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Figure 1: We present Gabor noise by example, a method to estimate the parameters of bandwidth-quantized Gabor noise, a procedural noise
function that can generate noise with an arbitrary power spectrum, from exemplar Gaussian textures, a class of textures that is completely
characterized by their power spectrum. (row 1) Gaussian texture. (row 2) Procedural noise. (insets) Estimated power spectrum.

Abstract

Procedural noise is a fundamental tool in Computer Graphics.
However, designing noise patterns is hard. In this paper, we present
Gabor noise by example, a method to estimate the parameters of
bandwidth-quantized Gabor noise, a procedural noise function that
can generate noise with an arbitrary power spectrum, from exem-
plar Gaussian textures, a class of textures that is completely charac-
terized by their power spectrum. More specifically, we introduce (i)
bandwidth-quantized Gabor noise, a generalization of Gabor noise
to arbitrary power spectra that enables robust parameter estimation
and efficient procedural evaluation; (ii) a robust parameter estima-
tion technique for quantized-bandwidth Gabor noise, that automat-
ically decomposes the noisy power spectrum estimate of an exem-
plar into a sparse sum of Gaussians using non-negative basis pursuit
denoising; and (iii) an efficient procedural evaluation scheme for
bandwidth-quantized Gabor noise, that uses multi-grid evaluation
and importance sampling of the kernel parameters. Gabor noise by
example preserves the traditional advantages of procedural noise,
including a compact representation and a fast on-the-fly evaluation,
and is mathematically well-founded.
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1 Introduction

Since its introduction by Perlin [1985] almost three decades ago,
procedural noise has become a fundamental tool in Computer
Graphics. However, designing noise patterns is still hard. Imple-
menting procedural shaders and tweaking their parameters in order
to achieve a desired visual effect requires significant effort. We
believe this difficulty stems, in part, from two reasons: (i) the ex-
pressiveness of current procedural noise functions is rather limited
in practice (see Sec. 2.1), and (ii) selecting the appropriate noise
parameters to obtain a desired noise pattern or texture is difficult,
even more so when the noise function has more parameters. The ev-
ident way to address this problem is estimating the parameters of a
procedural noise function from an exemplar, i.e., noise by example.
However, it is not immediately clear which textures are appropri-
ate exemplars for noise by example, since noise obviously cannot
reproduce any texture. We therefore introduce a new texture class,
called Gaussian textures, that is defined, similarly to noise [Lagae
et al. 2010a], as what is known in statistics as a Gaussian ran-
dom field [Papoulis and Pillai 2002]. Both Gaussian textures and
noise are completely characterized by their power spectrum. Ide-
ally, a procedural noise function should thus be able to reproduce
any Gaussian texture. However, current procedural noise functions
have not demonstrated a diversity in noise patterns as rich as the
Gaussian textures shown in Fig. 1.

In this paper, we present Gabor noise by example, a generalization
of Gabor noise [Lagae et al. 2009] that (i) can generate a wide vari-
ety of Gaussian textures, and (ii) can estimate the noise parameters
from a Gaussian exemplar. Our approach can reproduce the rich
diversity of Gaussian textures shown in Fig. 1, is mathematically
well-founded, and preserves the traditional advantages of procedu-
ral noise, including a compact representation and a fast on-the-fly
evaluation. More specifically, the contributions of our work are:

• bandwidth-quantized Gabor noise, a generalization of Gabor
noise to arbitrary power spectra that enables robust parameter
estimation and efficient procedural evaluation (Sec. 4);

• a robust parameter estimation technique for bandwidth-
quantized Gabor noise, that automatically decomposes the
noisy power spectrum estimate of an exemplar into a sparse
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sum of Gaussians using non-negative basis pursuit denoising
[Kim et al. 2007] (Sec. 5); and

• an efficient procedural evaluation scheme for bandwidth-
quantized Gabor noise, that uses multi-grid evaluation and
importance sampling of the kernel parameters (Sec. 6).

Additionally, we present a maximally independent color space, a
new color space for independent channel synthesis that makes the
color channels of a texture maximally independent using approx-
imate joint diagonalization [Hyvärinen et al. 2001, 11.3] (Sec. 7).
We also demonstrate an interactive editor for bandwidth-quantized
Gabor noise, inspired by the Wold decomposition [Francos et al.
1993] (Sec. 8).

2 Related Work

2.1 Procedural Noise Functions

Several procedural noise functions have been proposed since the
seminal work of Perlin [1985]. We refer to the survey of Lagae
et al. [2010a] for a recent overview. However, the expressive-
ness of these noise functions is rather limited in practice. Per-
lin noise [Perlin 1985], sparse convolution noise as proposed by
Lewis [1989], and wavelet noise [Cook and DeRose 2005] are lim-
ited to isotropic power spectra. Anisotropic noise [Goldberg et al.
2008] is limited to power spectra that correspond to a coarse tiling
of the frequency domain into oriented subbands. Although more
complex power spectra could be obtained by using a much finer
tiling, this would probably be impractical, since the method re-
quires precomputation and storage of a noise texture for each ori-
ented subband. Gabor noise [Lagae et al. 2009; Lagae and Drettakis
2011] has only been demonstrated on power spectra that consist of
a small number of Gaussians, where the parameters of the noise
corresponding to each Gaussian are set manually. We extend Gabor
noise to arbitrary power spectra, where the parameters are estimated
automatically from exemplars.

2.2 Example-Based Texture Synthesis

Many non-procedural example-based texture synthesis methods
have been proposed. We refer to the survey of Wei et al. [2009] for
a recent overview. However, these methods do not produce proce-
dural textures. Nevertheless, for the class of Gaussian textures, our
method is competitive with methods such as pyramid-based texture
analysis/synthesis [Heeger and Bergen 1995] and parallel control-
lable texture synthesis [Lefebvre and Hoppe 2005] (see Sec. 9.2).

2.3 Procedural Texture Synthesis by Example

Ghazanfarpour and Dischler [1996] presented a method for the au-
tomatic generation of 3D textures using spectral analysis of two
or three 2D slices of a 3D texture, based on an earlier method
[Ghazanfarpour and Dischler 1995] that only takes into account a
single 2D texture. They generate a discrete 3D model from the 2D
slices, select a low number of high-magnitude peaks in the Fourier
transform of the model, and approximate it by a cosine-like sum-
mation. However, as stated by the authors, their method is not well
adapted to high-bandwidth or noisy textures such as sand, and re-
quires the user to manually set several parameters.

Dischler and Ghazanfarpour [1997] also presented a method for
automatically generating a procedural description of a geometric
texture from a 1D exemplar profile. They iteratively apply spectral
and histogram analysis. Their method is also applicable to isotropic
color textures. However, it cannot handle anisotropic textures.

Lagae et al. [2010b] presented a method for procedural isotropic
stochastic textures by example. They use a multi-octave wavelet
noise model where the weights are computed from an exemplar, in-
dependent channel synthesis in a PCA color space, and histogram
matching. Xue et al. [2011] presented a similar method for simulat-
ing rough appearance for stone weathering in a photograph. How-
ever, both methods cannot handle anisotropic textures.

Gilet et al. [2010] presented a method to generate procedural de-
scriptions of anisotropic noisy textures by example. They use a Ga-
bor noise model with a small number of noises and several cosines,
independent channel synthesis in a PCA color space, and histogram
matching. They decompose the 2D spectral domain into ellipses
centered at the origin, by discretizing the power spectrum into a
low number of values and fitting one or two ellipses to each binary
area resulting from discretization, and associate a Gabor noise with
every ellipse. Gilet and Dischler [2010] later used this method in
an image-based approach for stochastic volumetric and procedural
details. However, their method requires significant manual inter-
vention and trial and error for each exemplar (see Sec. 9.2), while
our approach is automatic.

Jeschke et al. [2011] presented a diffusion curve coloring algorithm
that includes texture details based on spatially varying Gabor noise.
However, their method records only a single dominant frequency,
which captures only a rough impression of the texture.

Yoon et al. [2004; 2008] presented a method to edit noise values
to allow user constraints to be applied to a noise function. Their
method is designed to edit individual noise values, while our ap-
proach is designed to edit the overall appearance of the noise.

3 Background and Motivation

Noise is defined as what is known in statistics as a Gaussian ran-
dom field, which is completely characterized by its power spec-
trum [Lagae et al. 2010a; Papoulis and Pillai 2002]. The problem
of procedural noise by example can thus be solved by choosing a
procedural noise function and setting the parameters of the noise
function such that the power spectrum of the noise is similar to that
of the exemplar. This raises three important questions: (i) What are
the appropriate exemplars? (ii) How is the power spectrum of the
exemplar obtained? (iii) What is the appropriate procedural noise
function?

3.1 Gaussian Textures

We use Gaussian textures as exemplars, since these are defined,
similarly to noise, as what is known in statistics as a Gaussian
random field [Papoulis and Pillai 2002]. Both Gaussian textures
and noise are completely characterized by their power spectrum.
The class of Gaussian textures roughly corresponds to the class of
stochastic textures. Galerne et al. [2011] recently presented meth-
ods that can be used to generate the Gaussian version of a texture.
These methods explicitly destroy the information contained in the
phase spectrum, only preserving the information contained in the
power spectrum. We use the methods of Galerne et al. to illustrate
the class of Gaussian textures, to determine how Gaussian an ex-
emplar is, and to provide a ground truth for our approach.

3.2 Power Spectrum Estimation

We estimate the power spectrum of the exemplar using the peri-
odogram, since this requires only a single exemplar. The peri-
odogram, defined as the magnitude squared of the Fourier trans-
form, is a simple estimator for the power spectrum [Press et al.
2002, 13.4]. Unfortunately, the periodogram is inherently noisy,
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Figure 2: Bandwidth-quantized Gabor noise. (a) A power spectrum composed of Gaussians with discrete bandwidths. (b-g) The power
spectrum split out into its discrete bandwidths. The bandwidth quantization enables robust parameter estimation and efficient procedural
evaluation.

since it is actually a white noise process with the power spectrum
as mean [Papoulis and Pillai 2002, 12.2]. Note that a less noisy
estimate could be obtained by averaging multiple peridograms, but
that would require several exemplars. The periodogram is based on
the Fourier transform. However, the Fourier transform of a non-
periodic textures suffers from a boundary problem, which causes a
cross-shaped artifact in the estimated power spectrum. We avoid
this problem by using the Fourier transform of the periodic compo-
nent instead [Moisan 2011; Galerne et al. 2011].

3.3 Gabor Noise

We use Gabor noise [Lagae et al. 2009], since it has a power spec-
trum that can be used as a basis to approximate arbitrary power
spectra. Two-dimensional anisotropic random-phase Gabor noise
[Lagae and Drettakis 2011] is defined as

n (x;K, a, ω) =
1√
λ

∑

i

g (x− xi;K, a, ω, φi) , (1)

where K, a and ω are the amplitude, bandwidth and frequency of
the noise, g is the phase-augmented Gabor kernel, the random posi-
tions {xi} are distributed according to a Poisson process with mean
λ, and the random phases {φi} are distributed according to a uni-
form distribution on the interval [0, 2π). The phase-augmented Ga-
bor kernel is defined as

g (x;K, a, ω, φ) = Ke−πa2|x|2 cos (2πx · ω + φ) , (2)

where K, a, ω and φ are the amplitude, bandwidth, frequency and
phase of the kernel. The variance of the noise is K2/4a2. The
power spectrum of the noise is

Sn (ξ;K, a, ω) =
K2

8a2
G
(

ξ;±ω,
a

2
√
π

)

, (3)

where G (x;µ, σ) is the 2D normalized Gaussian function with
mean µ and standard deviation σ, and G (x;±µ, σ) is a shorthand
notation for G (x;µ, σ) + G (x;−µ, σ). The power spectrum of
Gabor noise is thus a symmetric pair of Gaussians in the frequency
domain with magnitude K, frequency ±ω and bandwidth a.

3.4 Gabor Noise by Example

We solve the problem of Gabor noise by example by decomposing
the noisy power spectrum estimate of the exemplar into a sum of
Gaussians, and evaluating the corresponding sum of Gabor noises.
However, a straightforward implementation of this idea is problem-
atic. A first problem is that evaluating a potentially large number
of Gabor noises is inefficient (see Sec. 6.1). A second problem is
that allowing arbitrary values for the bandwidth parameter of the
Gabor kernels is problematic, both for the decomposition of the
power spectrum (see Sec. 5.2), as well as for the evaluation (see

Sec. 6.1). To overcome these problems we introduce bandwidth-
quantized Gabor noise (Sec. 4). We solve the first problem by
grouping the Gabor kernels of the Gabor noises into a single Gabor
noise. We solve the second problem by quantizing the bandwidths
of the Gabor kernels. This, in turn, allows us to introduce a robust
parameter estimation technique (Sec. 5) and an efficient procedural
evaluation scheme (Sec. 6) for bandwidth-quantized Gabor noise.

4 Bandwidth-Quantized Gabor Noise

In this section, we introduce bandwidth-quantized Gabor noise, a
generalization of Gabor noise to arbitrary power spectra, that quan-
tizes the bandwidths of the Gabor kernels, in order to enable robust
parameter estimation and efficient procedural evaluation.

4.1 Arbitrary Power Spectra

Our key insight for generalizing Gabor noise to arbitrary power
spectra is that an arbitrary symmetric power spectrum S (ξ) can
be decomposed into a sum of G symmetric pairs of Gaussians
S (ξ) =

∑

g Sng (ξ;Kg, ag, ωg) of the form of Eqn. 3. This

implies that the corresponding noise n (x) can be seen as the
sum of the G corresponding independent Gabor noises n (x) =
∑

g
ng (x;Kg, ag, ωg) of the form of Eqn. 1. Note that we use the

subscript g to index the noise functions corresponding to the Gaus-
sians. This decomposition is similar in spirit to how an arbitrary
function can be approximated to any prescribed tolerance by a sum
of Gaussians [Ferreira 1998]. However, in our case, all involved
functions are symmetric, since they correspond to power spectra of
real signals, and the weights of the Gaussians are positive, since
power spectra are positive by definition. This is why we use the
random-phase variant of Gabor noise [Lagae and Drettakis 2011]
rather than the original one [Lagae et al. 2009]: The power spec-
trum of the original variant has an additional Gaussian centered at
zero, which would make this decomposition impossible, since ex-
cess power cannot be subtracted away.

4.2 Kernel Combination

Evaluating n (x) by evaluating and summing the G corresponding
Gabor noises is inefficient, especially when G is relatively large
(see Sec. 6.1). We therefore combine all the Gabor kernels of theG
noises into a single but more complex Gabor noise,

n (x) =
1√
λ

∑

i

1√
pi

g (x− xi;Ki, ai, ωi, φi) , (4)

where λ =
∑

g λg and the parameters of each Gabor kernel

{(Ki, ai, ωi)} are randomly chosen from {(Kg, ag, ωg)}, the pa-
rameters of the G noises, with probability pg = λg/λ.



4.3 Bandwidth Quantization

Allowing arbitrary values for the bandwidth ag is problematic, both
for the parameter estimation (see Sec. 5.2) as well as for the pro-
cedural evaluation (see Sec. 6.1). We therefore quantize the band-
width to a small set ofB bandwidths B = {ab}, and regroup all the
Gabor kernels which share the same bandwidth. We use the band-
width discretization ab = 2−b

√

π/2 ln 2, motivated by Gabor filter
bank design for texture analysis [Bovik et al. 1990], which corre-
sponds to a set of Gaussians with a full width at half maximum
(FWHM) of powers of two.

4.4 Bandwidth-Quantized Gabor Noise

We define 2D bandwidth-quantized Gabor noise as

n (x) =
∑

b∈B

1√
λb

∑

i

1√
pb,i

g (x− xb,i;Kb,i, ab, ωb,i, φb,i) ,

(5)
where λb =

∑

g λb,g and the parameters of each Gabor kernel

{(Kb,i, ωb,i)} are randomly chosen from {(Kb,g, ωb,g)}, the pa-
rameters of the Gb noises that share the same bandwidth ab, with
probability pb,g = λb,g/λb. Note that

∑

b
Gb = G, and that we

use the subscript b,g to index the noise functions corresponding to
the Gaussians in each bandwidth. The power spectrum of the noise
is

Sn (ξ) =
∑

b∈B

Gb−1
∑

g=0

K2
b,g

8a2
b

G
(

ξ;±ωb,g,
ab

2
√
π

)

, (6)

i.e., a sum of Gaussians partitioned into a discrete set of band-
widths. This is illustrated in Fig. 2. The variance of the noise is

σ2
n =

∑

b

∑

g

K2
b,g

4a2
b

, where σ2
b,g = K2

b,g/4a
2
b is the variance of the

g-th Gaussian of bandwidth b, and σ2
b =

∑

g σ
2
b,g is the variance of

bandwidth b.

5 Robust Parameter Estimation

In this section, we introduce a robust parameter estimation tech-
nique for bandwidth-quantized Gabor noise, which automatically
decomposes the noisy power spectrum estimate of an exemplar into
a sparse sum of Gaussians, ensuring a compact procedural repre-
sentation.

5.1 The Parameter Estimation Problem

The goal of the parameter estimation is to determine the parameters
of a bandwidth-quantized Gabor noise such that its power spectrum
is close to that of the exemplar. Intuitively, this corresponds to fit-
ting the power spectrum of the exemplar with a sum of Gaussians.

We denote the M ×M discrete power spectrum estimate of the
exemplar as Sex (ξ0, ξ1) (ξ0, ξ1 ∈ −M/2, . . . ,M/2 − 1). We
discretize the power spectrum of bandwidth-quantized Gabor noise
(Eqn. 6) at the same resolution of the exemplar by placing for
each bandwidth b at each discrete frequency (m0,m1) (m0,m1 ∈
−M/2, . . . ,M/2− 1) a Gaussian with magnitude Kb,(m0,m1),

Sn (ξ0, ξ1) =
∑

b∈B

∑

(m0,m1)

K2
b,(m0,m1)

8a2
b

G
(

(ξ0, ξ1) ;±
(m0

M
,
m1

M

)

,
ab

2
√
π

)

. (7)

Note that this discretization restricts the values for the frequency ω
to the discrete frequencies of the exemplar, but does not restrict the
values for the magnitudeK. We group the parameters of Eqn. 7 into
anB×M ×M parameter vector α (b,m0,m1) = K2

b,(m0,m1)
. We

denote the discrete power spectrum of bandwidth-quantized Gabor
noise with parameters α as Sn (α).

Using the above notation, the goal of the parameter estimation is to
find a parameter vector α satisfying three constraints: (i) Sn (α) is
close to Sex, i.e., the power spectrum of the noise is close to that of
the exemplar, (ii) α is non-negative, i.e., all Gaussians are positive,
and (iii) α is sparse, i.e., the representation is compact. Once such
a parameter vector α is found, the parameters of the bandwidth-
quantized Gabor noise are fully determined. Every non-zero entry
of α (b,m0,m1) determines a Gaussian with bandwidth ab, magni-

tude K =
√

α (b,m0,m1) and frequency ω = (m0/M,m1/M).
The number of non-zero entries of α also determines the number
of Gaussians G, the number of bandwidths B, and the number of
Gaussians in each bandwidth Gb. We define the sparseness ratio
of α as G/M2, the number of Gaussians relative to the number of
pixels of the exemplar.

5.2 Solving the Parameter Estimation Problem using

Non-Negative Basis Pursuit Denoising

We solve the parameter estimation problem as a non-negative basis
pursuit denoising (NNBPDN) problem (e.g., [Kim et al. 2007]),

{

minimize ‖Sn(α)− Sex‖22 + ν‖α‖1
subject to α ≥ 0

, (8)

where ‖·‖1 is the ℓ1-norm and ν is a regularization parameter. We
use non-negative basis pursuit denoising because it satisfies the
three constraints above, in particular, because it is designed to pro-
duce sparse solutions. This guarantees a compact procedural repre-
sentation, and can deal with the noisy power spectrum estimate of
the exemplar. Note that with an ℓ2 rather than an ℓ1-norm regular-
ization, nearly none of the components of α would be zero.

The regularization parameter ν determines the sparseness of the
solution. However, the relation between ν and the sparseness de-
pends on the exemplar. We therefore introduce a relative regular-
ization parameter κ, and define ν as κνmax, where νmax is the
smallest value of ν for which α = 0 is a solution of Eqn. 8, i.e.,
νmax = 2

∥

∥ST
n (Sex)

∥

∥

∞
[Kim et al. 2007]. We expose the rela-

tive regularization parameter κ to the user in order to allow the user
to trade sparseness for accuracy (and vice versa). Additionally, we
solve Eqn. 8 following the homotopy strategy, i.e., for a sequence
of kappa values 1/2i, initializing each step with the result of the
previous one. This is more efficient, and provides the user with
intermediate solutions. This is illustrated in Fig. 3.

One of the reasons why we have quantized the bandwidth in
Sec. 4.3 is to guarantee a robust optimization: A fixed set of band-
widths allows us to formulate our optimization as a convex opti-
mization, while a sufficiently spaced set of bandwidths ensures a
well-conditioned optimization.

5.3 Implementation

We numerically solve Eqn. 8 using the fast iterative shrinkage-
thresholding (FISTA) algorithm of Beck and Teboulle [2009], com-
bined with the duality gap stopping criterion associated to the cor-
responding convex problem [Kim et al. 2007; Mairal et al. 2011].
We take symmetry into account by restricting (m0,m1) to the pos-
itive half-plane. For large Gaussians, we restrict the possible values
for the frequency ω to the discrete frequencies of a sub-sampled
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Figure 3: Robust parameter estimation for bandwidth-quantized Gabor noise. (a) A Gaussian exemplar and its power spectrum estimate.
(b-h) Sparse decompositions of the power spectrum estimate into Gaussians with discrete bandwidths for decreasing values of the relative
regularization parameter κ. The sparse decomposition ensures a compact procedural representation.

version of the exemplar, thus ensuring that Eqn. 8 does not become
ill-conditioned. We implemented our solver in Matlab.

6 Efficient Procedural Evaluation

In this section, we introduce an efficient procedural evaluation for
bandwidth-quantized Gabor noise, that uses multi-grid evaluation
and importance sampling of the kernel parameters.

6.1 Multi-Grid Evaluation

The procedural evaluation of Gabor noise [Lagae et al. 2009] uses
a grid with a cell size equal to the kernel radius r to efficiently gen-
erate the random positions of the kernels that overlap the point of
evaluation. The kernel radius r, and thus the cell size of the grid,
is determined by the bandwidth a of the Gabor kernels, and is de-
fined as r = 1/a. However, this does not work for bandwidth-
quantized Gabor noise, which consists of kernels with different
bandwidths. One of the reasons why we have quantized the band-
width in Sec. 4.3 is to be able to evaluate bandwidth-quantized
Gabor noise: It allows us to interpret bandwidth-quantized Gabor
noise as a sum of B independent Gabor noises that each consist
only of Gabor kernels with bandwidth ab, which, in turn, allows
us to efficiently evaluate bandwidth-quantized Gabor noise using a
multi-grid evaluation, where a grid with a cell size of rb = 1/ab is
associated to each of theB noises. Note that evaluating bandwidth-
quantized Gabor noise by independently evaluating and summing
the G noises instead would be inefficient, because each grid has an
associated setup cost and G is typically much larger than B. Also
note that for the multi-grid evaluation the actual value of the band-
widths {ab} does not matter.

6.2 Importance Sampling of Kernel Parameters

The procedural evaluation of Gabor noise [Lagae et al. 2009] allows
the user to trade quality for speed (and vice versa) by exposing a
parameter called the impulse budget. The impulse budget N is de-
fined as the expected number of kernels that overlaps the point of
evaluation, and determines the impulse density λ, which is in turn
defined as λ = N/πr2, where r is the kernel radius. However, for
bandwidth-quantized Gabor noise, which can be seen as a sum of
B sums of Gb Gabor noises nb,g , the impulse density λb,g of each
of the noises must be determined.

We distribute the impulse budget N over the G noises proportion-

ally to their variance σ2
b,g , since the contribution of each of these

noises can differ significantly. This is done by setting Nb,g to
(

σ2
b,g/σ

2
)

N . This implies that Nb =
(

σ2
b/σ

2
)

N , the impulse
budget for each bandwidth, is proportional to the variance of that
bandwidth, and that pb,g = σ2

b,g/σ
2
b , the kernel parameters, are

selected with a probability proportional to the variance of the cor-
responding Gaussian.

In contrast to Gabor noise, bandwidth-quantized Gabor noise thus
requires sampling discrete probability distributions to determine the
parameters of each kernel. The efficiency of the sampling proce-
dure is essential for performance. Additionally, the efficiency of
the preprocess that is required for the sampling procedure is es-
sential as well, since these distributions change whenever the noise
parameters change (e.g., during editing).

We therefore use the alias method [Walker 1977], which features a
constant-time sampling procedure and a linear-time preprocess. To
sample a discrete probability distribution, the alias method builds
two tables, the alias tableA and the probability table F , after which
sampling is done by generating a random index i, and returning the
i-th value with probability F [i], or the A[i]-th value with proba-
bility 1 − F [i]. Several linear-time algorithms for building the ta-
bles required by the alias method are available [Walker 1977; Vose
1991]. However, these algorithms require linear auxiliary storage
(typically two linked lists), which can be problematic (e.g., when
using CUDA or GLSL) and inefficient (due to dynamic memory al-
locations). Following a hint in the work of Vose [1991, Sec. VI],
we have implemented an in-place linear-time algorithm that does
not require auxiliary storage.

6.3 Implementation

In contrast to Gabor noise [Lagae et al. 2009], bandwidth-quantized
Gabor noise operates at much higher impulse densities. We there-
fore generate random numbers distributed according to a Pois-
son distribution with mean λ using the Gaussian approximation

P = ⌊λ +
√
λX + 1/2⌋, where X is distributed according to the

standard normal distribution. We generate random numbers dis-
tributed according to the standard normal distribution using the ba-

sic form of Box-Muller transform X =
√

−2 ln (U1) cos (2πU2),
where U1 and U2 are distributed according to the standard uniform
distribution. We seed the random number generator of each cell us-
ing an approach based on random number tables, seed(b, x, y) =
Pb[b%L] ⊕ Px[x%L] ⊕ Py[y%L], where Pb, Px and Py are ran-
dom number tables of size L (typically 256), and % and ⊕ denote



modulo and XOR. Please see the supplemental material for a more
detailed discussion. We implemented our procedural evaluation in
CUDA.

7 Maximally Independent Color Space

In this section, we introduce the maximally independent color
space, a new color space for independent channel synthesis, which
we use to synthesize color Gaussian textures with our method. Note
that this is only one specific way to obtain colored noise-based tex-
tures. Our noise patterns can be used in any way conventional noise
patterns are used.

Previous work, inspired by the work of Heeger and Bergen [1995],
typically performs independent channels synthesis in a PCA color
space, obtained by diagonalizing the covariance matrix using prin-
cipal component analysis (PCA). However, the use of a PCA color
space in this context is somewhat contrived, both in theory, since
color channels with zero covariance are not necessarily indepen-
dent, and in practice, since some previous work reports it works
well (e.g., [Qin and Yang 2007]), while some reports the contrary
(e.g., [Kopf et al. 2007]). We therefore introduce the maximally in-
dependent color space, a new color space for independent channel
synthesis where the color channels are maximally independent.

We explain our new maximally independent color space, as well
as its relation to the PCA color space used in previous work,
using techniques from independent component analysis (ICA)
[Hyvärinen et al. 2001].

We define the lagged correlation matrices [Hyvärinen et al. 2001,
18.1] CI (ξ) of the M×N RGB image I (x) as

CI (ξ) =
1

M2

∑

x

(I (x)− µI) (I (x+ ξ)− µI)
T

=





CIR,IR (ξ) CIR,IG (ξ) CIR,IB (ξ)
CIG,IR (ξ) CIG,IG (ξ) CIG,IB (ξ)
CIB ,IR (ξ) CIB ,IG (ξ) CIB ,IB (ξ)





, (9)

where ξ is the lag and µI is the mean of I, and CIi,Ij (ξ) is the
cross-correlation of i-th channel with the j-th channel shifted over
ξ. The lagged correlation matrices of the image I after applying a
color transform T are TCI (ξ)T

T .

Using this notation, the PCA color space used in previous work is
obtained by finding a matrix TPCA that diagonalizes the correla-
tion matrixCI (0) using PCA. Although this implies that the color
channels have zero covariance, the matrix TPCA does not diag-
onalize the lagged correlation matrices CI (ξ) for ξ 6= 0, which
implies that the channels are not independent.

We instead obtain our new maximally independent color space
by finding the matrix TAJD that approximately diagonalizes all
lagged correlation matrices CI (ξ), and not just CI (0). This is
motivated by the fact that diagonalizing the lagged correlation ma-
trices transforms the mixed channels into independent ones in the
ICA framework [Hyvärinen et al. 2001, 18.1]. We find the matrix
TAJD using approximate joint diagonalization (AJD) [Hyvärinen
et al. 2001, 11.3]. More specifically, we minimize the objective
function J ,

J (T) =
∑

ξ

off

(

TCI (ξ)T
T
)

, (10)

where off (A) =
∑

i 6=j
a2
ij is a measure for the diagonality of a

matrix, using the algorithm of Cardoso and Souloumiac [1996].

The value of J (T) is a measure for the independence of the color
channels in the color space determined by T. This allows us to
compare the effectiveness of the RGB, PCA and maximally inde-
pendent color space by comparing the values of J (TRGB = I),
J (TPCA) and J (TAJD). Please refer to the supplemental ma-
terials for more details.

8 Interactive Noise Editing

In this section, we present an interactive editor for bandwidth-
quantized Gabor noise, inspired by the Wold decomposition
[Francos et al. 1993]. Although our approach is exemplar-based,
it still allows editing for maximum flexibility.

Our editor is inspired by the Gabor noise widgets of Lagae et
al. [2009, 3.3], which allow the user to manipulate the parame-
ters of a Gabor noise by directly manipulating the corresponding
Gaussians in the spectral domain. However, in contrast to Lagae
et al., we have to deal with tens or even hundreds of Gaussians.
We therefore group the Gaussians, and allow the user to manip-
ulate the groups rather than the individual Gaussians. We group
the Gaussians automatically inspired by the Wold decomposition
[Francos et al. 1993], which states that a Gaussian random field
can be decomposed into a stochastic component, a set of strongly
anisotropic components, and a set of periodic components. We use
guidelines from the Wold decomposition [Liu 1997] to perform a
basic decomposition of the sparse set of Gaussians. Please refer to
the supplemental materials for more details. Note that, in contrast
to previous work [Francos et al. 1993; Liu 1997] our goal is not to
fully decompose a discrete power spectrum, but rather to provide
meaningful groups of Gaussians to the user, which is less challeng-
ing. We allow the user to manipulate groups by rotating, scaling
and translating groups, which affects the frequency ω of the Gaus-
sians in the group, and by changing the magnitude and bandwidth
of groups, which affects the magnitude K and bandwidth a of the
Gaussians in the group. We also allow the user to manually group
Gaussians, and to cut, copy and paste groups.

9 Results, Comparisons and Discussion

9.1 Results

In Fig. 4, we show detailed results of our approach. Col. 1 shows
the exemplar. Col. 2 shows the Gaussian version of the exemplar.
Differences between col. 1 and col. 2, if any, are due to the the fact
that the exemplar is not necessarily Gaussian. Col. 2 also serves
as ground truth for our approach. Col. 3 shows the Gaussian tex-
ture corresponding to the sparse power spectrum estimated using
our parameter estimation. Differences between col. 2 and col. 3,
if any, are due to the approximate nature of the parameter estima-
tion. Col. 4 shows the noise generated by our procedural evaluation.
Differences between col. 3 and col. 4, if any, are due to the various
approximations in the procedural evaluation.

In Fig. 1, we show more results of our approach for the grayscale
case. This figure shows the Gaussian version of the exemplar
(row 1) and the procedural noise (row 2), and illustrates that our
approach works very well for Gaussian textures. In Fig. 5 (and
in Fig. 7(col. 1-2)), we show more results of our approach for the
color case. This figure shows the exemplar (row 1) and the proce-
dural noise (row 2), and illustrates that our approach works well for
many nearly-Gaussian textures (a-e), but less well for non-Gaussian
texures (f-h), including structured textures and textures with non-
Gaussian color distributions. Please refer to the supplemental ma-
terial for detailed results for a set of 44 textures, including all ex-
amples in the paper.
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Figure 4: Detailed results. (col. 1) Exemplar. (col. 2) Gaussian version of the exemplar. (col. 3) Gaussian texture corresponding to the
sparse power spectrum estimated using our robust parameter estimation. (col. 4) Procedural noise obtained using our efficient procedural
evaluation. (insets) The power spectrum estimate or power spectrum. (row 1) Grayscale results. (row 2) Color results obtained using our
maximally independent color space.
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Figure 5: More results. (row 1) Exemplar. (row 2) Procedural noise. (insets) Sparse power spectrum representation obtained using our
robust parameter estimation. (a-e) Nearly-Gaussian textures. (f-h) Non-Gaussian textures.

The two parameters of our approach are (i) the relative regulariza-
tion parameter κ, which trades sparseness for accuracy in the pa-
rameter estimation, and (ii) the impulse budget N , which trades
quality for speed in the procedural evaluation. We used the default
parameters κ = 1/256 and N = 1024 for all examples, which in
practice makes our method automatic. Note that for many exem-
plars, better results could be obtained by tweaking κ and N .

The performance of our parameter estimation is roughly two
minutes per texture (unparallelized Matlab, 2.67GHz Intel Xeon
X5650). However, we believe this could be significantly improved
if needed. The performance of our procedural evaluation is roughly
30 FPS (CUDA, NVIDIA Quadro 5000). Both numbers are for the
grayscale case, an image resolution of 128 × 128, and the default
parameters. The performance is roughly linear in the image resolu-
tion and N . The performance is only marginally lower in the color
case, since typically one channel dominates in the maximally in-
dependent color space. Please refer to the supplementary materials
for exact values.

The sparseness of our representation of the estimated power spec-
trum is on the average roughly 3.5%, for the default value of κ.
Please refer to the supplementary materials for exact values. These
results suggest that the power spectrum of Gaussian textures can be
sparsely represented.

Our maximally independent color space improves results over the
PCA color space, but in practice this difference is barely notice-
able. For nearly-Gaussian exemplars, J (TRGB)>>J (TPCA)>
J (TAJD), but J (TAJD) is relatively close to J (TPCA), e.g.,
for Fig. 4(a), the values are respectively 0.9962, 0.0067 and

Figure 6: Interactive noise editing. Two screen captures of an in-
teractive editing session. Please refer to the supplemental materials
for the corresponding video sequence.

0.0028. Please refer to the supplementary materials for all val-
ues. Nevertheless, the fact that J (TPCA) is relatively close to
J (TAJD), the optimal value, explains why the PCA color space
has been successful for stochastic textures in previous work. We
have not found any Gaussian texture where independent channel
synthesis in the maximally independent color space fails, which
seems to suggest that the color channels of Gaussian textures are
largely independent. For non-Gaussian exemplars, such as [Kopf
et al. 2007, Fig. 2], the maximally independent channels might still
be too correlated to allow successful independent channel synthesis.
Interestingly, for this example, bothJ (TRGB) andJ (TPCA) are
relatively large, which seems to suggest that neither color space will
allow successful independent channel synthesis.

In Fig. 6 and in the video sequences in the supplemental materials
we show results of our interactive noise editor. These demonstrate
several editing operations. Note that none of the other examples



has been edited, and that the editor adapts the impulse budget to
guarantee interactive performance.

Our approach inherits all advantages of Gabor noise, including sur-
face mapping without a texture parameterization (surface Gabor
noise) and analytic texture filtering [Lagae et al. 2009].

9.2 Comparisons

In Fig. 7, we compare our approach to the methods of Heeger and
Bergen [1995], Lefebvre and Hoppe [2005], Lagae et al. [2010b],
and Gilet et al. [2010]. Please refer to the supplemental material
for a more detailed version of this comparison for a set of 19 tex-
tures. Col. 1 shows the exemplar. Col. 2 shows our results. Col. 3
shows the results of Gilet et al. These results were generated by the
authors of [Gilet et al. 2010] themselves, who reported that signifi-
cant manual intervention and trial and error were needed to achieve
these results, while our approach is automatic. Additionally, their
results typically exhibit a lack of high-frequency detail, increased
regularity, and/or subtle color shifts. Col. 4 shows the results of La-
gae et al. Their method cannot handle anisotropy. Col. 5 shows
the results of Heeger and Bergen. Their method cannot handle
anisotropy well. Note that similar results would probably be ob-
tained with anisotropic noise [Goldberg et al. 2008], which uses
the same steerable filters. Col. 6 shows the results of Lefebvre and
Hoppe. Their method is not procedural, and cannot preserve the
anisotropic detail well in all cases, although this could be alleviated
by manually constraining the jitter.

The method of Ghazanfarpour and Dischler [1995] cannot handle
noisy textures such as sand, while our method can, and requires the
user to manually set parameters (i.e., Erra and Errφ), while our
method is automatic. The method of Dischler et al. [1997] cannot
handle anisotropic textures, while our method can.

9.3 Discussion

A simpler alternative to our parameter estimation would be to ob-
tain the K and ω parameter of each Gabor kernel by importance
sampling the power spectrum of the exemplar during the procedural
evaluation. However, it is not clear how to obtain the a parameter
in this case, and fixing it to a large or small bandwidth would re-
spectively be inaccurate or inefficient. Additionally, this alternative
is not compact.

An alternative to non-negative basis pursuit denoising are methods
based on Gaussian mixture models (GMM) and expectation maxi-
mization (EM), such as the one by Papas et al. [2011]. However,
non-negative basis pursuit denoising has several advantages over
these methods for our problem: (i) it allows the user to specify the
desired accuracy of the approximation rather than the desired num-
ber of Gaussians; (ii) it does not require an initialization; and (iii)
it provides a solution in terms of quantized rather than continuous
bandwidths.

Compared to our approach, Gilet et al. [2010] additionally use
cosines and histogram matching, which can improve the results in
some cases. Although our approach is compatible with these addi-
tions, we have chosen not use them, since the usage of cosines and
histogram matching is not compatible with surface Gabor noise and
analytic filtering of Gabor noise [Lagae et al. 2009].

10 Conclusion

We have presented Gabor noise by example, a generalization of
Gabor noise that can generate a wide variety of Gaussian textures,
and can estimate the noise parameters from an exemplar Gaussian

texture. Gabor noise by example preserves the traditional advan-
tages of procedural noise, including a compact representation and
fast on-the-fly evaluation, and is mathematically well-founded.

For all of our examples, the Gaussian version of the exemplar and
the procedural noise are virtually indistinguishable. This means that
all remaining information that makes the exemplar different from
its Gaussian version is in the phase spectrum of the exemplar. We
therefore believe that understanding the phase spectrum of textures
is an important direction for future research.

Acknowledgements

We would like to thank the anonymous reviewers and Jean-
Michel Dischler, Fredo Durand, Guillaume Gilet and Gabriel
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