that∫

Ωi

Li(x,ωi)ρ(x,ωo,ωi) cosθidωi ≈
[∫

Ωi

Li(x,ωi)dωi

]
·[∫

Ωi

ρ(x,ωo,ωi) cosθidωi

]
within spherical polygons Ωi. This expression is approximate in
particular when Ωi covers a large solid angle, and it becomes more
accurate under refinement. Our method samples this expression hi-
erarchically in a coarse-to-fine manner, requiring many evaluations
of spherical integrals over the BSDF, of the form

D =
∫

Ω

ρ(x,ωo,ωi) cosθi dωi, (2)

hence we seek an efficient approximation. Naturally, too approx-
imate of an estimate may even increase variance, thus a suitable
tradeoff between performance and accuracy is key.

Three possible options to accomplish this could be analytic in-
tegration, a numerical solution or a conservative estimation of the
integral. Analytic solutions exist only for cosine-like distributions,
which would limit us to diffuse materials. Numerical approaches,
such as Monte Carlo integration, would be too slow to yield accu-
rate results since they require many samples for each bounce of the
path. A conservative estimate such as the one used by Estevez and
Lecocq [CEL18] would be problematic for the size of the spherical
polygons, up to half a hemisphere, in the first levels of the quadtree.
Instead, we use Linearly Transformed Cosines [HDHN16] which
enable an analytical solution for more complex distributions, and
have been demonstrated to be efficient for the integrals of the form
of Eq. (2). We achieve this by transforming from a local sphere of
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directions Fig. 2(d) to a local cosine distribution sphere of direc-
tions (e).

Although LTCs admit a cheap integration scheme over spheri-
cal sets, the recursive nature of our method increases overhead and
diminishes gains from product sampling in practice. We first dis-
cuss how we perform the product path guiding, and then present
optimization strategies that exploit the parallelizable nature of the
computations and the precomputation of frequently used factors.
Finally we discuss how multiple importance sampling and Russian
roulette can be used to further improve results.

3.1. LTC-based Product Sampling

We next discuss LTC fitting for the BSDF, discuss our product sam-
pling approach and the technical specifics required for LTC-based
product sampling.

LTC fitting for the BSDF at a shading point. Most realistic ma-
terials can be represented with a mixture of diffuse and glossy com-
ponents, with varying roughness. For the diffuse components we
use an LTC with an identity transformation M = I. For the glossy
components we precompute a table of fitted LTCs over varying
roughness α and incoming elevation angle θ, with 128 bins for
each. Given a ray intersection point p, the BSDF at that intersection
point with roughness α and the outgoing direction elevation angle
θ we fetch the corresponding LTC.

The LTC is stored in local space; a linear transformation M that
defines the LTC takes points from the local cosine distribution to
the local current BSDF distribution (Fig. 2(e) to (d)). Since the
quadtrees store incoming radiance in global coordinates we need
to apply the transformation T , a rotation of the axis, to take the
LTC from local to global coordinates (Fig. 2(d) to (c)). As a re-
sult, in our representation, the LTC has a new linear transformation
M′ = T M.

To integrate the BSDF over a spherical polygon using the LTC,
we apply the inverse linear transformation (M′)−1 = M−1T T to
the vertices of the spherical polygon and analytically integrate the
cosine distribution over it.

The integration of the BSDF using a fitted LTC uses the closed
form expression described by Baum et al. [BRW89]:

E(p1, ..., pn) =
1

2π

n

∑
i=1

cos−1(〈pi, p j〉)〈
pi× p j

pi · p j
,

0
0
1

〉 (3)

where pi are the polygon vertices. This expression assumes that
the integration domain lies within the upper hemisphere. Other-
wise, it must be clipped over the horizon.

Product sampling. During path generation, given a path vertex
p we descend in the binary spatial tree and find the correspond-
ing directional quadtree (Fig. 2(a) to (b)). Similar to Müller et al.
[MGN17], we use a hierarchical sample warping scheme proposed
by McCool and Harwood [MH97] to generate samples that follow
the desired distribution. During traversal, we estimate the probabil-
ity to move to a child node k of a given internal node, and repeat

this recursively until we reach a leaf node. Within the leaf node we
sample uniformly.

In Müller et al.’s method each node stores estimated incoming
radiance L̂i. At a given level of the quadtree, their sampling algo-
rithm chooses between the four sibling nodes v j, j = 1..4. Each
such node k stores the incoming radiance L̂k

i , and the relative value
L̂k

i

∑
4
j=1 L̂ j

i
determines the probability to move to it next. Sampled di-

rections thus follow the incoming radiance Li(x,ωi) component of
the integrand (Eq. 1). For the other component of the integrand,
BSDF sampling generates directions following ρ(x,ωo,ωi) cosθi
and the two strategies are combined using MIS.

Our algorithm is summarized in Algorithm 1. Our path guiding
method directly takes the product of the cosine-weighted BSDF
into account. We thus need to compute the probability to descend
into part of the quadtree based on the product of the BSDF integral
D and the incoming radiance, using the LTCs for fast integration of
D.

Technical specifics for LTC-based product sampling. The LTC
representation described above allows us to integrate ρ(x,ωo,ωi) ·
cosθi over the four spherical polygons at each quadtree level.

During the hierarchical sampling process, the probability to
move to a given child in the quadtree is given by the product of
these values D j, j = 1..4 and the stored values L̂ j

i , j = 1..4. For
child k, the probability is:

Pk =
Dk L̂k

i (x,ωi)

∑
4
j=1 D j L̂ j

i (x,ωi)
. (4)

where L̂k
i is an estimate of the corresponding spherical integral of

incoming radiance. This probability is used in the traversal of the
sample warping scheme, thus generating samples that follow the
full (product) integrand.

Discussion. Since the SD-tree stores the incoming radiance in
global spherical coordinates over a spatial subdivision, the nor-
mals are averaged over this space. As a result sampled directions
can be in the wrong hemisphere, terminating path generation. With
product sampling this only happens when the leaf node lies on
the horizon and the uniform sample generated within falls below
the horizon, which is quite rare. In addition there is a chance that
the product of the BSDF and the incoming radiance is 0 over the
entire sphere of directions. In such cases we sample according to
the BSDF since this means that no incoming radiance has been
recorded in the local hemisphere for this surface normal.

3.2. Optimization Strategies

In practice, using LTC fitting during recursive sampling adds com-
putational overhead that tends to negate the benefits of product path
guiding. The specific computation required for our new method en-
ables two optimizations: First, we can evaluate per-node integrals
in parallel using vectorization. Second, common factors can be pre-
computed. These two optimizations improve the performance of
our approach compared to previous methods, as we show in the
results (Sec. 4).
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Algorithm 1: Quadtree product sampling

if ISNODELEAF() then
UNIFORMLYSAMPLEWITHINNODE()

end
Π← 0;
for i← 1 to 4 do

v← GETQUADVERTICES();
for j← 1 to 4 do

v j ← CANONICALTOCARTESIAN(v j);
v j ← (M′)−1 * v j;
NORMALIZE(v j);

end
Di ← LTCINTEGRATEQUAD(v);
Li← GETSTOREDRADIANCESUM(i);
Πi← Di *Li;
Π← Π + Πi;

end
Pk ← Πk

Π
, k = 1, ...,4;

CHOOSENODEWITHPROBABILITIES(P)

3.2.1. Parallel Processing

Clipping the polygon against the horizon results in a variable num-
ber of vertices (3 to 5) and requires branching code which impacts
performance. Hill and Heitz [HH16] propose an approximation of
this process by using the vector form factor of the unclipped poly-
gon, i.e., Eq. 3 without the z axis dot product:

F = E(p1, ..., pn) =
1

2π

n

∑
i=1

cos−1(〈pi, p j〉) (5)

From F we can compute the angular extent and elevation angle of a
sphere that has the same form factor as the unclipped polygon. We
use the precomputed ratio of the clipped sphere’s form factor to the
unclipped one to scale the polygon’s form factor accordingly. With
this approximation, the BSDF integration requires Eq. 2 to be eval-
uated four times for each node (once for each pair of vertices), for
four child nodes at each level (Algorithm 1). This computation rep-
resents the additional overhead compared to the sampling in Müller
et al. [MGN17], and is a good candidate for vectorization. We per-
form these 16 computations at once on an AVX512 enabled CPU.
The rest of the process involves fetching the stored L̂ j

i values so no
further vectorization was possible there. Note that any optimization
to other parts of the method from Müller et al. [MGN17] would also
benefit our solution.

3.2.2. Precomputation

Another way to reduce the overhead of the product sampling is by
precomputing the diffuse vector form factors F (see Eq. 5 above).
When a material is diffuse the corresponding LTC has M = I so the
total inverse linear transformation applied to the quad vertices is
given by: (M′)−1 = T T . T is an orthogonal transformation and as
such we can apply it to the resulting vector form factor instead of
applying it to the vertices and then doing the computation. Given
this observation, we precompute and store the vector form factors
F for the five first levels of a quadtree with a total memory foot-

print of 256KB. For these levels we can avoid the arc cosine, dot
and cross product in Equation 2. This increases performance for
all diffuse and multiple component materials with a diffuse compo-
nent.

3.2.3. Discussion

Heitz et al. [HDHN16] mention that LTCs do not approximate the
target distribution well in cases of incident grazing angles and high
roughness materials. To avoid fireflies due to error in such cases we
switch to path guiding without the BSDF LTC integration. Specifi-
cally we do this for cases of outgoing directions with local elevation
angle 85◦ ≥ θ≥ 90◦. Moreover, if the material roughness is above
a 0.5 threshold, we conservatively treat the material as diffuse when
performing the product computation.

[MGN17] Ours
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Figure 3: The proportion of BSDF sampling learned with ADAM
for our product sampling and for Müller et al. [MGN17]. Red re-
gions show part of the scene where the guiding is used less than
BSDF sampling. Our approach is more robust because it considers
the product, thus lowering usage of BSDF sampling.

Figure 4: The six scenes used in our tests. From left to right: Bath-
room, Living Room, Glossy Kitchen, Pink Kitchen, Attic and Neck-
lace.
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Figure 5: Equal-time comparison between standard uni-directional path tracing (PT), product GMM [HEV∗16] and our product for the
Necklace (5 minutes) and Glossy Kitchen (10 minutes). Due to the online nature and more robust radiance representation, our technique
can generate images with lower noise. However, the GMM product can be better at capturing fine lighting details due to its high directional
resolution. The training time for GMM is 61 and 194 seconds respectively.

3.3. Optimization of MIS

Our product path guiding depends on the accuracy of the incom-
ing radiance representation and of the LTC integration. In some
cases (e.g., very shiny materials and/or grazing angles), these rep-
resentations may not provide the best result. To overcome this
issue, we combine our method with BSDF sampling using mul-
tiple importance sampling (MIS) as a defensive sampling strat-
egy [HEV∗16, MMR∗19].

We use the approach of Müller et al. [Mül19], that learns the
probability to either sample the BSDF or path guide based on the
performance of each sampling technique. Specifically, we run an
optimization step to learn the α value (see below), for the sampling
probability p(ωo|x,ωi) for the outgoing direction ωo from position
x and incoming direction ωi

p(ωo|x,ωi) = (1−α)pg(ωo|x,ωi)+αpbsd f (ω|x,ωi) (6)

where pg is the probability defined by our product guiding, and
pbsd f is the BSDF sampling probability. Note that for Müller et al.’s
approach, pg does not consider the incoming direction ωi during
sampling. We use the methodology of Müller et al. [MMR∗19] to

find α, i.e., we use the ADAM optimizer with the same parameters
and optimize the Kullback-Leibler (KL) divergence as it is more
robust to outliers [MMR∗19].

It is interesting to visualize the learned α value for our product
method compared to the original practical path guiding [Mül19]
(Figure 3). Observe that our α values are lower compared to Müller
et al.’s, which indicates that guiding reduces the need for BSDF
sampling as a defensive strategy. In particular, we rely more on our
path guiding strategy on glossy surfaces (i.e., wooden floor) or in
regions with normal variations (i.e., thin objects like the windows’
frames). This is visible as more blue in the figure, indicating that
BSDF sampling is used less in these regions with our approach.

3.4. Russian Roulette

As observed in previous work [HEV∗16], product sampling in-
creases average path length. This is because with product sampling
we do not generate paths towards the light source if the BSDF value
(and thus the path contribution) are low, in contrast to previous
methods that only take incoming radiance into account. In these
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Living-room
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Attic

10−2×2
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Path tracing
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10−1×3

Ours ([HEV*16] )

Figure 6: L1 convergence graph for 4 scenes between product
GMM [HEV∗16] and our product without Russian roulette and
fixed BSDF sampling probability. We show the average and vari-
ance over 5 runs of each technique.

cases, our technique introduces a tradeoff between path length and
higher contribution. In practice, we perform Russian roulette for
all paths on length two and higher, using Adjoint-driven Russian
roulette [VK16] (without splitting) where pixel estimates are di-
rectly stored in the spatial binary tree nodes. This approach was
originally proposed by Müller et al. [MGN17].

4. Results and Evaluation

We implemented our method in the Mitsuba [Jak10] renderer, and
used the Enoki library [Jak19] for parallelization with AVX-512
acceleration. We will provide the source code of our method, in-
cluding the Enoki optimization, for open research use.

We use L1 difference for the metrics shown in the main pa-
per. For other metrics, please refer to the additional material. We
choose this specific metric as it less prone to overweight fireflies
compared to square error metrics such as L2. Guiding methods
may increase variance in important but undiscovered areas. To re-
move these few remaining fireflies we could use an outlier removal
method [ZHD18].

We ran evaluations on a set of six test scenes shown in Fig. 4:
Bathroom, Living Room, Glossy Kitchen, Pink Kitchen, Attic and
Necklace. Some of these are variants of scenes used in previ-
ous work [MGN17, HEV∗16]. We were unable to compare with
GMM [HEV∗16] on Pink Kitchen and Bathroom due to specific is-
sues† with materials in these scenes. All reference images are com-
puted with several hours of computation by averaging several inde-
pendent runs of practical path guiding or by high sample count path

† Some of the materials generated from our in-house 3DS Max to Mitsuba
exporter (of type Phong) resulted in crashes during the GMM fitting phase.

Table 1: Sampling cost of generating 64 sample per pixel for dif-
ferent scenes. These timings includes all costs, which includes ray
intersection and our guiding procedure. Our optimized version re-
duces the sampling cost by around 30−35 % making our technique
practical.

Scene Naive Optimized Optimized AVX

LIVING-ROOM 26.30 20.92 (79 %) 16.54 (62 %)
PINK KITCHEN 53.60 44.22 (82 %) 32.94 (61 %)
ATTIC 64.04 54.47 (85 %) 41.93 (65 %)
BATHROOM 58.28 48.13 (82 %) 36.91 (76 %)
GLOSSY KITCHEN 20.12 17.90 (88 %) 13.69 (68 %)
NECKLACE 12.79 11.84 (92 %) 8.95 (69 %)

tracing. We set maximum path length to 10. To generate the results
for comparisons, the authors have kindly provided their own imple-
mentations of the corresponding methods. All results are generated
with implementations in Mitsuba [Jak10], with 40 threads on a dual
Intel Gold 6148 Skylake at 2.4Ghz, with dual AVX-512 units.

We disabled next-event estimation for all the techniques. Next-
event estimation can be an ineffective sampling strategy in scenes
with a highly occluded light source if no importance cache is used;
this is the case for most of our test scenes. More generally, guiding
techniques store the direct illumination directly inside the cache.
Moreover, storing the direct and indirect illumination when doing
the product guiding has the advantage of taking the BSDF at the
shading point into account.

As our technique uses online learning, we combine all the iter-
ations using the inverse variance scheme [Mül19]. We also use a
box filter and stochastic filtering when splatting a contribution on
the directional and spatial data structure respectively.

We first present statistics illustrating the contribution of each of
our optimizations to the efficiency of our technique. We discuss
our experiments with a Monte Carlo alternative to LTCs. We then
compare to the product GMM [HEV∗16] approach and to practical
path guiding [MGN17]. We also compare to unguided path tracing
to illustrate which part of the light transport is difficult to sample.

Product optimization. We summarize the performance results of
our technique with our different optimization strategies in Table 1
for various scenes. The naive version uses accurate polygon clip-
ping and no diffuse precomputation (Section 3.2.2). The optimized
version uses all optimizations listed in Section 3.2, except for par-
allel processing. We used the Enoki library [Jak19] to achieve par-
allel processing using AVX-512 to compute the integrals at each
level of the quad-tree in parallel. The scenes are ordered from the
most diffuse to the most glossy one. For these results, no Russian
roulette was used. We did not observe any noise increase when us-
ing the sphere form factor approximation to make our code branch-
less. Note that using AVX-512 instruction is a crucial optimization
to making the technique even more computationally effective.

LTC vs Monte Carlo integration. An alternative to LTCs for the
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Figure 7: Equal-time comparison between standard uni-directional path tracing (PT), Müller et al. [MGN17] and our product for the Living
Room (2 minutes) and Bathroom (3 minutes) scenes.

BSDF integration is a Monte Carlo approach, which we experi-
mented with. To avoid repeating the integral estimation process for
each node during traversal we created a temporary quadtree which
we filled with N equal energy samples using BSDF sampling. We
added a constant 5% of the total energy to all the nodes to ensure
we explored nodes that, due to the low number of samples, haven’t
received any energy. The two quadtrees, temporary BSDF quadtree
and incoming radiance quadtree, shared the same structure and the
product of their values determined the traversal. For N = 64 and
for same quality results the Monte Carlo integration approach was
9 times slower than the LTC approach.

Comparison with product GMM [HEV∗16]. To achieve a fair
comparison, we do not use Russian roulette since it was not avail-
able in the reference implementation of the product GMM method.
We also set the BSDF sampling probability to 0.25 for both the
techniques. As also noticed by Müller et al. [MGN17] the GMM
training implementation does not scale up with a high number of
threads, while the other two methods do. To provide a fair compar-
ison we trained radiance GMM with 8 threads and assumed perfect
linear scaling of speedup to 40 threads to take training time into
account. We do 30 training passes with 2M photons or importons

emitted per pass. We use default parameters for the rest of the al-
gorithm.

Figure 5 shows the comparison of Product GMM [HEV∗16] and
our technique. Due to the online nature which uses all the samples
combining different iterations using inverse variance and a more
robust irradiance representation, our algorithm can perform more
samples per pixel and achieve lower error. Still GMMs are usu-
ally better at capturing fine highlights like caustics, due to a denser
cache. However, due to GMM Expectation Maximization instabil-
ity, GMM techniques can generate artefacts in some regions, like on
the sliver ring in Necklace scene. L1 convergence graph are shown
in Figure 6. Overall our method is more efficient, however for the
Glossy Kitchen scene performance is similar or better at later iter-
ations.

Comparison with Practical Path Guiding [MGN17]. We com-
pared our product guiding with Müller et al. [MGN17] by enabling
all the improvements presented in [Mül19]. Here all the BSDF im-
provements (Section 3.3) and ADRRS (Section 3.4) are enabled.

We also present graphs of error convergence for the three meth-
ods shown in Figure 8 for the six test scenes. We see that our
method almost always has lower error, converging faster than the
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Figure 8: L1 convergence graph for our six scenes, compared
to [MGN17] and simple path tracing. We show the average and
variance over 5 runs of each technique.

previous solutions. On average, we are 15% faster for the same
quality. Figure 7 shows equal-time comparison for two scenes.

Overall, we observed that our method is particularly helpful in
two cases: (1) on glossy surfaces where our guiding reduces noise
since the effect of the product is more pronounced than elsewhere
(2) on diffuse surfaces where we can clamp the irrelevant direc-
tions. Overall, even if our computation is more expensive (due to
the multiple LTC integrations), we almost always see improvement
in the level of noise, compared to previous work.

5. Limitations and Future Work

Our method shows improvement in most of the scenes we tested,
with more significant gains for scenes with many glossy/rough ma-
terials. It is however not without limitations that we discuss next,
followed by directions for future work.

5.1. Limitations

For scenes with moderate to high complexity in geometry and ma-
terials, our product guiding is generally advantageous. However,
for some simple scenes the overhead of path guiding may not be
worthwhile. This is especially true for product guiding that involves
a significantly higher overhead than simple strategies such as BSDF
sampling, even though the tradeoff needs to be considered for

∫ =

∫ =∫

a)

b)

Figure 9: An artificial failure case for our separability approxima-
tion. a) The integral of the product of these two functions is zero
but our approximation by a product of integrals b) gives a non zero
value.

all guiding methods. Despite recent work (e.g., [RHJD18, BJ19]),
there is currently no easy way to identify “difficult paths” for which
product guiding is guaranteed to be cost effective.

In our current approach, guiding is not used in some specific
cases, e.g., for deterministic sampling techniques such as glass ma-
terial. However, the treatment of such light interactions, e.g., the
decision to reflect or refract could result in paths with high contri-
bution where guiding could be beneficial. It is unclear how to adapt
our data structures to effectively guide such sampling decisions,
without storing the complete path [RHJD18].

Our separability approximation introduced in Sec. 3 performs
adequately in our test scenes but in theory it still has failure cases.
We could construct such a failure case with two checkerboard func-
tions illustrated in Fig. 9. A similar scenario could arise with com-
plex materials with multiple glossy lobes that don’t overlap with
the incoming radiance in some directions. In that case our method
would overestimate the product value and allocate samples in re-
gions of low importance.

Finally, one key element for the efficiency of our approach is
the use of LTC to integrate the BSDF contribution over a node
of the quadtree. This works well for some materials such as the
GGX model we used in our tests, but the current LTC fitting pro-
cedure may need to be adapted for other models. In addition, the
expense of our product approach is proportional to the number of
LTCs needed to integrate for a given BSDF, making the treatment
of complex materials more challenging.

5.2. Future Work

In future work, we would like to further investigate the interac-
tion between MIS and path guiding. For now we are using ADAM
to optimize the BSDF selection probability. However, this BSDF
selection probability is given for a spatial cell and does not take
into account the incoming direction. It will be interesting to inves-
tigate if a more elaborate approach providing a finer BSDF selec-
tion probability can give better results. Finally, it is not clear how to
incorporate such an optimization procedure with recent MIS tech-
niques [GGSK19, KŠV∗19].

Recent techniques restrict guiding to regions where necessary by
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storing complete paths [RHJD18], in contrast to a cache of all paths
such as the SD-tree we use. Developing a method that combines
the ability of the former to treat very hard paths and the full path
expressivity of the latter is an exciting direction for future work.

A possible future research direction would be to build a data
structure based in primary sample space for sampling a point on
the emitter given a position in space. However, to apply our product
approach, it would be necessary to know the light source geometry
in terms of polygonal shapes to apply LTC integration.

Finally, both practical and product path guiding could be used in
the context of volume rendering, e.g., by adapting LTC integration
to support phase functions.

6. Conclusions

We have presented a new product based path guiding technique,
that combines the computational efficiency of spatial-directional
subdivision and sampling efficacy of product guiding. The key el-
ement of our approach is the use of Linearly Transformed Cosines
allowing efficient integration of the BSDF during hierarchical im-
portance sampling, i.e., when recursively traversing the quadtree
representation of the directional component of the subdivision. To
make the approach cost effective, we introduce two main optimiza-
tions, using parallelization and precomputation, and also exploit
the benefits of MIS and Russian roulette to further improve perfor-
mance. We have demonstrated how our new approach is beneficial
on a set of six test scenes, and we have also presented an analysis
of the benefits of each of our optimizations.
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KŘIVÁNEK J., KELLER A.: Path guiding in production. In ACM SIG-
GRAPH 2019 Courses. 2019, pp. 1–77. doi:10.1145/3305366.
3328091. 1
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