
Assisted Texture Assignment

Matthäus G. Chajdas1,3

1REVES / INRIA Sophia-Antipolis

Sylvain Lefebvre1,2

2ALICE / INRIA Nancy

Marc Stamminger3

3University of Erlangen

(a) (b) (c) (d)
Figure 1: We present a novel algorithm to assist a user assign textures on the surfaces of virtual environments. (a) Initial scene. (b) The
user selects a texture for a floor (hilighted in yellow), all floors are automatically assigned by our system. (c) The user selects a texture
for a border, all borders are automatically assigned. (d) Result after 10 selections. Surfaces touched by the user are highlighted in yellow.
Texturing information is propagated throughout the entire scene at once. Scenes from Quake 4, c© Id Software.

Abstract

Virtual environments are typically textured by manually choosing
an image to apply on each surface. This implies browsing through
large sets of generic textures for each and every surface in the scene.

We propose to facilitate this long and tedious process. Our algo-
rithm assists the user while he assigns textures to surfaces. Each
time an image is chosen for a surface, our algorithm propagates
this information throughout the entire environment.

Our approach is based on a new surface similarity measure. We ex-
ploit this measure in an algorithm ranking all possible textures for
a given surface. Hence, we do not simply assign a texture to the
surface but also propose an ordered list of choices for the user. In
the unavoidable event of an ambiguous choice, the user can quickly
make a decision and select the best texture. Our algorithm is fast
enough to allow for interactive feedback. Applications range from
assisted interactive texturing to fully automatic initial texturing so-
lutions.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and tex-
ture; I.3.6 [Computer Graphics]: Methodology and Techniques—
Interaction techniques

Keywords: Texture mapping, automatic texture assignment

1 Introduction

Virtual environments are typically textured by selecting materials
for each surface within a database of pre–designed textures. Such
textures encompass images of wood, concrete, grass, brick walls,
but also nearly–flat architectural details such as windows, door

frames, signs and control panels. Typically the geometry of the
scene is first designed, the textures being later manually chosen.

The textures used for environments are very different from the tex-
tures applied onto specific objects or characters. They are not spe-
cialized to a particular geometry instance and are typically applied
to surfaces through simple planar mappings. Most often, environ-
mental textures are created to be cyclic or are procedurally gener-
ated allowing reuse by surfaces of various sizes. These specificities
let texture artists pre–design databases of images for a given theme,
later used by level–designers to decorate their creations.

Textures play an essential role in defining the look and feel of an
environment. Unfortunately the task of selecting one texture for
each surface is also very tedious, requiring the artist to click on
many surfaces and to browse through large sets of images. This
fact is worsened by the increasing use of automated processes to
produce complex scenes. For instance details are generated within
the modeling tool by physically simulating the behavior of many
objects: Falling rocks, smashed walls, deforming or breakable ob-
jects. After this process, the artist is left with the tedious task of
choosing appropriate textures for each object, for instance distin-
guishing rocks at the bottom or top of a pile.

Our goal is to simplify this task. We propose an approach to help the
selection of the most appropriate texture for a surface, learning from
already textured geometry. For instance, using our tool the artist
starts by selecting textures for a few surfaces and this information
is automatically propagated throughout the scene (see Figure 1). In
another example, the user selects in just two clicks different tex-
tures for rocks in a pile (see Figure 7). We thus amplify user input,
avoiding most of the repetitive and tedious work. Our algorithm
can also transfer textures from one geometry to another, letting the
user interactively improve the result with few interactions (see Fig-
ure 8). Throughout this work we assume that the scene comes pre–
segmented into surfaces, and that destination surfaces already have
proper texture coordinates (only used for display).

Assigning a texture to a particular surface is a seemingly easy to
solve problem for a human user. We easily identify floors, walls,
stairs from their shape and purpose. Nevertheless, ambiguities re-
main and the ’right’ choice is often a matter of individual appre-
ciation. Doing the whole process automatically is thus extremely
challenging: We do not want to require semantic information about

the scene – adding it would be as tedious as texturing – and we often
have very little example data to work from. The shapes of polygons
themselves are often not relevant for texturing purposes: Very dif-
ferent polygons use the same texture. The naive approach of finding
a texture by matching polygons is thus bound to fail. Finally, since
only the user can resolve ambiguities in the texture assignments –
such as choosing among various floor textures – we can only hope
to provide an efficient selection method.

Faced with these challenges we cannot reasonably hope for a fully
automatic system providing perfect results. Instead, we seek to
design an algorithm providing a good initial guess to work from,
enabling texture artists to gain a significant amount of time and
to focus on the important choices. In particular, rather than se-
lecting a single texture for a surface our system ranks all possible
choices, letting the user quickly select another texture among the
good choices (please refer to the accompanying video).

Our main contributions are:

• A new surface similarity measure specifically designed for
matching surfaces in a texturing context. The key idea of our
measure is to check whether a surface can be described by
the features of another. This abstracts the actual shape of the
polygon while retaining information relevant for texturing.

• A ranking mechanism scoring each texture according to
whether it is a likely candidate for a given surface. It relies on
example surfaces and surface similarity. Neighboring surfaces
with already assigned textures are used to reduce ambiguities.

We demonstrate these contributions in a prototype tool to assist
manual texture assignment in large virtual environments. The fol-
lowing sections detail our approach and results.

2 Previous work

To the best of our knowledge there has not been previous work ad-
dressing precisely our problem. Nevertheless, several works inves-
tigate related issues and provide valuable insights on how to ap-
proach the texture assignment problem.

Guided texture synthesis and texture transfer Guided texture
synthesis [Ashikhmin 2001; Hertzmann et al. 2001] produces a new
texture following a guidance field. These approaches have been
successfully used to transfer the texture of an object onto another
using a 3D–scan as example [Mertens et al. 2006; Lu et al. 2007].
The goal is related to ours, however these works focus on smooth
curved objects such as sculptures and deal essentially with stochas-
tic textures. In contrast, we deal with complete environments and
select textures for surfaces rather than synthesizing new ones. Nev-
ertheless, a key insight is that local geometric properties such as
curvature, accessibility and orientation are strongly correlated with
surface appearance.

Shape matching and instancing A key component of our ap-
proach is to identify similar surfaces. Most shape matching tech-
niques are designed to quickly search object databases by comput-
ing global shape descriptors [Tangelder 2004]. Partial shape match-
ing [Gal and Cohen-Or 2006] is closer to our needs since it focuses
on identifying matching sub–parts within meshes. Similarly, the
work of [Martinet 2007] groups connected geometry together and
automatically finds similar instances. The approach of [Pauly et al.
2008] detects repeating structures in a scene. While this could be
very useful to pre–cluster similar objects, these approaches are dif-
ficult to apply on the surfaces we manipulate: Many are flat or ex-
hibit identical sharp corners, which would lead to a large number of

ambiguities. A key inspiration from these approaches, however, is
the use of local geometric descriptors randomly spread within the
scene to avoid dependency to tessellation. Finally, the work of [An-
derson et al. 2000] identifies geometric structures in a crude block
based modeling of a scene. It relies on logical predicates identifying
symbols in the block layout to produce detailed textured geometry.

Machine learning We considered using machine learning tech-
niques [Bishop 2006] to label a surface knowing the examples.
However, per–surface descriptors are not sufficient for texturing
purposes: The particular shape or size of a polygon is often not
strongly related to the texture it is using. In addition, the ambigu-
ities between textures exclude most direct clustering approaches.
Finally, machine learning does not adapt well to the progressive
texturing approach where surfaces are added one by one.

Automatic texturing of architectural scenes Architectural
scenes are typically described by simple geometries and complex
texturing. The work of [Legakis et al. 2001] is dedicated to the
generation of complex cellular textures – such as brick walls – on
architectural models. The choice of textures is however left to the
user. Our work is complementary since it would help the user an-
notate the input. The work of [Cabral et al. 2009] creates new en-
vironments by sticking together pieces of existing buildings. The
textures already in place are reused and automatically resized to
adapt to geometric changes.

3 Our approach

The input to our approach is a scene composed of a set of surfaces.
Each surface is made of polygons, not necessarily planar, meant to
share a continuous region of a same texture. This is for instance a
floor polygon, the cylindrical side of a barrel, or the steps of a stair.
Some surfaces – example surfaces – are already assigned a texture
while others – target surfaces – are not yet determined.

Our approach assigns textures by testing a target surface against all
possible textures of the example. This results in an ordering of the
textures by decreasing score of being a good choice. Some textures
may be discarded as clearly bad choices and will not be ranked.
As an initial guess we simply assign the first texture to the target.
The user quickly resolves any wrong choice by exploring the sorted
textures.

The score of each texture comes from two sources: First, a surface
matching step computes how well the target surface matches against
all the example surfaces using the texture (see subsection 3.1). Sec-
ond, the already textured neighbors are used to influence the choice
of texture for the surface (see subsection 3.2). In the end, both are
merged to compute a final ranking. On scenes made of a few tens
of thousands surfaces both steps are fast enough to be performed
interactively while the user is assigning textures: We can propagate
the texture assignment as the user is choosing textures for surfaces
in a new scene. Applications are described section 4.

3.1 Texture ranking with surface similarity

Given a target surface, we need to score each texture according
to whether it is a good candidate. The only information available
comes from the surfaces already using this texture.

Our approach abstracts away from the notion of surfaces by intro-
ducing local descriptors: The scene is randomly sampled with uni-
form density by probes describing local properties of the underlying
geometry. The probes are completely independent, and even on a

same surface they are likely to contain different values. Eventu-
ally, each surface is represented by a group of probes and the actual
geometry is discarded.

We use the probes to define our surface similarity. Our key idea is to
compare two surfaces by counting how many probes of the first sur-
face match with at least one probe of the second surface, and vice–
versa. In other words, we verify that the second surface describes
well the first surface, and that the opposite is also true. This notion
of ’being good descriptors of each others’ has also recently been
introduced for image summarization [Simakov and Irani 2008].

The following sections describe these ideas in more detail.

3.1.1 Surface probing

We generate the probes by uniformly and randomly sampling the
scene geometry. In a pre-processing step, we compute a voxeliza-
tion of the scene, independent of the tessellation. For each surface
inside a voxel we create a sample point. This is the probe location.
The result of the probe sampling can be seen Figure 2.

Figure 2: Scene covered by probes. Colors outline the geometry.

The probes capture a number of local geometric properties. These
properties must be relevant in terms of finding an appropriate tex-
ture for a surface: i.e. they must help distinguish between surfaces
having different roles (floor, wall, door, etc.). Some of these prop-
erties depend only on the surface shape, while others depend on the
context around the surface. We use the following properties:

• Local anisotropy captures whether the probe is on a thin strip
or close to an extremity of the surface.

• Curvature captures the local non–planarity of the surface.
• Distance to edge captures how far we are from the surface

closest border. This gives some indication of the surface size.
• Accessibility captures whether the surface is in a concavity or

a cavity of the scene.
• Local orientation captures the angle of the surface with re-

spect to the scene.

These properties are visually illustrated Figure 3. Accessibility, ori-
entation and curvature were previously identified as good texture
discriminants [Mertens et al. 2006], while the other properties are
well suited for architectural settings. We describe their computa-
tion in more details below. Anisotropy, curvature and accessibility
require a scene–dependent scale factor.

Local anisotropy We define anisotropy by considering a disc
around the probe with a fixed, scene-dependent radius. The radius
must be chosen to capture thin features of the scene. We uniformly
sample the disc and test all pairs of opposite points to check whether
they fall outside the surface supporting the probe (see Figure 4). If
both fall outside the anisotropy level is increased by one. This lets
us efficiently characterize the local shape of a surface.

Figure 3: From left to right, top to bottom: Example scene, local
orientation (normals), anisotropy, curvature, distance to edge and
accessibility.

A B C D

Figure 4: Anisotropy estimation using four samples. Cases A and
B: We increase the anisotropy value since two opposite points fall
outside the surface. Cases C and D: These cases are isotropic.

Local curvature estimate We extend the anisotropy computa-
tion to also estimate curvature, inspired by estimation schemes such
as solid angle curvature [Mertens et al. 2006].

For each sample point on the circle, we compute the distance to
the closest point on the geometry (see Figure 5). This comes at
no additional cost: During anisotropy computation we simply re-
tain distances to hit–points. We sum up the (unsigned) distances to
measure how much the surface deviates from a plane in the local
neighborhood. We typically use 32 samples around the circle.

distance = 8 distance = 2

Figure 5: Curvature estimation (side view). We consider a circle
in the tangent plane around the probe and compute the distance to
the surface at a few sample points.

Distance to edge For fast approximation of the distance to edge
we rely on the voxelization. For each surface, we compute the set of
edge voxels: Voxels either containing another surface or having less
than four defined neighbors in the 6–voxels neighborhood. (The 6–
voxels neighborhood is made of the direct neighbors along the x, y
and z axis). For each probe, we compute the distance to the closest
edge voxel, and keep the minimum value.

Accessibility We determine an accessibility factor by tracing a
number of rays in the hemisphere around each probe. Accessibility
is checked within a user specified distance. Each ray hitting an
object before the distance threshold increments the occlusion value.
The final occlusion is the ratio of hitting rays to the number of total
rays traced. We typically use 64 rays per probe. The noise resulting
from the low number of rays does not impair our probe matching
thanks to thresholding (see subsubsection 3.1.2).

Local orientation We add the smoothed normal vector to the
probe attributes in order to capture the local orientation of the sur-
face. This implies that our probes are not invariant under rotation.

While crucial to distinguish floors from walls, this could be relaxed
for rotations around the up direction.

3.1.2 Bi–directional probe matching

We now have covered all surfaces in the scene with probes. Our
next goal is to use the probes in order to measure how similar two
surfaces are for texturing purposes. We will see afterwards how this
surface similarity measure is used for texture assignment.

Let P be the set of all probes in a scene, PS ⊂ P be the set of all
probes for a given surface S and Pc ⊂ P the set of probes for all
surfaces using texture c. We note (Ap

1, A
p
2, . . . , A

p
n) the attributes

Ap
i of a probe p ∈ P .

Our similarity measure is based on the key idea of being able to
describe a surface with another. That is, for any given piece of sur-
face A, it must be possible to find a similar piece in surface B. In
our case, the ’pieces’ being compared are the probes. This abstracts
the size and layout of two surfaces, allowing them to be quite dif-
ferent as long as the same features are found in both. This measure
enforces the property that a surface must be similar to itself.

We first define a binary matching function as:

δ(x, y, t) =

{
1 if |x− y| ≤ t
0 else

where x, y are values to be matched and t a threshold. We consider
that two probes p = (Ap

1, A
p
2, . . .), q = (Aq

1, A
q
2, . . .) are match-

ing if all attributes are matching under a per–attribute threshold:

Match(p, q) =

{
1 if forall i, δ(Ap

i , A
q
i , thresi) = 1

0 otherwise

The per–attribute thresholds thresi are computed automatically as
discussed below.

We define the asymmetric similarity between surfaces S, T as:

SimilarTo(S, T) =
1

|PS |
∑
p∈PS

{
1 if ∃q ∈ PT st. Match(p, q) = 1

0 otherwise

This counts the number of probes in S finding a match in T . This
similarity returns 0 if S is very dissimilar from T and 1 if they
match well. Finally, we obtain the bi–directional similarity between
surfaces as:

Similarity(S, T) = SimilarTo(S, T) · SimilarTo(T, S)

We use a binary matching between the probes rather than a con-
tinuous distance for two reasons. First, this avoids having to scale
the attributes with respect to each others: When computing a dis-
tance, it is not obvious whether orientation or accessibility should
matter more than the distance to edge. Second, the binary matching
allows for significant performance optimization, since we can exit
the comparison when a first match is found. This is key in achieving
interactive feedback.

Threshold for probe matching When comparing two surfaces
we match attributes up to a threshold thresi. This threshold is
critical in order to achieve proper results. A tight threshold would
only allow for perfect matches, while a very large threshold would
over–generalize by matching very dissimilar probes. We define our
threshold to allow slightly different attributes to match, relying on
standard deviation for automatic adjustment. In addition, it takes
into account the variability within the surfaces using a same texture:

If two very different surfaces use a same texture we allow for a
larger threshold, accounting for the fact that some attributes are less
discriminant for this texture.

More precisely, given a surface S using a texture c we obtain
thresi as follows. First, we compute the standard deviation of
each probe attribute Ai over the entire set of probes P . This re-
sults in vector STDP = (σ1, σ2, . . . , σn). Second, we compute
the standard deviation of each probe attribute Ai over the set of
probes Pc of the surfaces using texture c. This results in a sec-
ond vector STDc = (α1, α2, . . . , αn). For the threshold, we use
thresi = max(γσi, ταi), where γ and τ are user specified fac-
tors. The global threshold is controlled via γ, while τ controls the
within–texture threshold. Typical values for γ and τ are 0.1 and
1.0. Increasing the values lets more surfaces fall within range of a
texture, while decreasing them requires more precise matches and
a larger number of example surfaces per texture. Please refer to
section 4 and Figure 9 for more details.

3.1.3 Texture ranking with probes only

We now seek to score each texture according to whether they are
good candidates for a given target surface. Our intuition is that
a texture is a good candidate if the surfaces already using it are
matching well with the target surface.

More precisely, if we note Sc the set of example surfaces using
texture c, and T the target surface, the texture score is computed as:

ScoreT (c) =
∑
S∈Sc

(Similarity(S, T))2

Intuitively, we give more importance to well matching textures by
squaring the similarity values, and give a higher rank to textures
with many good matches.

We sort the textures according to their score. We refer to the set of
ranked textures as the probe candidate set. If no surface matches the
target across all textures, it is left unassigned (i.e. no good texture
has been found).

Results with probe ranking only Texture assignment with
probe ranking already performs well: Textures with high scores are
often appropriate for the surface. However, on scenes with many
ambiguous textures – such as several floor textures – the probes do
not suffice to achieve satisfactory results. A key issue is the lack
of consistency: Neighboring surfaces do not necessarily make the
same choice in case of ambiguities. As explained in the next sec-
tion, we need additional information to help reduce ambiguities.

3.2 Neighborhood–driven texture selection

Given a target surface we now have a set of candidate textures
ranked using surface similarity. However, this information is not
enough to obtain a consistent texturing of the scene: We need to
take into account the already textured surfaces neighboring the tar-
get surface. For instance, some floor texture may only appear to-
gether with a specific wall texture. We need to capture these co–
occurrences in our texture assignment algorithm. Ambiguities are
reduced by this mechanism.

3.2.1 The texture graph

We start by capturing the neighboring relationship of the already
textured surfaces. We consider as neighbors surfaces sharing at
least one same voxel. We create a texture graph, in which each

texture has a corresponding node. An edge is added in the graph
between textures used by neighboring surfaces.

It is not enough, however, to simply record adjacency. In many
cases, the texture of neighboring surfaces is determined by their
spatial relationship. In our experiments we found that the length
of the border between both surfaces is particularly relevant for the
choice of texture. For instance a plinth surface will be neighboring
other plinth polygons by a small edge length while it will neighbor
wall polygons by larger, varying edge lengths. This also holds for
vertical walls versus for instance door frames or window frames.
Hence, we store along each graph edge the average and variance
of the geometric border length between all surfaces using the two
textures. We assume normal distribution of lengths. In practice we
observed either a large variability of lengths, or very little variations
around a single value.

3.2.2 Neighborhood influence

Our goal is now to compute a weight influencing the ranking ob-
tained from the probes only. Our idea is to consider each already
assigned neighboring surface, and see how likely it is to be the ac-
tual neighbor of each texture candidate.

To this end, we search in the texture graph to see if an edge exists
between the candidate texture and the texture already assigned to
the neighboring surface. If it does, we compute the probability that
the neighboring relationship is indeed one observed in the example.

More precisely, noting lT,N the edge length between target surface
T and one of its neighbors N , noting c the candidate texture and n
the texture assigned to N , and finally noting γ(c,n) and σ(c,n) the
average length and variance stored in the graph between textures c
and n, we compute the probability of T using c next to N as:

P (T, c|N,n) = 1

σ(c,n)

√
2π
exp
−

(lT,N−γ(c,n))
2

2σ2
(c,n)

The weight for candidate texture c from the neighborhood NT of
surface T is computed as:

wNT (c) =
1

|NT |
∑

N∈NT

P (T, c|N,n)

Note that the neighborhood only contains surfaces with already as-
signed textures. Other neighbors are ignored.

In the end, we rank all texture candidates c for target surface T
according to:

ScoreT (c) · wNT (c)

The next section explains how this score is used to rank textures for
each surface in the entire scene.

3.3 Global texture assignment

We have previously seen how to rank textures for a unique target
surface T using both the probes and already textured neighbors.
In this section we explain how to apply the texture ranking to all
surfaces of a target scene.

Our algorithm iteratively improves the assignment for all surfaces.
For maximum performance, we process all target surfaces in par-
allel within a same iteration. During the first iteration there are
typically no textures assigned to any surface, and hence the texture
score only takes the probes into account. During each subsequent
iteration the score for a texture takes into account neighbors. This

will improve the result by reducing ambiguities (see Figure 10).
While there is no guarantee the result usually stabilizes after three
or four iterations. Assigning textures to surfaces sequentially by
decreasing probe scoring may lead to better result. However, this
would be significantly slower than our current parallel scheme and
would not allow for interactive feedback.

3.4 Adding the user in the loop

Our system provides initial guesses and lets the user add more in-
formation where required. The user typically performs three opera-
tions: Choosing a more appropriate texture within the set of candi-
dates, confirming the choice made by the algorithm, or selecting a
texture for a surface that could not be assigned. Please refer to the
accompanying video for an illustration.

Choosing a better texture is done very quickly thanks to our ranking
system. All ambiguous textures appear very early in the list of can-
didates, and the user does not have to browse long before finding a
better choice. For instance to obtain the result in Figure 8 (bottom
row) the user on average selected the texture at rank 2.2 – rank 1
being selected by default – out of 71 textures.

Confirming a choice lets the system add the target surface in the set
of examples, reinforcing the knowledge about this particular tex-
ture. In fact it is a very similar operation than manually assign-
ing a texture to a surface. In both cases the probes of the surfaces
are added to the example database. The similarity between newly
added surfaces and all other target surfaces is recomputed, updat-
ing all target surfaces throughout the scene. After a surface has
been explicitly assigned by the user it is no longer considered as a
target surface and will be left untouched by the algorithm.

3.5 Generating final texture coordinates

In this work we assume that the surfaces are already parameterized.
We optionally rotate the texture coordinates by 90 degrees if we
detect that the aspect ratio between the surface and the texture can
be improved. However, we ignore the existing texture coordinates
in the assignment process since this would give unfair knowledge
about the target surface to our approach.

Generating proper texture coordinates is an area for future improve-
ment: Even if in most cases texture coordinates are trivially com-
puted at modeling time for environments, scaling factors and edge
alignments should be taken into account. In addition techniques
such as the one presented in [Cabral et al. 2009] could be used to
adapt the texture to the surface and cancel any stretch.

In the case of solid or procedural textures (materials) we of course
do not need to specify texture coordinates.

4 Applications and results

We tested our texturing application in a variety of situations. We
first demonstrate our approach on small, controlled scenes in order
to outline some of its properties. We then demonstrate the effect of
the neighborhood driven texture assignment, and finally apply our
method on entire game levels. We invite the reader to watch the
accompanying video for a complete illustration of the interactive
texturing interface.

Test scenes Our first test scene is a stair case surrounded by pil-
lars, shown Figure 6. The user assigns textures for the entire scene
by inspecting only seven surfaces. The stairs have varying lengths
and the pillars have different heights. For easier visualization we
do not display the textures but directly the texture ids as flat colors.

Figure 6: From left to right: Initial temple scene and the 7 steps to texture all surfaces: Pillars, walls, floors, stairs. Surfaces are colored by
texture id. Selected surfaces are highlighted.

Our second test scene is a rock pile shown Figure 7. Each rock
is obtained by adding a different random noise to a sphere. The
user is able to assign different textures to the rocks outside the pile
and inside the pile in just two clicks. The main discriminant is the
accessibility factor.

Figure 7: Left: The initial rock pile. Each rock is different. Middle:
A first rock is selected, all rocks are assigned the same material.
Right: A rock down below is selected, all rocks partially hidden are
assigned the same material.

Finally, Figure 8 illustrates automatic transfer between game levels.
The initial assignment is fully–automatic. The user then inspects a
few surfaces to resolve ambiguities.

Thresholds Figure 9 illustrates the impact of the γ and τ thresh-
olds in an extreme example. We illustrate the effect of γ by se-
lecting a single surface and increasing its value progressively. This
allows for more surfaces to be automatically assigned around the
selected one, but soon includes surfaces which are too dissimilar.
In general, γ is kept small and only accounts for small variations in
the geometric data.

Similarly, we illustrate the effect of τ by selecting two different
surfaces. τ has no effect with a single surface since per-texture
variance is only defined when at least two surfaces use the tex-
ture. Here, increasing τ results in a proper automatic assignment
of all other surfaces: The system properly interprets the variability
in between the example surfaces. It is important to realize that τ
only amplifies variations existing between the surfaces of a same
texture: In this case there is no variation of the normal in the up
direction, so increasing τ does not wrongly assign the texture to the
floor surface. We typically use a large τ value, often 1.0. The only
downside is that a texture used by very different surfaces – hence
with large variance in all attributes – will appear as a good candi-
date for all target surfaces. One way to prevent this would be to
rank higher textures with smallest variance in case of ambiguities.
In most cases, the default settings of γ = 0.1 and τ = 1.0 already
work very well.

Neighborhoods influence As shown Figure 10, a few iterations
of neighborhood fixup improves consistency of the texture selec-
tion. Nevertheless, some surfaces remain unassigned or ambiguous
requiring the user to perform manual selection.

Noise resistance We illustrate the effect of noise Figure 11. The
cubes quickly degenerate and are no longer recognized as such by
the algorithm. The spheres are still captured since the right–most
shape has a few probes matching the example sphere. However, the
texture score dramatically decreases from 7.610−3 to 1.610−8.

Figure 8: Top row: A game level (left) is used as a source for
assigning textures to a blank scene (right). Middle: The left image
shows the automatic assignment. For each surface the algorithm
ranked all textures and selected the first one. No match could be
found for white surfaces. On the right the final images after the user
manually selected textures for a few surfaces. Modified surfaces
are shown in yellow inset. On average, the choice made by the user
was at rank 2.2 affording for fast selection. Bottom: Same using a
different source scene. Scenes from Quake 4 c© Id Software.

Performance The complete pre-processing time for a scene with
158464 triangles forming 16441 surfaces took 22.0 seconds on a
dual Xeon 5160 3.0 GHz (4 cores). The ray-tracing part was done
using the NVidia OptiX ray-tracer on a Quadro FX 5800, which
resolved 43 million shadow rays.

The target scene shown in the top–right of Figure 8 is comprised
of 26796 triangles grouped in 7062 surfaces. Generation of the
310669 probes took 7.8 seconds. The example scene at the top–
left is comprised of 6497 surfaces and 182907 probes. A complete
assignment from the example – including probe generation for the
example – took 79.2 seconds. During interactive exploration, up-
dating a single surface required 12 msec. on average.

5 Conclusion

We propose a first algorithm to assist texturing of large environ-
ments. Our method is interactive and immediately exploits user
choices to assign textures to other surfaces. Rather than imposing
an arbitrary best choice we design our method to rank all textures

Figure 9: In this example the user textures curved stairs. The sur-
faces selected by the user are marked by a yellow cross. Left: These
three images illustrate how γ controls the global matching thresh-
old (τ = 0). On the leftmost image γ = 0 and no other surface than
the selected one is assigned a texture. Increasing to γ = 1.0 allows
for a few more steps to be assigned. However, in the third image in-
creasing γ to 2.0 wrongly assigns the texture to all surfaces. Right:
These two images illustrates how τ controls the per–texture match-
ing threshold (γ = 0). On the first image τ = 0. Two different
surfaces are selected by the user, but nothing else is assigned. On
the second image, τ = 1.0 and all surfaces in between are automat-
ically assigned: The system properly interprets variability between
the two example surfaces.

Figure 10: Left: The initial result from the probes, middle: the
result after one iteration (a wall gets fixed), right: the result after
two iterations (the ground gets fixed).

for a surface. This lets the user quickly select among the most ap-
propriate choices.

A key contribution of this work is the probe–based surface similar-
ity, measuring how well two surfaces describe each other by their
probes. This lets us exploit geometric information to select a num-
ber of texture candidates for a surface. The use of probes not only
enables a meaningful similarity measure for texturing purposes, it
also abstracts away from polygons and avoids many of the typical
robustness issues when dealing with vertices and triangles.

A major difficulty of the work was to define a robust and principled
algorithm for automatic texture assignment. Throughout the work,
our guiding principle has been to target simplicity – limiting the
number of parameters – and practicality. We believe we succeed
in this, even though our algorithm still cannot reliably texture a
scene on its own and requires a number of surfaces to be manually
inspected. Fortunately meaningful ordering of textures allows for
fast selection.

For future work, we think there is room for improvement regarding
the influence of neighbors. One aspect missing from our scheme is
to consider the confidence of a neighbor – i.e. how high his own
probe ranking is. In addition, an in–depth user study is required to
measure the efficiency of the approach in a production setting. This
work is only a first step and many interesting research directions are
left over. We hope this will spark other approaches, as we believe
computer assisted texturing will be a key element to create large
virtual worlds of unprecedented visual richness.

Acknowledgements
We thank Michiel van de Panne, George Drettakis, Karan Singh,
Nicolas Ray and the anonymous reviewers for insightful discus-
sions, comments and proof reading. Thanks to NVidia for hard-
ware, the OptiX SDK and for responsive and helpful support. This

Figure 11: From left to right: The example is made of a sphere and
a cube textured differently. Different amounts of noise are added to
the vertex positions.

work was partially supported by Agence Nationale de la Recherche
(ANR-08-CORD-021-03).

References

ANDERSON, D., FRANKEL, J. L., MARKS, J., AGARWALA, A.,
BEARDSLEY, P., HODGINS, J., LEIGH, D., RYALL, K., SUL-
LIVAN, E., AND YEDIDIA, J. S. 2000. Tangible interaction
+ graphical interpretation: a new approach to 3d modeling. In
Proceedings of ACM SIGGRAPH, 393–402.

ASHIKHMIN, M. 2001. Synthesizing natural textures. In Pro-
ceedings of the ACM SIGGRAPH Symposium on Interactive 3D
Graphics, 217–226.

BISHOP, C. M. 2006. Pattern Recognition and Machine Learning
(Information Science and Statistics). Springer-Verlag New York,
Inc., Secaucus, NJ, USA.

CABRAL, M., LEFEBVRE, S., DACHSBACHER, C., AND DRET-
TAKIS, G. 2009. Structure preserving reshape for textured ar-
chitectural scenes. Computer Graphics Forum (Proceedings of
the Eurographics conference).

GAL, R., AND COHEN-OR, D. 2006. Salient geometric features
for partial shape matching and similarity. vol. 25, 130–150.

HERTZMANN, A., JACOBS, C. E., OLIVER, N., CURLESS, B.,
AND SALESIN, D. H. 2001. Image analogies. In Proceedings
of ACM SIGGRAPH, 327–340.

LEGAKIS, J., DORSEY, J., AND GORTLER, S. 2001. Feature-
based cellular texturing for architectural models. In Proceedings
of ACM SIGGRAPH, 309–316.

LU, J., GEORGHIADES, A. S., GLASER, A., WU, H., WEI,
L.-Y., GUO, B., DORSEY, J., AND RUSHMEIER, H. 2007.
Context-aware textures. ACM Transactions on Graphics 26, 1.

MARTINET, A. 2007. Structuring 3D Geometry based on Symme-
try and Instancing Information. PhD thesis, INP Grenoble, 46,
avenue Félix Viallet - 38031 Grenoble Cedex 1 - France.

MERTENS, T., KAUTZ, J., CHEN, J., BEKAERT, P., AND DU-
RAND, F. 2006. Texture transfer using geometry correlation.
Rendering Techniques, 273.

PAULY, M., MITRA, N. J., WALLNER, J., POTTMANN, H., AND
GUIBAS, L. 2008. Discovering structural regularity in 3D ge-
ometry. ACM Transactions on Graphics 27, 3, #43, 1–11.

SIMAKOV, D., C. Y. S. E., AND IRANI, M. 2008. Summarizing
visual data using bidirectional similarity. In CVPR.

TANGELDER, JOHAN W. H. VELTKAMP, R. C. 2004. A survey
of content based 3d shape retrieval methods. In Proceedings of
Shape Modeling International 2004, 145–156.

	Introduction
	Previous work
	Our approach
	Texture ranking with surface similarity
	Surface probing
	Bi–directional probe matching
	Texture ranking with probes only

	Neighborhood–driven texture selection
	The texture graph
	Neighborhood influence

	Global texture assignment
	Adding the user in the loop
	Generating final texture coordinates

	Applications and results
	Conclusion

