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Figure 1: Thin structures are present in many environments, both indoors and outdoors (far left). They are challenging for image-based
rendering (IBR) methods since they are hard to reconstruct. We address this problem by introducing a multi-view segmentation algorithm
for thin structures supported by user provided simple geometries, which exploits multi-view information. Our algorithm can handle multiple
layers of thin structures, such as the different level of fences in the scene above. Our solution extracts multi-view mattes together with clean
background images and geometry. These elements are used by our multi-layer rendering algorithm that allows free-viewpoint navigation,
with significantly improved quality compared to previous solutions (right).

Abstract
We propose a novel method to handle thin structures in Image-Based Rendering (IBR), and specifically structures supported
by simple geometric shapes such as planes, cylinders, etc. These structures, e.g. railings, fences, oven grills etc, are present in
many man-made environments and are extremely challenging for multi-view 3D reconstruction, representing a major limitation
of existing IBR methods. Our key insight is to exploit multi-view information. After a handful of user clicks to specify the
supporting geometry, we compute multi-view and multi-layer alpha mattes to extract the thin structures. We use two multi-view
terms in a graph-cut segmentation, the first based on multi-view foreground color prediction and the second ensuring multi-
view consistency of labels. Occlusion of the background can challenge reprojection error calculation and we use multiview
median images and variance, with multiple layers of thin structures. Our end-to-end solution uses the multi-layer segmentation
to create per-view mattes and the median colors and variance to create a clean background. We introduce a new multi-pass IBR
algorithm based on depth-peeling to allow free-viewpoint navigation of multi-layer semi-transparent thin structures. Our results
show significant improvement in rendering quality for thin structures compared to previous image-based rendering solutions.

1. Introduction

Image-based rendering (IBR) algorithms, e.g. [KLS∗13, LKM14,
OCDD15,PZ17] provide a compelling solution to virtual visits and
photo tourism, avoiding the expense of 3D modeling/texturing, and
complex photo-realistic rendering. Their key advantage is the sim-
plicity of the input: only a set of photos of a scene is needed, yet
they allow high-quality free-viewpoint rendering. However, one of
the key problems in IBR methods is the rendering of regions where

?Abdelaziz Djelouah is now at Disney Research. He contributed to this
work during his time at Inria.

3D reconstruction is hard or impossible, such as vegetation, reflec-
tions and thin structures.

Previous methods have addressed reflections and transparency
[SKG∗12,KLS∗13], or vegetation [CDSHD13] but no solution cur-
rently exists for thin structures. These are present in all man-made
environments: outdoors, fences or stair banisters are very common,
while indoors a variety of everyday objects and utensils have sim-
ilar properties, e.g., grills, racks or decorative elements. In this pa-
per we focus on thin structures that are supported by user provided
simple geometries, such as planes or cylinders.

We take as input a set of photographs of the scene from multiple
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viewpoints as well as a traditional 3D reconstruction from off-the-
shelf structure-from-motion (SfM) and multi-view stereo (MVS)
methods. The 3D reconstruction is usually incorrect for the thin
structure; our goal is to segment it out on the correct 3D support-
ing geometry to improve image based rendering. Multiple factors
make this problem hard. The structures are very thin and often lack
texture; as a result standard descriptors are ineffective and regu-
larization is difficult. Also, the see-through nature of these objects
makes multi-view inference challenging.

Our problem is related to de-fencing methods (e.g., [PBCL10])
but their objective is often limited to removing occluding fences, in
which case segmentation can be conservative and less precise. The
foreground layer can be more precisely estimated [XRLF15], but
this requires the small baseline of video sequences.

The key intuition in our work is that we can use multi-view infor-
mation and the partial 3D reconstruction to estimate segmentation
of thin structures in multiple input views. In addition to the im-
ages and reconstruction we use as input, a short user interaction is
needed to define the supporting geometry and region of interest.
The first part of our algorithm is a Markov Random Field (MRF)-
based multi-view segmentation, which can handle multiple layers
of thin structures. We combine appearance cues from color mod-
els, median colors and variance, with multi-view consistency con-
straints on segmentation results. The second part of our solution
is an IBR algorithm that allows free-viewpoint rendering of multi-
layer thin structures. For a given fragment, our renderer interprets
alpha values as probabilities to be on a thin structure. These are
used to blend weighted colors from the different views.

Our contributions can be summarized as follows:

• A multi-view segmentation algorithm for thin structures sup-
ported by simple geometries, that uses multi-view links and color
variance to resolve hard ambiguous cases.
• An end-to-end solution to IBR for such multi-layer thin struc-

tures, including preprocessing to ensure accurate segmentation,
and post-processing to generate a clean background.
• A new IBR algorithm that allows free-viewpoint navigation of

scenes containing these structures.

Our results show significant improvement over previous work, in
terms of the identification of the thin structures, the resulting seg-
mentation, and most importantly in the quality of the final image-
based rendering in free-viewpoint navigation.

2. Related Work

Our work is related to image de-fencing, repetitive structure detec-
tion and multi-view segmentation. We also briefly discuss aspects
of 3D reconstruction and Image-Based Rendering research related
to our work.

2.1. De-fencing and Repetitive Structure Detection

Hays et al. [HLEL06] divide research on discovering repeated el-
ements into two extremes: the first focusing on the individual el-
ement [LF04] and the other imposing strong structure priors on
the general layout of the repeating elements [TTVG01]. Hays et

al. are the first to automate lattice detection in real images with-
out pre-segmentation. Further improvement is proposed by Park et
al. [PBCL09] by solving the problem in an MRF setting. More re-
cently, Liu et al. [LNS∗15] avoid using interest points and apply the
Generalized PatchMath algorithm in combination with Particle Be-
lief Propagation to infer the lattice structure. In the case of facades,
vanishing lines [WFP10] can be used for plane detection and recti-
fication. In this case dense descriptors are matched not only using
repetition but also symmetry. In a multi-view setting, it is possible
to detect repetitive elements on more complex surfaces [JTC11] us-
ing reconstructed 3D geometry and the images. This however can-
not be applied to thin structures in our scenes as there is often no
reliable 3D reconstruction.

The problem of image de-fencing consists in removing fences
from pictures or videos. Liu et al. [LBHL08] were the first to
propose an automatic method to detect and segment fences in
images. Texture based inpainting [CPT04] is used to fill the ex-
tracted regions. Fences are found by searching for a lattice that
explains the relationship between repeated elements in the im-
age [HLEL06]. This method is further improved [PBCL10] using
a multi-view approach for inpainting and a different lattice detec-
tion algorithm [PBCL09]. In the case of videos, optical flow is the
main cue used to identify fences. A first method is proposed by
Mu et al. [MLY12] based on motion parallax. Recently, a robust
method for obstruction free photography [XRLF15] was proposed
to handle occlusion from both fences and windows, generating an
alpha matted thin structure layer. Yi et al [YWT16] also rely on
motion in their fence/non fence segmentation. Finally, Yamashita et
al. [YMK10] use multi-focus flash/non flash images to identify re-
gions corresponding to objects closer to the camera. Most of these
methods assume that the fence is closer to the camera than our typ-
ical input. In video-based methods, optical flow estimation is cen-
tral, and often fails on the wide-baseline input data we have. We
show several comparisons to previous methods in Sec. 7.2 and in
supplemental material which demonstrate that these methods are
not adapted to our goals.

2.2. Multi-View Segmentation

Our work is also related to multi-view segmentation methods that
try to identify the foreground object visible in different view-
points. Some of these methods rely on consistency of the projec-
tion of 3D points [KBC12, DFB∗13] which is unreliable with thin
structures. Other segmentation approaches use constraints from
stereo [KSS12] or matching along epipolar lines [CVHC11]. Both
strategies are not designed to handle ambiguities due to the of-
ten repetitive pattern. In [WFZ02], Wexler et al. estimate two lay-
ers from multiple images using a Bayesian framework. Contrary
to our work, they assume foreground and background transforma-
tions are modeled by planar projections. The resulting Maximum-
a-Posteriori estimation requires the definition of a reference view
which is not trivial when considering more complex camera setups.
Our approach is able to handle complex 3D geometries and multi-
ple layers. Thanks to our multi-view constraints, segmentation is
estimated in the original input images for best rendering results.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.



T. Thonat & A. Djelouah & F. Durand & G. Drettakis / Thin Structures in Image Based Rendering

(a) (c)

(a) (b)

Pr
e-

pr
oc

es
si

ng

3D Reconstruction
Supporting 
Geometry

(c) (d) (e)

Po
st

-p
ro

ce
ss

in
g

Images User Interaction
Background

RenderingMulti-view segmentation

Figure 2: End-to-end solution for thin structures in IBR. (a) After reconstruction and supporting geometries extraction from user interac-
tion, we proceed to (b) pre-processing step to remove spurious geometry. We then perform (c) multi-view, multi-layer segmentation followed
by (d) post-processing to create “clean” background images and geometry. The result can be used by our multi-layer rendering algorithm
(e), allowing free-viewpoint navigation.

2.3. Multi-View Stereo Reconstruction and IBR

Thin structures are also an important limitation for multi-view
stereo (MVS) reconstruction methods [GSC∗07, FP10, JP11]. Um-
menhofer and Brox [UB13] propose a method to reconstruct thin
objects which have almost no volume compared to the surface
size. Because of the errors in the 3D reconstruction and the nor-
mals, the object is not reconstructed (e.g., a sign observed from
opposing viewpoints). In a different setup, Oswald et al. [OSC14]
enforce connectivity constraints and surface genus in temporal
3D reconstruction. In their paper on scene abstraction, Hofer et
al. [HMB16] use 3D lines to represent 3D scenes. There also has
been work specific to the reconstruction of wire structures from
images [LCL∗17,MMBP14,CH04]; these methods have strong as-
sumptions about the simplicity and/or tubular structure of the ob-
jects being reconstructed, and thus do not apply to our context. In
general, the hypotheses on input in all of these methods are very
different from ours, making them inappropriate for our data.

Initial IBR algorithms did not require geometry [MB95,
Che95]. More recent solutions use MVS reconstruction to pro-
vide high-quality free-viewpoint navigation when reconstruction
works well, e.g., Unstructured Lumigraph (ULR) or more recent
methods [EDM∗08, LKM14, OCDD15]. The harder case of re-
flections has been addressed with explicit reflection reconstruc-
tion [SKG∗12], gradient domain rendering [KLS∗13] or stock 3D
models [OCDM∗16], while vegetation can be handled using over-
segmentation and depth synthesis [CDSHD13]. Layered Depth Im-
ages [SGHS98] can be used with image data based on an ordering
algorithm to allow correct alpha blending; in contrast we interpret
alpha values as probabilities to allow specific visibility processing
for our multi-layer semi-transparent thin geometries. In recent work
the Soft3D algorithm [PZ17] uses a volumetric depth-sweep ap-
proach for IBR with a set of clever filtering steps, based on guided
filtering and soft visibility, with excellent results. The volumetric
nature of this approach means that very fine resolution at unaccept-

able storage/computation cost would be needed to represent the thin
structures we treat. Our rendering algorithm shares some ideas with
the soft visibility approach of Soft3D which we discuss in more
detail when presenting our method. The central difference is that
we work with surface-based 3D (MVS reconstruction and thin sup-
porting geometries) rather than volumes, which allows better visual
quality for free-viewpoint navigation far from the input cameras.

3. Overview

Our pipeline is shown in Fig. 2. We start with a set of photographs
of the scene together with a 3D reconstruction, estimated using
multi-view stereo (e.g., [JP11, Rea16]): We call this the proxy ge-
ometry and we assume that it completely covers the background
of the scene. The 3D model usually represents the thin structure
poorly and we provide a user interface to specify the supporting
3D geometry of the thin structure. The user manually specifies 3D
points in images, by clicking in 2 images per point. For a plane,
3-4 points are needed and for a cylindrical segment, the user speci-
fies 4-5 points for each of the “upper” and “lower” circles defining
the cylindrical segment. The output is a collection of meshes that
roughly cover the thin structures (illustrated in Fig. 2.a). This user
interaction takes no more than a few minutes for all our examples
(please see video).

Our goal is to segment pixels belonging to the thin structure in
all the input views (Fig. 2. c). There can be multiple overlapping
layers of see-through thin structures. As a result, in addition to sep-
arating the thin structures from the background, we also need to
segment the thin structures into a distinct set of layers. This makes
traditional appearance terms less reliable. Moreover, the segmenta-
tion of such structures is hard because the regions are not compact
and challenge the balance between area and contour terms in tra-
ditional segmentation. Our key observation is that we can leverage
the multiple input views to resolve ambiguity present in a given
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view. Consider Fig. 3: the structures on the left are very hard to ex-
tract as they have colors very similar to the door behind. However,
the same structures in the right image have high contrast and can
be extracted easily.

Our segmentation algorithm relies on color models and multi-
view constraints: for occluded layers, we use median col-
ors [WFZ02] to leverage the multiple views and obtain a color
model that is more robust to occlusions. However, for the front-
most layer, any inconsistency in colors between the different views
is likely to indicate incorrect segmentation and using color vari-
ance across viewpoints is more effective. In addition to this, we use
multi-view links to help resolve ambiguous cases for segmentation.
The segmentation operates layer by layer, from front to back; we
will refer to “foreground” as the current front-most thin structure
and “background” as the layers behind together with the non-thin
parts of the scene. Because we leverage the discrepancy between
reprojections to background and foreground layers, we assume that
the thin structure has not been reconstructed in the 3D proxy. To
ensure this, we remove geometry in the close neighborhood of the
supporting geometry during a preprocess step.

After multi-view segmentation, we refine the segmentation using
off-the-shelf alpha matting [HRR∗11], whereas the background re-
gions occluded by the thin structures are filled using the median
images and inpainting. The resulting images are then used to create
a “thin-structure-free” 3D reconstruction of the background. These
correspond to the post-processing in Fig. 2(d). Details for pre- and
post-processing are provided in Sec. 5.

We introduce a new rendering algorithm that handles multi-view
alpha mattes, by interpreting alpha values as conditional proba-
bilities that a fragment contains a thin structure. We estimate the
overall alpha value using Bayes rule. Rendering involves a depth-
peeling algorithm on the supporting geometries of the thin struc-
tures, rendered after a first ULR pass of the clean background
(Fig. 2. e). Our results on scenes with thin structures show sig-
nificantly better quality than previous methods, especially for the
free-viewpoint navigation far from the input cameras.

4. Multi-view Segmentation

To resolve the difficult multi-layer segmentation problem, we use
multi-view color and geometry information.

(a) (b)

Figure 3: Benefits of a multi-view approach. Segmentation of the
ambiguous area on the left can be resolved using the view on the
right.
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Figure 4: Multi-view links at iteration k. We create multi-view
links by connecting two pixels which correspond to the same 3D
point on the layer k (p1 linked to p2 and p′1 linked to p′2 ). When
the 3D point really corresponds to a thin structure (p1 ↔ p2), we
have linked together two pixels from the layer k. When the 3D point
is in-between the thin structure (p′1 ↔ p′2), we do not know which
layer corresponds to which pixel: p′1 is in layer k+ 1, while p′2 is
on the proxy but we can infer that the two pixels are on layers > k.

4.1. Multi-Layer Segmentation

Our approach handles multiple layers of thin structures, e.g, the
corner of the staircase in Fig. 2. For each pixel p in each input im-
age, we create a sorted list of Np front-to-back depth candidates dk
by ray-casting the proxy and the thin structure supporting geome-
tries. The last depth candidate dNp per pixel is always the proxy
depth because we assume that the proxy is opaque, so we stop ray-
casting as soon as it is hit.

We denote by P the set of all pixels p for which Np ≥ 2. It cor-
responds to all pixels that need to be segmented because they have
at least one depth candidate in addition to the proxy depth. Solv-
ing the general multi-layer segmentation problem is equivalent to
assigning the correct depth to each pixel, which we model as find-
ing a labelling that will minimize an energy function defined by
multi-view information on color and geometry.

To solve the multi-label problem, we decompose it into a se-
quence of binary label problems, in an alpha-expansion-like fash-
ion [BVZ01], considering depth labels from front-to-back. For each
iteration k, we select all the pixels with current segmentation ≥ k,
and we want to find out how much we can expand the depth layer
k. The two labels for the sub binary problems are “depth layer is
k” and “depth layer is > k”, i.e., “foreground” and “background”
respectively.

To see the justification for this decomposition, consider Fig. 4:
labels of pixels associated through the current depth layer k are
linked. They are either both at the correct depth layer k, which is
the case for pixels p1 and p2, or both at a depth layer > k in the
case of pixels p′1 and p′2. In this case, it is not possible to associate
a specific layer > k to the pixels p′1 and p′2 (see Fig. 4).
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Figure 5: Advantage of using median or variance information for each depth layer for a given current depth layer. Warm colors in the
score columns indicate high likelihood for this layer to give the correct depth. For the current layer, the variances give cleaner information.
For the layers beyond, the medians remove outliers while the variance score, more sensitive to occlusions, is low on the wall. For each layer,
the most informative score is outlined in green.

We denote K the geometry corresponding the depth layer k. We
use the term background geometry to refer to the geometry corre-
sponding to all depth layers > k, i.e., thin structures behind the cur-
rent layer or proxy of the scene. We iteratively solve these binary
problems for k = 1 to k = max

p∈P
Np−1.

4.2. General Formulation

We can now express the segmentation as a binary labeling problem
for each pixel, minimizing an MRF energy function. We start with
standard color and smoothness terms, and use two terms that ex-
ploit multi-view cues. The first provides a multi-view color predic-
tion of a foreground vs. background pixel given the reprojections
from other views, while the second term links the label of pixels
from different viewpoints if they correspond to the same point on
the foreground layer K.

We next describe the graphcut segmentation terms before intro-
ducing our new terms in more detail.

Color Model. We compute prior probabilities for each pixel for
being in the thin structure or in the proxy: Pcolor

thin and Pcolor
proxy respec-

tively. These are estimated from global per view appearance mod-
els. In our case, we use histograms. We cluster all the colors in all
input images and for a color c, we note C(c) its associated cluster,
where this cluster defines the corresponding bin in the histogram.
We note PIthin the set of pixels of image I currently segmented as
one of the thin structures and PIproxy the set of all input pixels not
in PIthin. Probabilities for a pixel p from image I with color cp are

then defined as:

Pcolor
thin (p) =

#{q ∈ PIthin,C(cq) =C(cp)}
#{q ∈ PIthin}

Pcolor
proxy(p) =

#{q ∈ PIproxy,C(cq) =C(cp)}
#{q ∈ PIproxy},

(1)

where # is set cardinality. Finally, the probabilities Pcolor
k to be part

of the layer k based on the color models are given by:

Pcolor
k (p) =

{
Pcolor

proxy(p) if k = Np,

Pcolor
thin (p) otherwise.

(2)

Smoothness term. We use a standard pairwise contrast sensitive
energy term, with a 4-neighbor connectivity. Specifically:

EN (p,q) =

{
1

1+||cp−cq|| if lp 6= lq,

0 otherwise.
(3)

with ||cp− cq|| the L2 norm of the color difference.

4.3. Multi-View Color Term

We leverage multi-view information to determine the probability
of being foreground or background by reprojection, in the spirit
of multi-view stereo [SCD∗06]. Standard reprojection error ap-
proaches are not sufficiently robust in our challenging context, in
particular because of occlusion. Instead we compare observed pix-
els to the median of the reprojections from multiple views [WFZ02]
and introduce variance to allow more robust results.
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Figure 6: Advantage of using a multi-view approach for segmentation. The MV links allow us not only to retrieve missing segmentation
because of a similar background but also to remove wrong segmentation because of possibly misleading unary terms.

For a 3D point in the current depth layer kcurrent, since we have
an approximate segmentation of the previous depth layers, we can
compute a reliable visibility information from input views. So with
the hypothesis of low specularity, a high color variance in the re-
projections of the 3D point into the input views is a strong cue of
an incorrect depth. On the other hand, for a 3D point in a depth
layer k > kcurrent, we do not have reliable visibility information, so
even with a correct depth, a high color variance could simply be a
consequence of occlusions. However, if we make the assumption
that since the foregrounds are thin, a background point will not be
occluded in the majority of the views, we can use the median color
across views to remove occlusion outliers.

For a given view, we use the 3D information from layer k to
project into the other views and collect color samples. The variance
map σI defines the variances of these samples for each pixel p. The
median imageM is obtained by sorting the samples by luminance,
and keeping the median color value for each pixel.

The likelihood for a pixel p to be part of depth layer k is

Lk(p) =

{
G(σI(p),0,σref) if k = kcurrent,

G(I(p),Mk(p),Iref) if k > kcurrent.
(4)

with G indicating a Gaussian distribution. In the case of the current
depth layer kcurrent, a small variance in the color samples is likely to
indicate correct depth assignment. In the case of other depth layers
k > kcurrent, using the median color mapMk is more robust to the
occasional occlusions. We show examples of the median images in
Fig. 5. In the case of the front-most layer (k = kcurrent), using the
variance map gives more precise results whereas the median colors
are more effective on layers further away (k > kcurrent).

Moreover, since the layers occlude each other, we introduce a
prior weight λk to take in account that the segmentation of layer k
becomes more likely as it approaches the front (excluding the proxy
which is prominent). Given that the layer k = Np corresponds to
the proxy, we model this by a Bernoulli trial of parameter 0.6 such
that λproxy = λNp > λ1 > λ2 > · · ·> λNp−1.

Therefore the probabilities Pmv
k to be part of the layer k (k ≥

kcurrent), based on the multi-view information are given by:

Pmv
k (p) =

λk ·Lk(p)
∑

k′≥kcurrent

λk′ ·Lk′(p)
(5)

4.4. Multi-View Links

We introduce multi-view links to enforce consistency between
views, transferring more reliable segmentations to views with
harder configurations. We reproject each pixel into neighboring im-
ages with depth K and we create a link for each projection if its
current segmentation is ≥ k. We do this since if the reprojection
falls on a pixel with current segmentation < k, we do not want to
change this decision; see illustration in Fig. 4, To limit issues due
to coordinate rounding, links are created only if the backprojection
in the opposite direction is on the same pixel.

EL(p,q) is the energy term corresponding to these multi-view
links. It is created between all pairs of views (i, j), linking a pixel
p from i with a pixel q from j through reprojection:

EL(p,q) =

{
λ if lp 6= lq,
0 otherwise.

(6)

These links allow the propagation of segmentation results from
views where color models are more discriminatory to images where
the difference between foreground and background appearance is
ambiguous. In all our results, λ = 1.0.

4.5. Unary Energy Terms

The probabilities described above give information about a layer k.
The unary cost associated to a layer k is given by :

Uk(p) =− log
(

λcolor ·Pcolor
k (p)+λmv ·Pmv

k (p)
)

(7)

Terms λcolor and λmv are mixing coefficients between the global
and the multi-view appearance models, where λmv = 0.4 and
λcolor = 1− λmv. We now need to compute the unary terms with
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respect to the labels “foreground” and “background”. For the fore-
ground label “k” the unary term is simply the unary cost associated
to that depth layer. For the background label “> k” the unary term
is the minimum of all the unary costs associated to the depth layers
k+1,k+2, · · · . We take the minimum to be as conservative as pos-
sible when assigning the label k, because if k is chosen, the pixel
will not appear in the following binary segmentation problems as
we solve front-to-back. Therefore the unary energy term is given
by:

EU (p) =

{
Uk(p) if lp = “foreground“,
min
k′>k

Uk′(p) if lp = “background“. (8)

4.6. Final Energy Formulation

EN(p,q) and EL(p,q) are pairwise terms used to enforce coherent
segmentation respectively at image and multi-view level.

If we note by N all the pairs of neighboring pixels, and by L all
the multi-view links, the final energy optimized by the MRF is as
follows:

E = ∑
p∈P

EU (p)+ ∑
(p,q)∈N

EN(p,q)+ ∑
(p,q)∈L

EL(p,q) (9)

In Fig. 6 we illustrate the effect of the unary terms and the multi-
view consistency term EL(p,q). Using only classic color models
for foreground and background is sensitive to any similarity of
appearance between these two parts. Adding the multi-view color
term helps to take into account the other viewpoints and we clearly
see that some regions that were erroneously part of the foreground
model, are now less likely to be coherent in multi-view. We also see
why multi-view links allow the propagation of good segmentation
results across viewpoints.

5. Pre- and Post-Processing

Achieving high quality segmentation requires a few pre-processing
steps, which we describe below. We also explain the matting and
background image creation steps, required for rendering. Recall
that the input to these steps is the multi-view stereo reconstruction
with calibrated cameras, and the user-defined thin structure geom-
etry.

5.1. Pre-processing

Our multi-view segmentation approach assumes that the thin struc-
tures are not reconstructed. In some cases, modern reconstruction
algorithms create spurious geometry in the thin structure support-
ing surface S, typically filling the space between them or even
reconstructing small parts of the structure. To allow high-quality
segmentation, we need to remove this reconstruction, bringing our
input data into the canonical form expected by the segmentation.

Removing reconstruction in the thin structure geometry. To
identify the vertices of the proxy that comes from superfluous re-
construction (e.g., false surfaces between thin structured), we first
compute a smoothed histogram of the log point-to-mesh L2 dis-
tance between the proxy vertices and the thin structure geome-
try. We then remove all the vertices for which the log-distance is

Input Proxy log-distance

Cleaning Filling New 3D Recon.

Figure 7: Result of the depth pre-processing for regions with spuri-
ous reconstructed geometry in the geometry of thin structures. The
histogram shows the log distances distribution between the sup-
porting geometry and the proxy vertices. The closest vertices (red
bins) are removed during the cleaning step.

smaller than the value associated to the first valley (see Fig. 7).
Such removal can reveal holes in the proxy that need to be filled in
order to have a depth available behind the thin structure geometry.
We fill those holes by fitting local planes.

Image Thin structures Filtered thin
structures

Figure 8: Thin structure candidates for a given input image. Thin
structures are marked in red, between detected edges in white. We
filter these thin structure candidates using multi-view information.
To initialize the multi-view segmentation, we select thin structure
candidates p that have Pmv

k (p)> 0.9

Detection of Thin Structure candidates. We obtain first candidate
points for thin structures by detecting edges in the images [Can86].
Candidate points are generated between the edges. This is illus-
trated in Fig. 8: the edges detected are in white, and the generated
candidates points are in red. Since a large number of such candi-
dates can be generated, we filter the result using multi-view infor-
mation. More specifically, we initialize a thin structure candidate to
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be at layer k if Pmv
k (p) > 0.9 for any k < Np. Every other pixel is

initialized with the back-most layer.

5.2. Post-processing

In post-process, we need to extract the foreground and an alpha
matte of the thin structures, create the background image corre-
sponding to each input view and the clean background geometry.
Before matting, we remove small spurious outliers, by removing
connected components with size less than 0.2% of the image size.

Alpha Matting. The tri-map for the alpha matting step is obtained
by first dilating the foreground label maps to create the uncertain
region and eroding to determine the foreground. The resulting seg-
mentations for two images of one of our test scenes are provided as
supplemental material. The accuracy of the tri-maps is important to
the success of the subsequent steps, but also depends on the mat-
ting algorithm used. We use the approach of [HRR∗11] for matting,
which provides adequate alpha mattes for rendering.

Background Generation. We use the median images, updated
with the visibility information from the segmentation, as back-
ground in the regions labelled as thin structures, with a Poisson
editing step to correct for small differences in color levels. A small
number of pixels are black in these images, corresponding to re-
gions occluded by the thin structures in all images; we apply stan-
dard single-image inpainting to fill these holes using a variant of
PatchMatch with the “occurence” term of Kaspar et al. [KNL∗15].
Once we have generated these color-balanced background images,
we perform a fresh 3D reconstruction step with the thin structures
removed. This step improves the quality of the background mesh
significantly (see video).

6. Rendering

Our rendering algorithm is based on the Unstructured Lumigraph
(ULR) [BBMC01] with soft visibility [EDM∗08], operating on a
per-pixel basis. Standard ULR precomputes a depth buffer for each
input view. During rendering, a first pass renders the depth to the
frame buffer, and for each fragment, we perform a depth test for
each input view with the precomputed depth. If the test fails the
fragment is discarded (Fig. 9(a)). If it succeeds, the ULR weights
wi are computed [BBMC01] expressing the match in angle and dis-
tance between the novel and input views, and used to blend the
corresponding colors from the input images.

Our scenes are more complex. The depth map for each input
view is computed using the background geometry, and then aug-
mented with the information provided by the segmentation. Each
pixel on a thin structure has a depth corresponding to the support-
ing geometry layer determined by the segmentation, and an alpha
value computed by the matting process (Fig. 9(b)). There are two
main issues: first, the supporting geometry of the thin structure
(dashed lines in Fig. 9(b)-(d)) is semi-transparent, and thus requires
a specific rendering algorithm and second, we need to define how
to combine the view-dependent alpha values in the novel view.

For the first issue, we adapt the depth peeling algorithm [Eve01],
run in back-to-front order. This consists in progressively rendering
each layer of depth with a “less-than” depth test and alpha blend-
ing with the previous layer. We first render the clean background

proxy using standard ULR, then perform depth peeling using the
supporting geometries.

For the second issue we propose an interpretation of α values as
conditional probabilities of having a thin structure along the view-
ing ray of a pixel in each input view. P(thin f |Vi) is the conditional
probability that a fragment f is on a thin structure, given view Vi.
We thus assume αi = P(thin f |Vi); we interpret ULR weights as a
prior probability of each view Vi:

P(Vi) =
wi

∑k wk
. (10)

We will apply Bayes rule to compute the overall probability of
a given fragment being on a thin structure, at a given layer of the
depth peeling algorithm, which can be seen as a multi-view filtering
of the segmentation results. Then we use this probability as the α f
value for blending the weighted ULR colors from the input views
for fragment f (see Algorithm 1 for the details):

α f = P(thin f ) = ∑
i

P(thin f |Vi)P(Vi) =
∑i αiwi

∑i wi
(11)

There are two cases that need to be treated as specific depth tests.
First, if a fragment of a thin structure from another input view V j is
in front of the current thin structure fragment f , then V j is ignored
by setting w j = 0 (e.g., Fig. 9(c), V1 is ignored), since it cannot pro-
vide information about a fragment behind it. The second case is if
there is a thin structure at a depth behind the fragment f in an input
view. Since the segmentation has placed it behind f , the conditional
probability that the thin structure is at the depth of f is 0; we thus
set P(thin f |Vi) = αi = 0. However, we include the input view
in the blend of colors to be conservative. This approach is related
to the consensus voting approach in Soft3D [PZ17]. Since we have
surface-based geometry, instead of performing volumetric accumu-
lation, we can directly used the probabilities computed to make a
decision for each fragment, avoiding visual artifacts far from the
input cameras.

ALGORITHM 1: Multi-Depth Thin Structure Rendering Algorithm.
Input: Images with depth, background and thin geometry
Result: Novel View
Render clean background with standard ULR into Ccurrent;
for each depth peel layer, back to front do

Render alpha with depth tests in α f ;
Render color with ULR weights in C f ;
Blend with previous layers : Ccurrent ← C f ·α f +(1−α f ) ·Ccurrent;

7. Results and Comparisons

We first show results of our method on a variety of scenes. We then
provide comparisons with related work, and finally discuss limita-
tions. When judging comparisons, one should consider that our re-
sults benefit from the user-defined thin geometry, but this informa-
tion only could not be directly used by these previous algorithms.

7.1. Results

We ran our approach on an Xeon E5-2650 PC. For each scene we
took between 10 and 30 photos. The outdoors scenes were taken
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α = 0.8

V1
V1 V2V2

V1

V2

(a) (b) (c) (d)Vn
Vn Vn Vn

V1 V2
Vn

α = 0.5

α = 0.5

α = 0.8

α = 0.9

: novel view

P(thinf | V2) = α2 = 0
 for fragment f

Figure 9: (a) Traditional ULR rendering: For fragment f (green circle) we ignore view V1. (b) In our case, we have multiple values of α

from different views, that blend with the background. These are interpreted as probabilities of being a thin structure at this depth, thus in this
example P(thin f |V1) = α1 = 0.8 and P(thin f |V2) = α2 = 0.5. (c) If for an input view the depth map is in front of the current fragment,
the view (V1 here) is ignored as the view gives no information about the fragment. (d) If for an input view, the depth map is behind the current
fragment, the view (V2 here) estimates there is no thin structure at the fragment location with P(thin f |V2) = 0.

with a DSLR camera, and the indoors with an iPhone 6S. We use
[Rea16] for camera calibration and 3D reconstruction. Note that
we assume that a background depth is reconstructed for all pixels
in an image; To treat a scene with a sky background for example,
a bounding box could be fit to the scene to provide “far depth” for
sky pixels. The user specifies the supporting geometry by provid-
ing correspondences points in a multi-view interface to fit a basic
3D primitive and then manipulates the primitive control points in
a 3D window; Our current interface handles planar segments and
cylinders. Please see the video for an example interaction session.

The whole offline pipeline (excluding reconstruction steps) took
in the order of 5 minutes for the smaller scenes (∼ 10 images) to
20 minutes for the larger scenes (∼30 images). The rendering runs
at 60 fps on a 1080p display with all datasets using a GTX 1080.

Our approach allows us to capture complex shapes which are
not necessarily purely repetitive, for example in the “Stairs” scene.
We provide the multi-view segmentations and the mattes for all our
datasets in supplemental material. Small artifacts in the segmenta-
tion are often alleviated by the blending step of IBR. We show the
results of our inpainting step and rendering from novel viewpoints
in Fig. 10. The Stairs and Rolland scenes contain multiple layers
of thin structure depth, and the Balcony scene is a cylinder with
multiple depths. The supporting geometry could in theory have any
form, as long as it can be reasonably represented by a mesh.

7.2. Comparisons

We present comparisons on rendering and segmentation. For ren-
dering, please see the accompanying video, the improvement over
of previous methods is much more evident during interactive free-
viewpoint navigation.

Rendering. Our approach allows free-viewpoint navigation to
regions quite far from the original cameras. We thus focus
our comparisons on other methods that allow interactive free-
viewpoint navigation, in particular Unstructured Lumigraph Ren-
dering (ULR) [BBMC01] and Bayesian IBR [OCDD15] (which
subsumes [CDSHD13]). For these comparisons we use our re-
implementation of ULR, which in contrast to the original ver-
sion, uses per-pixel weights based on the geometric proxy from
MVS reconstruction, and the original implementation of Bayesian
IBR [OCDD15]. We show results for several scenes and novel

viewpoints, far from the input cameras. Our method greatly im-
proves over previous methods, since those methods incorrectly
project thin structures onto the background geometry.

In addition to these free-viewpoint methods we compare to the
recent Soft3D IBR method [PZ17]. We use an reimplementation
of the complete Soft3D method provided by P. Hedman of UCL †.
As can be seen in the video, Soft3D produces high quality results
for certain capture configurations (e.g., all cameras in a plane) and
when interpolating camera positions. When moving away from the
input cameras, blurring artifacts appear due to the depth discretiza-
tion. These are even more visible for thin structures. Note also that
rendering a single image with Soft3D takes seconds, compared to
the real-time behavior of our method.

Segmentation. To our knowledge, no previous method has ad-
dressed thin structures for image-based rendering. As a result, we
compare with the most closely related methods, which are not tuned
for our data. For completeness, we also compare to previous lattice-
detection methods in supplemental material. The results show that
such methods either fail to find parts or even most of the thin struc-
tures, or sometimes only partially succeed for some but not all of
the images in the multi-view dataset. This is unsuprising given
our richer input (camera calibration, 3D reconstruction and user-
defined thin geometry); The comparison is provided to show that
these methods cannot solve our problem.

We also compare to automatic fence segmentation [YWT16] in
Fig. 11. The authors kindly ran their code on our dataset, however
since our data are not continuous videoframes their method can-
not perform spatio-temporal refinements based on frame-by-frame
optical flow. Thus the results shown are the "initial segmentation"
described in the paper. If the input requirements for this method are
respected, the results would be better. Similarly, we compare to the
method of Xue et al. [XRLF15] run on a crop of the input images.
Again this method expects a smaller baseline between images, and
thus cannot be used for our target scenes.

† We provide a comparison of our results for the Soft3D algorithm and
the original implementation on the Museum scene [CDSHD13] as an addi-
tional video. The general image quality is similar, even though the original
implementation is slightly sharper.
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Figure 10: Rendering results for 9 different scenes from novel views far from the input cameras. From left to right: rendering results
for [OCDD15], our improved version of [BBMC01], a re-implementation of Soft3D [PZ17], the inpainted background and the top view
showing the novel camera, and our result.
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Video de-fencing [YWT16]

Cathedral House

Figure 11: Results of video de-fencing method. This is the result
obtained on House and Basilic datasets with a method based on
motion estimation [YWT16]. In a wide baseline setup, it is unlikely
to compute reliable matches between consecutive images.

Obstruction free photography [XRLF15]

Background Foreground

Figure 12: Comparison with obstruction free photography
[XRLF15]. Results on Cathedral dataset: left image is the back-
ground layer and right image is the foreground layer. Optical flow
based methods are unlikely to handle wide baseline configurations.

7.3. Limitations and discussion

Our method fails when the background has the same color as the
foreground in all views. Our simple thin geometries are implicitly
assumed to be infinitely thin; this works well for most cases, but
becomes problematic at extreme grazing angles such as Fig, 13(a).
The ability to detect thin structures also depends on the resolution
of the images with respect to the thickness of the structures. When
the structures are too thin, our approach can fail, as seen in Fig. 13.
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Figure 13: (a) At extreme grazing angles, the infinitely thin as-
sumption is insufficient. (b) Very small structures in input images
can be missed by our approach (see rendering in (c)).

In all our examples, the supporting surfaces produced were ac-
curate enough to produce good quality results. Consequently, we
did not perform in-depth robustness analysis. Very imprecise user
input could result in inaccuracies for the supporting geometry, af-
fecting the segmentation quality because of the larger number of

incorrect multi-view links. For such input, the surface estimation
could be refined between segmentation steps, e.g., using intermedi-
ate segmentation results to find dense correspondences. Automat-
ing the detection of supporting geometries could be achieved with
learning-based solutions. Recent high-quality segmentation deep
learning networks (e.g., [LMSR17]) could potentially be adapted
and trained to identify thin structures, although generating the train-
ing data is a challenge. Similarly, deep learning has been used to
find parameters of simple geometric structures [NGDA∗16]. With
suitable knowledge of semantics and the correspondence between
supporting primitive type and thin structure, such an approach
could be developed to allow primitive fitting based on images, po-
tentially combined with an optimization step [OCDM∗16]. Another
interesting challenge is the interaction of thin structures and vege-
tation which renders the problem much harder.

8. Conclusions and Future Work

We have presented a new method to treat the hard problem of thin
structures for image-based rendering. The central component of
our approach is a segmentation algorithm which exploits multi-
view information and 3D reconstruction to provide segmentation
of multi-layer thin structures. Our end-to-end solution allows us
to produce results showing significant improvement over previous
methods in terms of rendering quality, allowing common scenes
with thin structured to be used in a free-viewpoint IBR context for
the first time.

The key aspect of our work is to leverage multi-view informa-
tion to overcome the ambiguities in the hard case of thin structure
segmentation. Using other priors as discussed above will allow this
approach to generalize to other structures in terms of complex ge-
ometry and varying frequencies of the repetitive patterns.
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