
MIS in the Presence of Path Correlation

1 Problem Statement
We would like to compute the measurement equation, which is given by:

I = 〈W,Le〉+ 〈W,TLe〉+
〈
W,T 2Le

〉
+ . . . (1)

where W (x ← ωi) is the importance function, Le(x → ωo) is the emittance and T is
the transport operator:

(Tφ)(x→ωo)=

∫
Ω

ρ(ωi→x→ωo)φ (h(x, ωi)→−ωi)〈Nx, ωi〉dωi

1.1 Monte Carlo Solution
The surface area form of (l + 1)-th term in Equation (1) is:

Il =
〈
W,T lLe

〉
=

∫
Ml

f(x̄) dµ(x̄) (2)

f(x̄) =Le(x0→x1) Πl(x̄) GV (xl−1↔xl)W (xl−1→xl) (3)

Πl(x̄) =

l−2∏
i=0

GV (xi↔xi+1)ρ(xi→xi+1→xi+2) (4)

whereM is the surface of the scene.
We can estimate the value of each Il using Monte Carlo integration in an unbi-

ased way, by generating N samples of dimension l (i.e. paths of length l) {X̄j}, j ∈
{1 . . . N}, from some distribution p(x̄):

1

N

N∑
j=1

f(X̄j)

p(X̄j)
≈ Il (5)

1.2 Multiple Importance Sampling
The common way to generate a l dimensional path is through local path sampling: One
needs to first generate a path starting from the camera with t vertices and then a path
starting from the light source with s vertices, where s + t = l. However there are
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l + 1 different ways (or strategies) to generate a sample in this way: (s = 0, t = l),
(s = 1, t = l − 1), . . . (s = l, t = 0). And the different strategies have different PDFs.

Our goal is to reduce the variance by optimally combining samples coming from
the different strategies. To this end, we assume that strategy i (i.e. t = i) has generated
ni samples and assigns weight wi(X̄ij) and probability pi(X̄ij) to the j-th sample X̄ij

from this strategy. It is easy to see, that if the weights fulfill
∑
i wi(x̄) = 1, then the

bellow estimator is unbiased:

E

 l∑
i=0

1

ni

ni−1∑
j=0

wi(X̄ij)f(X̄ij)

pi(X̄ij)

 = Il−2 (6)

What needs to be done at this point is to find the weights. Veach shows how to
do that if the samples are uncorrelated [Vea98, p.288]. However, re-using the eye path
segment introduces correlation. Thus, the MIS weights have to be modified accord-
ingly, and this is what we do in section 2.2. Notice that this correlation affects other
recent GI methods, including Combinatorial BdPT [PBPP11], and Vertex Connection
Merging [GKDS12].

2 MIS with Correlations
In this section we will derive a new formulation for the MIS weights in the presence of
correlation.

2.1 Assumptions
To make the problem more manageable, we will make several assumptions specific to
the illumination.

We first assume that to estimate Il the illumination algorithm generates l indepen-
dent eye paths: one with length t = 1, one with t = 2, . . . and one with t = l. Each
eye path will sample a different strategy. It then generates lM independent light paths:
M with length s = 1, M with length s = 2, . . . and M with length s = l. And finally
it connects each pair of eye/light paths where s + t = l. In practice, illumination al-
gorithms (e.g. BPT) do not generate independent eye paths. However, this correlation
can be ignored with more eye paths per pixel (see [Vea98, p.307]).

With the above assumption, it follows that paths generated using different strategies
are independent. Also, the paths in strategy t = 0 are independent, ni = lM for
0 < i < l, and finally n0 = 1 and nl = M .
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2.2 Derivation
We would like to minimize the variance of the estimator in Eq. (6):

V [F ] = V

∑
i

1

ni

∑
j

Fij

 (7)

=
∑
i1

∑
i2

∑
j1

∑
j2

1

ni1ni2
COV[Fi1j1 , Fi2j2 ] (8)

where Fij = wi(X̄ij)f(X̄ij)/pi(X̄ij)
Since paths from different strategies are independent (Sect. 2.1), it follows that

COV[Fi1j1 , Fi2j2 ] = 0 when i1 6= i2. Furthermore

COV[Fij1 , Fij2 ] = E[Fij1Fij2 ]− E[Fij1 ]E[Fij2 ] , j1 6= j2 (9)

COV[Fij , Fij ] = E[F 2
ij ]− E[Fij ]

2 , otherwise (10)

Plugging this back into Eq. (7) and letting µi = E[Fij ] we obtain:

V [F ] =
∑
i

1

ni
E[F 2

i0] +
∑
i

ni − 1

ni
E[Fi0 Fi1]−

∑
i

µ2
i (11)

The summands in the first and the third term expand to:

E[F 2
i0] =

∫
M l

w2
i (x̄)f2(x̄)

p2
i (x̄)

pi(x̄)dµ(x̄) (12)

µ2
i =

[∫
M l

wi(x̄)f(x̄)dµ(x̄)

]2

(13)

To expand the second term, we first observe that any two paths x̄1 and x̄2 from the
same strategy i ∈ (0, l) share a common eye path. That is x̄1 = z̄ȳ1 and x̄2 = z̄ȳ2

where z̄ is the common part. Thus, the joint probability of generating the two paths is
given by pi(x̄1, x̄2) = p(z̄)p(ȳ1)p(ȳ2). Thus

E[Fi0Fi1] =

∫ ∫
f(x̄1)f(x̄2)wi(x̄1)wi(x̄2)

pi(x̄1)pi(x̄2)
pi(x̄1, x̄2)dµ̄(x1)dµ(x̄2) (14)

=

∫
Mi

[∫
Ml−i

f(z̄ȳ)wi(z̄ȳ)dµ(ȳ)

]2
1

p(z̄)
dµ(z̄) (15)

2.3 Minimizing the Variance
Next, we need to minimize V [F ] subject to

∑
i wi(x̄) = 1. Similar to [Vea98], we only

look at the first two terms of V [F ]. We can use the third term to prove that no other
weighting scheme is considerably better than the one we derive. Note that in contrast
to [Vea98] we can take into account the third term as well, though this would make the
final solution even more complex. Also, our solution will no longer be identical to the
balance heuristic in this case if no correlation is present.
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In essence, we need to find l + 1 functions wi ∈ L2(M, µ) that minimize the
functional

J(w0, . . . , wl) =

=
∑
i

∫
Ml

w2
i (x̄)f2(x̄)

nipi(x̄)
dµ(x̄)+

+
∑
i

∫
Mi

ni − 1

ni p(z̄)

[∫
Ml−i

f(z̄ȳ)wi(z̄ȳ) dµ(ȳ)

]2

dµ(z̄) (16)

and also fulfill ∑
i

ωi(x)− 1︸ ︷︷ ︸
G(w0,...,wl)

= 0

2.4 Lagrangian Multiplier
To solve the optimization problem, we can use Lagrange multipliers for Banach spaces.
We first need to introduce a multiplier Λ, which in this case is a functional in the dual
space of L2(M, µ):

Λ(g) =

∫
Ml

λ(x̄)g(x̄)dµ(x̄) (17)

Next, if w′0, . . . , w
′
i is a minimum that satisfies the constraints, then the Fréchet deriva-

tives DJi w.r.t. each wi must satisfy

DJi(w
′
i) = Λ ◦DGi(w

′
i) (18)

To find DJi we compute the Gâteaux derivatives:

dJi(wi;hi) =
d

dτ
J(w0, . . . , wi + τhi, . . . wl)

∣∣∣∣
τ=0

=

=
d

dτ

(∫
Ml

(wi(x̄) + τhi(x̄))2f2(x̄)

nipi(x̄)

)∣∣∣∣
τ=0

+

+
d

dτ

(∫
Mi

ni − 1

ni p(z̄)

[∫
Ml−i

f(z̄ȳ) (wi(z̄ȳ) + τhi(z̄ȳ)) dµ(ȳ)

]2

dµ(z̄)

)∣∣∣∣∣
τ=0

=

∫
Ml

hi(x̄)
2f(x̄)

ni

[
wi(x̄)f(x̄)

pi(x̄)
+
ni − 1

p(z̄)

∫
Ml−i

f(z̄ȳ′)wi(z̄ȳ
′) dµ(ȳ′)

]
dµ(x̄)

(19)

where x̄ = z̄ȳ. If the above Gâteaux derivative exists for any function h0
i , then it is

easy to see that it also exists and is continuous in an open vicinity of h0
i . Thus it is also

a Fréchet derivative there.
Similarly, the partial Gâteaux derivatives of G w.r.t. wi are given by dGi(wi;hi) =

hi(x), the partial Fréchet derivatives exist and are equal to the Gâteaux ones, and

Λ ◦DGi =

∫
Ml

λ(x̄)hi(x̄)dµ(x̄) (20)
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2.5 Solving the Necessary Conditions
We plug Eq. (19) and Eq. (20) into Eq. (18) and note that the resulting equality must
hold for any choice of hi. Thus, from the fundamental lemma of calculus of variations,
we obtain the following system of equations

2wi(x̄)f2(x̄)

nipi(x̄)
+

2(ni − 1)f(x̄)

ni p(z̄)

∫
Ml−i

f(z̄ȳ′)wi(z̄ȳ
′)dµ(ȳ′) = λ(x̄) (21)∑

i

wi(x̄) = 1 (22)

Using the fact that pi(x̄) = p(ȳ)p(z̄), Eq. (21) becomes:

wi(x̄) =
niλ(x̄)pi(x̄)

2f2(x̄)
− (ni − 1)p(ȳ)

f(x̄)

∫
Ml−i

f(z̄ȳ′)wi(z̄ȳ
′)dµ(ȳ′) (23)

This is an integral equation with a separable kernel. If we fix the first i components of
x̄ (i.e. z̄), we can apply Lemma A.1 and solve the integral equation, leading to

wi(x) =
niλ(x̄)pi(x̄)

2f2(x̄)
− (ni − 1)p(ȳ)

f(x̄)

∫
Ml−i

niλ(z̄ȳ′)pi(z̄ȳ
′)

2f(z̄ȳ′) dµ(ȳ′)

1 +
∫
Ml−i (ni − 1)p(ȳ′)dµ(ȳ′)

(24)

=
niλ(x̄)pi(x̄)

2f2(x̄)
− (ni − 1)pi(x̄)

2f(x̄)

∫
Ml−i

λ(z̄ȳ′)p(ȳ′)

f(z̄ȳ′)
dµ(ȳ′) (25)

where we have used the fact that
∫
Ml−i p(ȳ)dµ(ȳ) = 1 and pi(z̄ȳ′) = p(z̄)p(ȳ′)

2.6 Computing the Lagrange Multiplier
Next, we need to find λ(x̄). The weights must sum up to 1, thus we obtain

1 =λ(x)
∑
i

nipi(x̄)

2f2(x̄)
−
∑
i

[
(ni − 1)pi(x̄)

2f(x̄)

∫
Ml−i

λ(z̄ȳ′)p(ȳ′)

f(z̄ȳ′)
dµ(ȳ′)

]
(26)

λ(x) =
2f2(x̄)∑
i nipi(x̄)

+
∑
i

[
(ni − 1)f(x̄)pi(x̄)∑

i nipi(x̄)

∫
Ml−i

λ(z̄ȳ′)p(ȳ′)

f(z̄ȳ′)
dµ(ȳ′)

]
(27)

To solve the above equation, we introduce

a0(x̄) =
2f2(x̄)∑
j njpj(x̄)

(28)

al−i(x̄) =
(ni − 1)f(x̄)pi(x̄)∑

j njpj(x̄)
, i ∈ {1, . . . , l − 1} (29)

bl−i(x̄) =
p(xl−i . . . xl−1)

f(x̄)
, i ∈ {1, . . . , l − 1} (30)
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Next, we introduce the functions

cl−i(x0 . . . xi−1) =∫
Mi

λ(x0 . . . xi−1yi . . . yl−1)bl−i(x0 . . . xi−1yi . . . yl−1)dyi . . . dyl−1 (31)

And the integral equation for λ(x̄) can be re-written as

λ(x̄) = a0(x̄) + a1(x̄)c1(x0 . . . xl−2) + a2(x̄)c2(x0 . . . xl−3) + . . . (32)

If we fix x0 . . . xl−2, than all ci will become constants. Thus, we can use the same
logic as in Lemma A.1 to find the value of c1 as a function of the a, b and c2, . . . cl
functions:

c1(x0 . . . xl−2) =

∫
M a0(x0 . . . xl−2yl−1)b1(x0 . . . xl−2yl−1)dyl−1

1−
∫
M a1(x0 . . . xl−2yl−1)b1(x0 . . . xl−2yl−1)dyl−1

+

l∑
i=2

ci(x0 . . . xi)

∫
M ai(x0 . . . xl−2yl−1)b1(x0 . . . xl−2yl−1)dyl−1

1−
∫
M a1(x0 . . . xl−2yl−1)b1(x0 . . . xl−2yl−1)dyl−1

(33)

or omitting the functions’ arguments

c1 =

∫
M a0b1 +

∑l
i=2 ci

∫
M aib1

1−
∫
M a1b1

(34)

We can then plug c1 back into the integral equation for λ obtaining

λ = a0 +

∫
M a0b1

1−
∫
M a1b1

+ c2

(
a2 +

∫
M a2b1

1−
∫
M a1b1

)
+ . . . (35)

We can now find c2 as a function of c3, . . . cl and the a and b functions. Thus, the
solution for λ is given by the following recursive formulas:

ai,1 =ai (36)

ai,j+1 =ai,j +

∫
Mj ai,jbi

1−
∫
Mj aj,jbj

(37)

cj =

∫
Mj a0,jbj +

∑l
i=j+1 ci

∫
Mj ai,jbj

1−
∫
Mj aj,jbj

(38)

2.7 Simple Case Example
In the simplest case, we have correlation only for eye paths of certain length s. In this
case the weights are given by

wi6=s(x̄) =
nipi(x̄)∑
j njpj(x̄)

(
1 +

ps(x̄)

f(x̄)
C(z̄s)

)
(39)

ws(x̄) =
nsps(x̄)∑
j njpj(x̄)

(
1 +

ps(x̄)

f(x̄)
C(z̄s)

)
− ps(x̄)

f(x̄)
C(z̄s) (40)
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where z̄s is the path formed by taking the first s vertices of the path, starting from the
eye. The constant C(z̄s) is given by

C(z̄s) =
(ns − 1)

∫
Ml−s

f(z̄sȳ)p(ȳ)∑
j njpj(z̄sȳ)dµ(ȳ)

1− (ns − 1)
∫
Ml−s

ps(z̄sȳ)p(ȳ)∑
j njpj(z̄sȳ)dµ(ȳ)

(41)

A Solving Integral Equations
Lemma A.1 Let a, b, g, and φ be four functions over some domain Ω. Then, the
solution of the integral equation

φ(x) = g(x) + a(x)

∫
Ω

b(t)φ(t)dµ(t) (42)

is given by

φ(x) = g(x) + a(x)

∫
Ω
b(t)g(t)dµ(t)

1−
∫

Ω
a(t)b(t)dµ(t)

(43)

Proof The value of
∫

Ω
b(t)φ(t)dµ(t) is an unknown constant c which depends on φ.

Thus

φ(x) = g(x) + a(x)c (44)

Plugging this into Eq. (42) results in

g(x) + a(x)c = g(x) + a(x)

[∫
Ω

b(t)g(t)dµ(t) + c

∫
Ω

b(t)a(t)dµ(t)

]
(45)

c =

∫
Ω
b(t)g(t)dµ(t)

1−
∫

Ω
b(t)a(t)dµ(t)

(46)

Combining Eq. (44) and Eq. (46), we obtain Eq. (43)
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