## Image-Guided Weathering: A New Approach Applied to Flow Phenomena - Supplementary Material

Carles Bosch<sup>\*†</sup>, Pierre-Yves Laffont<sup>†</sup>, Holly Rushmeier<sup>\*</sup>, Julie Dorsey<sup>\*</sup>, George Drettakis<sup>†</sup>

Yale University<sup>\*</sup> REVES/INRIA Sophia-Antipolis<sup>†</sup>

## 1 Introduction

This document contains additional material for the paper "Image-Guided Weathering: A New Approach Applied to Flow Phenomena". This material consists of a set of maps and parameters obtained for different stain exemplars. For each exemplar, the following maps are shown: the input stain image, the extracted degree map, the simulated stain after fitting the parameters, the synthesized detail map, and the non-linear color function. The fitted parameters for all the exemplars are included in Table 1 for reference.

Figure 1 to Figure 3 first show results for stains fitted without using our flow deflection model. In Figure 3, the fittings were done using multiple stains at the same time. Two groups of stains are shown, one corresponding to three efflorescence stains (top) and another corresponding to two mold stains (bottom). As each group of stains belongs to the same surface and stain material, the stains were fitted using shared parameters for both the target surface and the stain material.

Figures 4 to Figure 7 show results for stains fitted using our flow deflection model. Finally, Figure 8 shows exemplars of stains on more complex target objects, where non-flat proxies are used to approximate the targets during the fitting.



Figure 1: Stains exemplars and obtained data. From left to right: Input image, extracted degree, fitted simulation, detail map, and color variation.



 $rust\_point2$ 

Figure 2: Stains exemplars and obtained data. From left to right: Input image, extracted degree, fitted simulation, detail map, and color variation.



Figure 3: Stains exemplars and obtained data using combined fitting. From left to right: Input image, extracted degree, fitted simulation, detail map, and color variation.



Figure 4: Stains exemplars and obtained data using our flow deflection model. From left to right: Input image, extracted degree, fitted simulation, detail map, and color variation.



white2

Figure 5: Stains exemplars and obtained data using our flow deflection model. From left to right: Input image, extracted degree, fitted simulation, detail map, and color variation.



biological3



rust8



rust9



![](_page_6_Figure_7.jpeg)

rust11

Figure 6: Stains exemplars and obtained data using our flow deflection model. From left to right: Input image, extracted degree, fitted simulation, detail map, and color variation.

![](_page_7_Picture_0.jpeg)

Figure 7: Stains exemplars and obtained data using our flow deflection model. From left to right: Input image, extracted degree, fitted simulation, detail map, and color variation.

![](_page_8_Picture_0.jpeg)

mold9

![](_page_8_Picture_3.jpeg)

 $rust\_point3$ 

![](_page_8_Picture_5.jpeg)

 $rust\_point4$ 

Figure 8: Stains exemplars and obtained data using non-flat target proxies. From left to right: Input image, extracted degree, fitted simulation, detail map, and color variation. Target proxy is shown in yellow on the left image.

| Stain name     | $S_i(0)$ | $k_S$  | $k_D$  | $r_t$  | $a_t$  | $k_{a,t}$ | Т    | error   |
|----------------|----------|--------|--------|--------|--------|-----------|------|---------|
| biological1    | 0.9904   | 0.0375 | 0.0388 | 0.1515 | 0.2999 | 0.0527    | 1290 | 1178.03 |
| biological2    | 0.9997   | 0.0395 | 0.0405 | 0.1001 | 0.3005 | 0.0523    | 1355 | 1680.69 |
| rust1          | 2.2470   | 0.0161 | 0.0439 | 0.4568 | 0.2848 | 0.0777    | 1979 | 551.67  |
| rust2          | 0.6385   | 0.0555 | 0.0382 | 0.1355 | 0.3016 | 0.0017    | 2751 | 956.92  |
| rust3          | 0.2516   | 0.0165 | 0.0083 | 0.0353 | 0.2392 | 0.0962    | 5001 | 106.94  |
| rust4          | 0.9193   | 0.0186 | 0.0102 | 0.1561 | 0.2869 | 0.0507    | 231  | 43.15   |
| rust5          | 0.8925   | 0.0151 | 0.0381 | 0.2699 | 0.3117 | 0.0332    | 525  | 75.79   |
| rust6          | 0.5581   | 0.0531 | 0.0321 | 0.1796 | 0.2614 | 0.0943    | 385  | 193.82  |
| $rust_point1$  | 0.3633   | 0.1967 | 0.0713 | 0.6016 | 0.3815 | 0.0114    | 703  | 43.88   |
| $rust_point2$  | 0.3719   | 0.1301 | 0.0418 | 0.5245 | 0.3211 | 0.0106    | 776  | 150.77  |
| efflorescence1 | 0.6214   | 0.1620 | 0.1091 | 0.0101 | 0.3605 | 0.1060    | 854  | 862.45  |
| efflorescence2 | 0.4356   | 0.1620 | 0.1091 | 0.0101 | 0.3605 | 0.1060    | 5499 | 685.24  |
| efflorescence3 | 0.3516   | 0.1620 | 0.1091 | 0.0101 | 0.3605 | 0.1060    | 4607 | 956.08  |
| mold1          | 0.2838   | 0.2267 | 0.1019 | 0.0114 | 0.2460 | 0.1476    | 4803 | 1148.6  |
| mold2          | 0.2865   | 0.2267 | 0.1019 | 0.0114 | 0.2460 | 0.1476    | 3011 | 1019.17 |
| mold3          | 0.3803   | 0.0288 | 0.0012 | 0.2955 | 0.2673 | 0.0673    | 3289 | 495.95  |
| mold4          | 0.4806   | 0.0384 | 0.001  | 0.2518 | 0.2810 | 0.0862    | 1445 | 764.26  |
| mold5          | 0.1069   | 0.0622 | 0.0046 | 0.2802 | 0.2109 | 0.0197    | 4195 | 423.03  |
| mold6          | 1.1738   | 0.0096 | 0.0101 | 0.8525 | 0.2260 | 0.0818    | 1377 | 2983.33 |
| mold7          | 0.5086   | 0.0441 | 0.0243 | 0.0259 | 0.2348 | 0.1298    | 1937 | 1306.89 |
| mold8          | 0.0789   | 0.0211 | 0.0016 | 0.2240 | 0.2009 | 0.1672    | 3350 | 192.46  |
| red1           | 0.2446   | 0.0598 | 0.0087 | 0.2241 | 0.2811 | 0.0117    | 2342 | 345.24  |
| rust7          | 0.6006   | 0.0143 | 0.0150 | 0.1973 | 0.2535 | 0.0518    | 1401 | 515.42  |
| white1         | 1.3206   | 0.0210 | 0.0393 | 0.1531 | 0.1485 | 0.2248    | 875  | 482.85  |
| white2         | 0.7483   | 0.0201 | 0.0375 | 0.2042 | 0.1555 | 0.1553    | 761  | 184.29  |
| biological3    | 0.2861   | 0.1141 | 0.0304 | 0.0336 | 0.2996 | 0.0956    | 1434 | 641.71  |
| rust8          | 1.9254   | 0.0010 | 0.0002 | 0.8342 | 0.1917 | 0.2569    | 7003 | 2887.46 |
| rust9          | 0.2783   | 0.1123 | 0.0372 | 0.4691 | 0.1927 | 0.1898    | 5424 | 954.12  |
| rust10         | 3.7521   | 0.0020 | 0.0031 | 0.0118 | 0.1946 | 0.1945    | 7002 | 919.12  |
| rust11         | 0.7363   | 0.0213 | 0.0208 | 0.1023 | 0.2614 | 0.1671    | 2878 | 432.01  |
| efflorescence4 | 0.7365   | 0.0376 | 0.0233 | 0.1473 | 0.2996 | 0.1967    | 2882 | 1117.00 |
| efflorescence5 | 0.1459   | 0.0535 | 0.0060 | 0.0521 | 0.2911 | 0.0054    | 2646 | 668.05  |
| patina1        | 0.6213   | 0.1487 | 0.1632 | 0.4830 | 0.1118 | 0.1246    | 2848 | 1541.66 |
| washing1       | 0.2894   | 0.2749 | 0.1305 | 0.4159 | 0.1747 | 0.0491    | 3770 | 986.14  |
| washing2       | 4.5800   | 0.0050 | 0.0179 | 0.4143 | 0.0013 | 0.0218    | 2637 | 1429.36 |
| rust12         | 0.6248   | 0.0053 | 0.0051 | 0.3139 | 0.1286 | 0.0010    | 2995 | 938.98  |
| mold9          | 0.6121   | 0.0593 | 0.0801 | 0.8877 | 0.0011 | 0.0688    | 3482 | 1655.18 |
| rust-point3    | 3.4359   | 0.0026 | 0.0236 | 0.6091 | 0.2416 | 0.0621    | 229  | 77.33   |
| rust-point4    | 0.5062   | 0.0196 | 0.0204 | 0.2176 | 0.2638 | 0.0151    | 708  | 135.23  |

Table 1: Fitted parameters for the exemplars.